Next Article in Journal
IL10 rs1800872 Is Associated with Non-Steroidal Anti-Inflammatory Drugs Exacerbated Respiratory Disease in Mexican-Mestizo Patients
Next Article in Special Issue
Chemical Composition of Essential Oils from Different Parts of Zingiber kerrii Craib and Their Antibacterial, Antioxidant, and Tyrosinase Inhibitory Activities
Previous Article in Journal
Structure Modeling of the Norepinephrine Transporter
Previous Article in Special Issue
Anticonvulsant Essential Oils and Their Relationship with Oxidative Stress in Epilepsy
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:

Essential Oils of Lamiaceae Family Plants as Antifungals

Tomasz M. Karpiński
Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
Biomolecules 2020, 10(1), 103;
Submission received: 3 December 2019 / Revised: 3 January 2020 / Accepted: 6 January 2020 / Published: 7 January 2020
(This article belongs to the Special Issue Perspectives of Essential Oils)


The incidence of fungal infections has been steadily increasing in recent years. Systemic mycoses are characterized by the highest mortality. At the same time, the frequency of infections caused by drug-resistant strains and new pathogens e.g., Candida auris increases. An alternative to medicines may be essential oils, which can have a broad antimicrobial spectrum. Rich in the essential oils are plants from the Lamiaceae family. In this review are presented antifungal activities of essential oils from 72 Lamiaceae plants. More than half of these have good activity (minimum inhibitory concentrations (MICs) < 1000 µg/mL) against fungi. The best activity (MICs < 100) have essential oils from some species of the genera Clinopodium, Lavandula, Mentha, Thymbra, and Thymus. In some cases were observed significant discrepancies between different studies. In the review are also shown the most important compounds of described essential oils. To the chemical components most commonly found as the main ingredients include β-caryophyllene (41 plants), linalool (27 plants), limonene (26), β-pinene (25), 1,8-cineole (22), carvacrol (21), α-pinene (21), p-cymene (20), γ-terpinene (20), and thymol (20).

1. Introduction

Fungal infections belong to the most often diseases of humans. It is estimated that about 1.7 billion people (25% of the population) have skin, nail, and hair fungal infections [1]. The development of most of these infections is affected by dermatophytes, namely Trichophyton spp., Microsporum spp., and Epidermophyton spp. [2]. Simultaneously, mucosal infections of the oral and genital tracts caused by Candida spp. are very common. About 0.13 billion of women suffer from vulvovaginal candidiasis. On the other hand, oral candidiases are common in babies and denture wearers. Fungi also cause life-threatening systemic infections, with mortality reaching >1.6 million, which is >3-fold more than malaria [3]. Among life-threatening fungal infections prevail cryptococcosis (Cryptococcus neoformans) with >1,000,000 cases and mortality rate 20–70%, candidiasis (Candida albicans) with >400,000 cases and mortality rate 46–75%, pneumocystosis (Pneumocystis jirovecii) with >400,000 cases and mortality rate 20–80%, and aspergillosis (Aspergillus fumigatus) with >200,000 cases and mortality rate 30–95% [1,4,5]. In Table 1 are presented diseases caused by some of the most often fungal pathogens among people.
The big problem is growing drug-resistance amid fungi. Among Candida and Aspergillus species is observed resistance to azoles, e.g., to fluconazole, voriconazole, and posaconazole. Some Candida species, especially C. glabrata and C. parapsilosis, can be echinocandin- and multidrug-resistant [8,9]. Acquired resistance to echinocandins has also been reported for yeasts C. albicans, C. tropicalis, C. krusei, C. kefyr, C. lusitaniae, and C. dubliniensis [10]. More than 3% of Aspergillus fumigatus isolates are resistant to one or more azoles [11]. Polyene resistance mainly concerns amphotericin B. Resistance to this drug is observed in Fusarium spp., Trichosporon spp., Aspergillus spp., and Sporothrix schenckii [12,13]. Resistance to amphotericin B has also been reported for C. albicans, C. glabrata, and C. tropicalis [14,15,16]. Cultures of some Candida species and Cryptococcus neoformans are presented in Figure 1.
The new epidemiological problem is C. auris, a multidrug-resistant organism first described in Japan in 2009 [17]. Recently, C. auris has been reported from 36 countries from six continents [18]. About 30% of isolates demonstrate reduced susceptibility to amphotericin B, and 5% can be resistant to the echinocandins [19,20]. The estimated mortality from C. auris fungemia range from 28% to 60% [21].
Fundamental issues are also the costs of treatment and hospitalization of patients with invasive fungal diseases. According to Drgona et al., all costs range from around €26,000 up to over €80,000 per patient [5].
Therefore, all time, new treatments for fungal infections are being sought. One option may be to apply natural products having antifungal activity. Among these, significant importances have essential oils, which can have a broad antimicrobial spectrum. Rich in the essential oils are among other plants from the Lamiaceae family.
In this review are presented antifungal activities of essential oils from seventy-two (72) plants of the Lamiaceae family. Moreover, are shown the most important compounds of these essential oils. For objective comparison of results, in this paper were included only antifungal studies specifying the minimum inhibitory concentrations (MICs) for essential oils. The MIC (expressed in µg/mL) is the lowest concentration of an antimicrobial agent in which no growth of a microorganism is observed in an agar or broth dilution susceptibility test [22,23,24].

2. Components of Essential Oils of Lamiaceae Family

The family Lamiaceae or Labiatae contains many valuable medicinal plants. In the family are 236 genera and between 6900 and 7200 species. To the most abundant genera belong Salvia (900 species), Scutellaria (360), Stachys (300), Plectranthus (300), Hyptis (280), Teucrium (250), Vitex (250), Thymus (220), and Nepeta (200). Lamiaceae plants rich in essential oils have great worth in natural medicine, pharmacology, cosmetology, and aromatherapy [25]. The essential oils are mostly present in leaves, however, they can be found in flowers, buds, fruits, seeds, rind, wood, or roots [26]. Essential oils are mixtures of volatile compounds, which are secondary plant metabolites. They play a role in the defense system of higher plants [27]. Essential oils may contain over 300 different compounds, mainly of molecular weight below 300 [28]. Some oils, e.g., obtained from Lavandula, Geranium, or Rosmarinus, contain 450 to 500 chemicals [29]. Among the active compounds of essential oils are various chemical classes, e.g., alcohols, ethers, aldehydes, ketones, esters, phenols, terpenes (monoterpenes, sesquiterpenes), and coumarins [30,31].
In Table 2 are presented the main chemical components of essential oils of selected Lamiaceae family plants. Plant names were unified according to The Plant List [32], however synonyms used in the literature were also left. Chemical component names were unified, according to PubChem [33].
To the chemical components most commonly found as the main ingredients in essential oils, among plants presented in Table 2, include β-caryophyllene (41 plants), linalool (27 plants), limonene (26), β-pinene (25), 1,8-cineole (22), carvacrol (21), α-pinene (21), p-cymene (20), γ-terpinene (20), and thymol (20) (Figure 2). Sesquiterpene β-caryophyllene seems particularly important antifungal component in the Lamiaceae family. Its activity and its derivatives, such as caryophyllene oxide is well known [134,135,136]. According to Bona et al. [137], essential oils containing high concentrations of phenolic monoterpenes (e.g., carvacrol, p-cymene, thymol) have great antifungal activities. Rich in these substances are, among others Origanum and Thymus plants. Important antifungal chemicals often presented in Lamiaceae are also other monoterpenes as alcohol linalool and cyclic 1,8-cineole, limonene, pinenes, and terpinenes [138,139,140,141,142,143,144,145,146]. Table 1 shows that all of these antifungal substances are common in presented plants.

3. Antifungal Activity of Essential Oils of Lamiaceae Family

In Table 3 are shown the antifungal activities of selected Lamiaceae essential oils. More than half of the essential oils have good activity (<1000 µg/mL) against fungi. In some cases are observed significant discrepancies between different studies. An example could be the action of essential oils from Italian Calamintha nepeta against Candida albicans. In the work of Marongiu et al. [39], minimal inhibitory concentrations amounted to 1.25–2.5 µg/mL, while in Božović et al. [40] MICs were between 780 to 12,480 µg/mL. Differences may be related to the different biochemical composition of the examined essential oils. In results presented by Marongiu et al. [39] the main components of essential oils were pulegone (39.9–64.4%), piperitenone oxide (2.5–19.1%) and piperitenone (6.4–7.7%), while in Božović et al. [40] three main substances were pulegone (37.7–84.7%), crysanthenone (1.3–33.9%) and menthone (0.5–35.4%). Some authors have described that the content of active substances varies depending on the season. In studies of Gonçalves et al. [60] in Mentha cervina during the flowering phase in August amount of isomenthone and pulegone in essential oil amounted 8.7% and 75.1% respectively. Simultaneously, in the vegetative phase in February, the content of both components changed significantly and amounted to 77.0% for isomenthone and 12.9% for pulegone. Similarly, Al-Maskri et al. [75] presented essential changes in some compounds of Ocimum basilicum essential oil between winter and summer. In the summer essential oil, there is significantly more of linalool, p-allylanisole and β-farnesene, and at the same time much less content of limonene and 1,8-cineole. In this work, a seasonal variation of chemical composition is directly related to other antifungal activities. It is particularly evident in action against Aspergillus niger, which was lower in the summer season. Zone of growth inhibition (ZOI) for winter essential oil was 21 mm and MIC > 50 µg/mL, while for summer essential oil-ZOI was 13 mm and MIC > 100 µg/mL [75]. Influence on the content of chemical substances in essential oils also has a method of obtaining them. Ćavar et al. [40] compared the composition of oils obtained from Calamintha glandulosa using three methods: Hydrodistillation (HD), steam distillation (SD) and aqueous reflux extraction (ARE). For example, the level of menthone was 3.3% in ARE, 4.7% in HD, and 8.3% in SD method, while for shisofuran was only 0.1% in HD and SD, and even 9.7% in ARE [40]. Additionally, many other factors can affect antimicrobial activity, such as amount and concentration of inoculum, type of culture medium, pH of the medium and incubation time. All these factors can affect the value of MIC [145]. Differences are visible in Table 2. Generally, it can be assumed that the best activity (MICs < 100) have essential oils from Clinopodium spp. (excluding C. nepeta subsp. glandulosum and C. umbrosum), Lavandula spp., Mentha spp. (excluding M. piperita), Thymbra spp., and Thymus spp. (excluding T. migricus and T. vulgaris). The highest values of MICs are presented among others for Aeollanthus suaveolens, Agastache rugosa, Lepechinia mutica, Mentha × piperita, and Salvia sclarea. Simultaneously, some essential oils have a very different activity, and MIC values differ depending on the region, chemical composition, research methodology, etc. Significant variations can be observed even in Ocimum basilicum (MICs 1–10,000), O. sanctum (MICs 0.1–500), Origanum majorana (MICs 0.5–14,400) or in Thymus vulgaris (MICs 0.08–3600).
The mode of action of essential oils is multidirectional. Essential oils lead to disruption of the cell wall and cell membrane through a permeabilization process. The lipophilic compounds of essential oils can pass through the cell wall and damage polysaccharides, fatty acids, and phospholipids, eventually making them permeable [146,147]. Change of the permeability for H+ and K+ cations affects cellular pH and damage of cellular organelles [148,149]. Additionally, essential oils inhibit the synthesis of fungal DNA, RNA, proteins, and polysaccharides [150]. Essential oils can also disintegrate mitochondrial membrane [151,152]. It has also been shown that essential oil from Thymus vulgaris inhibits the production of aflatoxins by Aspergillus flavus and leads to the reduction of ergosterol production [123].

4. Essential Oils of Lamiaceae Plants in Cosmetics and Medicines

Some essential oils of Lamiaceae family plants and/or their components are commonly used in cosmetics and less often in medicine. Essential oils from Thymus vulgaris, Origanum vulgare, Rosmarinus officinalis, Calamintha officinalis, Salvia officinalis, or Lavandula officinalis are in cosmetic formulations as natural preservatives [187]. Lavandula angustifolia oil is commonly used as a fragrance in cosmetics, soaps, perfumes and pharmaceutical products. It also acts as an anti-inflammatory, and is calming, headache relieving, is a sedative and is skin healing. Essential oils from Lavandula hybrida and L. angustifolia also have anti-louse activity. Compounds (essential oils and mainly menthol) extracted from Mentha piperita are commonly used as a fragrance in soaps, cosmetics and as well as in the kitchen as a spice and refreshing products. Moreover, they are often found in chewing gums, toothpastes, and mouthwashes. For medical use, it can be taken orally in gastrointestinal complications. Rosmarinus officinalis essential oil is often an ingredient as a fragrance in cosmetics, soaps, bath salts and oils, gels and ointments. It is widely used for hair care and hair-loss treatment because it promotes hair growth and helps against dandruff [188]. In medicine, essential oils from Lamiaceae family are used in aromatherapy (Salvia sclarea, Lavandula officinalis, Mentha piperita, Rosmarinus officinalis) [189], sinusitis (Lavandula officinalis, Thymus vulgaris) [190], and in upper respiratory tract for treatment of catarrh (Mentha piperita, Mentha arvensis, Thymus spp.) [191]. Both essential oils from Lamiaceae plants and mono-substances are used in toothpastes and mouthwashes. In many of these the following chemicals, like limonene, linalool, menthol, and thymol, are presented as flavorings and fragrances [192,193]. Additionally, in some toothpastes are essential oils, e.g., in “Parodontax®” occurs Salvia officinalis oil, Mentha piperita oil, and Mentha arvensis oil; in “Lacalut Active Herbal” is Mentha arvensis oil, Thymus vulgaris oil, and Salvia officinalis oil, while in “Signal Family Herbal Fresh” are oils from Mentha piperita and Salvia officinalis [194]. Literature data confirm a strong antifungal effect against C. albicans and anti-inflammatory activity of “Parodontax” toothpaste [195,196]. Besides toothpastes, also some medicines used to rinse the oral cavity or throat contain a large number of essential oils. Mention may be made of “Salviasept” having in its composition the oils from Mentha × piperita, Thymus vulgaris, Thymus zygis, Origanum majorana, and Salvia officinalis or “Dentosept Complex” containing oils from Mentha piperita, Thymus vulgaris, Salvia sp., Lavandula sp., and Eucalyptus globulus. Among the antifungal medicines in “Acerin Talk” antifungal foot deodorant are present Lavandula sp. oil, menthol, linalool, limonene, and geraniol, while in “Podoflex Tincture” for nails mucosis occur among others oils from Salvia sclarea and Lavandula angustifolia and mono-substances current in Lamiaceae plants: geraniol, limonene, linalool, citral, and eugenol [194].

5. Conclusions

More than half of the essential oils from Lamiaceae family plants have good antifungal activity (MICs < 1000 µg/mL). The microbiological data indicate that they could be used alone or in combination with antifungal drugs in the treatment of fungal infections, especially of the skin and mucous membranes. Some essential oils and their components extracted from Lamiaceae plants are used in cosmetics and medicines. Essential oils may be of future relevance in the treatment of multi-drug resistant fungi.


This research received no external funding.

Conflicts of Interest

The author declares no conflict of interest.


  1. Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. White, T.C.; Findley, K.; Dawson, T.L., Jr.; Scheynius, A.; Boekhout, T.; Cuomo, C.A.; Xu, J.; Saunders, C.W. Fungi on the skin: Dermatophytes and Malassezia. Cold Spring Harb. Perspect. Med. 2014, 4. [Google Scholar] [CrossRef] [Green Version]
  3. Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and multi-national prevalence of fungal diseases—estimate precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
  4. Park, B.J.; Wannemuehler, K.A.; Marston, B.J.; Govender, N.; Pappas, P.G.; Chiller, T.M. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 2009, 23, 525–530. [Google Scholar] [CrossRef] [PubMed]
  5. Drgona, L.; Khachatryan, A.; Stephens, J.; Charbonneau, C.; Kantecki, M.; Haider, S.; Barnes, R. Clinical and economic burden of invasive fungal diseases in Europe: Focus on pre-emptive and empirical treatment of Aspergillus and Candida species. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 7–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Murray, P.R.; Rosenthal, K.S.; Pfaller, M.A. Section 6. Mycology. In Medical Microbiology, 7th ed.; Saunders: Philadelphia, PA, USA, 2013; pp. 605–711. [Google Scholar]
  7. Reddy, K.R. Fungal infections (Mycoses): Dermatophytoses (Tinea, Ringworm). J. Gandaki Med. Coll. Nepal 2017, 10. [Google Scholar] [CrossRef] [Green Version]
  8. Lortholary, O.; Desnos-Ollivier, M.; Sitbon, K.; Fontanet, A.; Bretagne, S.; Dromer, F. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: A prospective multicenter study involving 2,441 patients. Antimicrob. Agents Chemother. 2011, 55, 532–538. [Google Scholar] [CrossRef] [Green Version]
  9. Alexander, B.D.; Johnson, M.D.; Pfeiffer, C.D.; Jiménez-Ortigosa, C.; Catania, J.; Booker, R.; Castanheira, M.; Messer, S.A.; Perlin, D.S.; Pfaller, M.A. Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 2013, 56, 1724–1732. [Google Scholar] [CrossRef] [Green Version]
  10. Arendrup, M.C.; Perlin, D.S. Echinocandin resistance: An emerging clinical problem? Curr. Opin. Infect. Dis. 2014, 27, 484–492. [Google Scholar] [CrossRef] [Green Version]
  11. Van der Linden, J.W.; Arendrup, M.C.; Warris, A.; Lagrou, K.; Pelloux, H.; Hauser, P.M.; Chryssanthou, E.; Mellado, E.; Kidd, S.E.; Tortorano, A.M.; et al. Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg. Infect. Dis. 2015, 21, 1041–1044. [Google Scholar] [CrossRef]
  12. Pfaller, M.A.; Diekema, D.J. Rare and emerging opportunistic fungal pathogens: Concern for resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbiol. 2004, 42, 4419–4431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  13. Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, e383–e392. [Google Scholar] [CrossRef]
  14. Krcmery, V., Jr.; Spanik, S.; Kunova, A.; Trupl, J. Breakthrough fungemia appearing during empiric therapy with amphotericin B. Chemotherapy 1997, 43, 367–370. [Google Scholar] [CrossRef] [PubMed]
  15. Hull, C.M.; Bader, O.; Parker, J.E.; Weig, M.; Gross, U.; Warrilow, A.G.; Kelly, D.E.; Kelly, S.L. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob. Agents Chemother. 2012, 56, 6417–6421. [Google Scholar] [CrossRef] [Green Version]
  16. Woods, R.A.; Bard, M.; Jackson, I.E.; Drutz, D.J. Resistance to polyene antibiotics and correlated sterol changes in two isolates of Candida tropicalis from a patient with an amphotericin B-resistant funguria. J. Infect. Dis. 1974, 129, 53–58. [Google Scholar] [CrossRef]
  17. Satoh, K.; Makimura, K.; Hasumi, Y.; Nishiyama, Y.; Uchida, K.; Yamaguchi, H. Candida auris sp. nov, a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol. 2009, 53, 41–44. [Google Scholar] [CrossRef]
  18. Tracking Candida Auris. Case Count Updated as of July 31; 2019; CDC. Available online: (accessed on 9 September 2019).
  19. Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 2017, 64, 134–140. [Google Scholar] [CrossRef] [Green Version]
  20. Friedman, D.Z.P.; Schwartz, I.S. Emerging fungal infections: New patients, new patterns, and new pathogens. J. Fungi 2019, 5, 67. [Google Scholar] [CrossRef] [Green Version]
  21. Hata, D.J.; Humphries, R.; Lockhart, S.R.; College of American Pathologists Microbiology Committee. Candida auris: An emerging yeast pathogen posing distinct challenges for laboratory diagnostics, treatment, and infection prevention. Arch. Pathol. Lab. Med. 2019. [Google Scholar] [CrossRef] [Green Version]
  22. Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeast, 3rd ed.; Approved Standard, CLSI document M27-A3, Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
  23. Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 2nd ed.; Approved Standard, CLSI document M38-A2, Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
  24. Przybyłek, I.; Karpiński, T.M. Antibacterial properties of propolis. Molecule 2019, 24, 47. [Google Scholar] [CrossRef] [Green Version]
  25. Ramasubramania Raja, R. Medicinally potential plants of Labiatae (Lamiaceae) family: An overview. Res. J. Med. Plant. 2012, 6, 203–213. [Google Scholar]
  26. Carović-Stanko, K.; Petek, M.; Grdiša, M.; Pintar, J.; Bedeković, D.; Herak Ćustić, M.; Satovic, Z. Medicinal plants of the family Lamiaceae as functional foods—A review. Czech J. Food Sci. 2016, 34, 377–390. [Google Scholar] [CrossRef] [Green Version]
  27. Radulović, N.S.; Blagojević, P.D.; Stojanović-Radić, Z.Z.; Stojanowić, N.M. Antimicrobial plant metabolites: Structural diversity and mechanism of action. Curr. Med. Chem. 2013, 20, 932–952. [Google Scholar] [PubMed]
  28. Vainstein, A.; Lewinsohn, E.; Pichersky, E.; Weiss, D. Floral fragrance. New inroads into an old commodity. Plant Physiol. 2001, 127, 1383–1389. [Google Scholar] [CrossRef]
  29. De Groot, A.C.; Schmidt, E. Essential oils, Part III: Chemical composition. Dermatitis 2016, 27, 161–619. [Google Scholar] [CrossRef]
  30. Piątkowska, E.; Rusiecka-Ziółkowska, J. Influence of essential oils on infectious agents. Adv. Clin. Exp. Med. 2016, 25, 989–995. [Google Scholar] [CrossRef] [Green Version]
  31. Dhifi, W.; Bellili, S.; Jazi, S.; Bahloul, N.; Mnif, W. Essential oils’ chemical characterization and investigation of some biological activities: A critical review. Medicines 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
  32. The Plant List. Available online: (accessed on 12 September 2019).
  33. PubChem. Available online: (accessed on 23 September 2019).
  34. Ngo Mback, M.N.; Agnaniet, H.; Nguimatsia, F.; Jazet Dongmo, P.M.; Hzounda Fokou, J.B.; Bakarnga-Via, I.; Fekam Boyom, F.; Menut, C. Optimization of antifungal activity of Aeollanthus heliotropioides oliv essential oil and Time Kill Kinetic Assay. J. Mycol. Med. 2016, 26, 233–243. [Google Scholar] [CrossRef]
  35. Ivanov, I.G.; Vrancheva, R.Z.; Petkova, N.T.; Tumbarski, Y.; Dincheva, I.N.; Badjakov, I.K. Phytochemical compounds of anise hyssop (Agastache foeniculum) and antibacterial, antioxidant, and acetylcholinesterase inhibitory properties of its essential oil. J. Appl. Pharmac. Sci. 2019, 9, 72–78. [Google Scholar]
  36. Li, H.Q.; Liu, Q.Z.; Liu, Z.L.; Du, S.S.; Deng, Z.W. Chemical composition and nematicidal activity of essential oil of Agastache rugosa against Meloidogyne incognita. Molecules 2013, 18, 4170–4180. [Google Scholar] [CrossRef]
  37. Fraternale, D.; Ricci, D. Essential oil composition and antifungal activity of aerial parts of Ballota nigra ssp foetida collected at flowering and fruiting times. Nat. Prod. Commun. 2014, 9, 1015–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  38. Marinković, B.; Marin, P.D.; Knezević-Vukcević, J.; Soković, M.D.; Brkić, D. Activity of essential oils of three Micromeria species (Lamiaceae) against micromycetes and bacteria. Phytother. Res. 2002, 16, 336–339. [Google Scholar] [CrossRef] [PubMed]
  39. Monforte, M.T.; Tzakou, O.; Nostro, A.; Zimbalatti, V.; Galati, E.M. Chemical composition and biological activities of Calamintha officinalis Moench essential oil. J. Med. Food 2011, 14, 297–303. [Google Scholar] [CrossRef] [PubMed]
  40. Ćavar, S.; Vidic, D.; Maksimović, M. Volatile constituents, phenolic compounds, and antioxidant activity of Calamintha glandulosa (Req.) Bentham. J. Sci. Food Agric. 2013, 93, 1758–1764. [Google Scholar] [CrossRef]
  41. Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L. Chemical composition and biological assays of essential oils of Calamintha nepeta (L.) Savi subsp. nepeta (Lamiaceae). Nat. Prod. Res. 2010, 24, 1734–1742. [Google Scholar] [CrossRef] [PubMed]
  42. Božović, M.; Garzoli, S.; Sabatino, M.; Pepi, F.; Baldisserotto, A.; Andreotti, E.; Romagnoli, C.; Mai, A.; Manfredini, S.; Ragno, R. Essential oil extraction, chemical analysis and anti-Candida activity of Calamintha nepeta (L.) Savi subsp. landulosa (Req.) Ball—New approaches. Molecules 2017, 22, 203. [Google Scholar] [CrossRef] [Green Version]
  43. Kumar, V.; Mathela, C.S.; Tewari, A.K.; Bisht, K.S. In vitro inhibition activity of essential oils from some Lamiaceae species against phytopathogenic fungi. Pestic. Biochem. Physiol. 2014, 114, 67–71. [Google Scholar] [CrossRef]
  44. Stappen, I.; Wanner, J.; Tabanca, N.; Wedge, D.E.; Ali, A.; Kaul, V.K.; Lal, B.; Jaitak, V.; Gochev, V.K.; Schmidt, E.; et al. Chemical composition and biological activity of essential oils of Dracocephalum heterophyllum and Hyssopus officinalis from Western Himalaya. Nat. Prod. Commun. 2015, 10, 133–138. [Google Scholar] [CrossRef] [Green Version]
  45. Ahmadi, F.; Sadeghi, S.; Modarresi, M.; Abiri, R.; Mikaeli, A. Chemical composition, in vitro anti-microbial, antifungal an d antioxidant activities of the essential oil and methanolic extract of Hymenocrater longiflorus Benth., of Iran. Food Chem. Toxicol. 2010, 48, 1137–1144. [Google Scholar] [CrossRef]
  46. De Oliveira, C.M.A.; Silva, M.R.R.; Kato, L.; da Silva, C.C.; Ferreira, H.D.; Souza, L.K.H. Chemical composition and antifungal activity of the essential oil of Hyptis ovalifolia Benth. (Lamiaceae). J. Braz. Chem. Soc. 2004, 15, 756–759. [Google Scholar] [CrossRef] [Green Version]
  47. Džamić, A.M.; Soković, M.D.; Novaković, M.; Jadranin, M.; Ristić, M.S.; Tešević, V.; Marin, P.D. Composition, antifungal and antioxidant properties of Hyssopus officinalis L. subsp. pilifer (Pant.) Murb. essential oil and deodorized extracts. Ind. Crops Prod. 2013, 51, 401–407. [Google Scholar]
  48. Hristova, Y.; Wanner, J.; Jirovetz, L.; Stappen, I.; Iliev, I.; Gochev, V. Chemical composition and antifungal activity of essential oil of Hyssopus officinalis L. from Bulgaria against clinical isolates of Candida species. Biotechnol. Biotechnol. Equip. 2015, 29, 592–601. [Google Scholar] [CrossRef] [Green Version]
  49. Adam, K.; Sivropoulou, A.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antifungal activities of Origanum vulgare subsp. hirtum, Mentha spicata, Lavandula angustifolia, and Salvia fruticosa essential oils against human pathogenic fungi. J. Agric. Food Chem. 1998, 46, 1739–1745. [Google Scholar]
  50. D’Auria, F.D.; Tecca, M.; Strippoli, V.; Salvatore, G.; Battinelli, L.; Mazzanti, G. Antifungal activity of Lavandula angustifolia essential oil against Candida albicans yeast and mycelial form. Med. Mycol. 2005, 43, 391–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  51. Khoury, M.; Stien, D.; Eparvier, V.; Ouaini, N.; El Beyrouthy, M. Report on the medicinal use of eleven Lamiaceae species in Lebanon and rationalization of their antimicrobial potential by examination of the chemical composition and antimicrobial activity of their essential oils. Evid. Based Compl. Altern. Med. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
  52. Zuzarte, M.; Vale-Silva, L.; Gonçalves, M.J.; Cavaleiro, C.; Vaz, S.; Canhoto, J.; Pinto, E.; Salgueiro, L. Antifungal activity of phenolic-rich Lavandula multifida L. essential oil. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 1359–1366. [Google Scholar] [CrossRef]
  53. Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Dinis, A.M.; Canhoto, J.M.; Salgueiro, L.R. Chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav. Chem. Biodivers. 2009, 6, 1283–1292. [Google Scholar] [CrossRef]
  54. Zuzarte, M.; Gonçalves, M.J.; Cruz, M.T.; Cavaleiro, C.; Canhoto, J.; Vaz, S.; Pinto, E.; Salgueiro, L. Lavandula luisieri essential oil as a source of antifungal drugs. Food Chem. 2012, 135, 1505–1510. [Google Scholar] [CrossRef]
  55. Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Canhoto, J.; Vale-Silva, L.; Silva, M.J.; Pinto, E.; Salgueiro, L. Chemical composition and antifungal activity of the essential oils of Lavandula viridis L’Her. J. Med. Microbiol. 2011, 60, 612–618. [Google Scholar] [CrossRef] [Green Version]
  56. Ramírez, J.; Gilardoni, G.; Jácome, M.; Montesinos, J.; Rodolfi, M.; Guglielminetti, M.L.; Cagliero, C.; Bicchi, C.; Vidari, G. Chemical composition, enantiomeric analysis, AEDA sensorial evaluation and antifungal activity of the essential oil from the Ecuadorian plant Lepechinia mutica Benth (Lamiaceae). Chem. Biodivers. 2017, 14, e1700292. [Google Scholar] [CrossRef]
  57. Ramírez, J.; Gilardoni, G.; Ramón, E.; Tosi, S.; Picco, A.M.; Bicchi, C.; Vidari, G. Phytochemical study of the Ecuadorian species Lepechinia mutica (Benth.) Epling and high antifungal activity of carnosol against Pyricularia oryzae. Pharmaceuticals 2018, 11, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  58. Zarai, Z.; Kadri, A.; Ben Chobba, I.; Ben Mansour, R.; Bekir, A.; Mejdoub, H.; Gharsallah, N. The in-vitro evaluation of antibacterial, antifungal and cytotoxic properties of Marrubium vulgare L. essential oil grown in Tunisia. Lipids Health Dis. 2011, 10, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  59. Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Simin, N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 2004, 52, 2485–2489. [Google Scholar] [CrossRef] [PubMed]
  60. Gonçalves, M.J.; Vicente, A.M.; Cavaleiro, C.; Salgueiro, L. Composition and antifungal activity of the essential oil of Mentha cervina from Portugal. Nat. Prod. Res. 2007, 21, 867–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  61. Soković, M.D.; Vukojević, J.; Marin, P.D.; Brkić, D.D.; Vajs, V.; van Griensven, L.J. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 2009, 14, 238–249. [Google Scholar] [CrossRef] [PubMed]
  62. Camiletti, B.X.; Asensio, C.M.; Pecci Mde, L.; Lucini, E.I. Natural control of corn postharvest fungi Aspergillus flavus and Penicillium sp. using essential oils from plants grown in Argentina. J. Food Sci. 2014, 79, M2499–M2506. [Google Scholar] [CrossRef]
  63. Samber, N.; Khan, A.; Varma, A.; Manzoor, N. Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharm. Biol. 2015, 53, 1496–1504. [Google Scholar] [CrossRef] [Green Version]
  64. Hossain, F.; Follett, P.; Dang Vu, K.; Harich, M.; Salmieri, S.; Lacroix, M. Evidence for synergistic activity of plant-derived essential oils against fungal pathogens of food. Food Microbiol. 2016, 53, 24–30. [Google Scholar] [CrossRef] [Green Version]
  65. Mahboubi, M.; Haghi, G. Antimicrobial activity and chemical composition of Mentha pulegium L. essential oil. J. Ethnopharmacol. 2008, 119, 325–327. [Google Scholar] [CrossRef]
  66. Abdelli, M.; Moghrani, H.; Aboun, A.; Maachi, R. Algerian Mentha pulegium L. leaves essential oil: Chemical composition, antimicrobial, insecticidal and antioxidant activities. Ind. Crops Prod. 2016, 94, 197–205. [Google Scholar] [CrossRef]
  67. Chessa, M.; Sias, A.; Piana, A.; Mangano, G.S.; Petretto, G.L.; Masia, M.D.; Tirillini, B.; Pintore, G. Chemical composition and antibacterial activity of the essential oil from Mentha requienii Bentham. Nat. Prod. Res. 2013, 27, 93–99. [Google Scholar] [CrossRef] [PubMed]
  68. Nardoni, S.; Giovanelli, S.; Pistelli, L.; Mugnaini, L.; Profili, G.; Pisseri, F.; Mancianti, F. In vitro activity of twenty commercially available, plant-derived essential oils against selected dermatophyte species. Nat. Prod. Commun. 2015, 10, 1473–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  69. Oumzil, H.; Ghoulami, S.; Rhajaoui, M.; Ilidrissi, A.; Fkih-Tetouani, S.; Faid, M.; Benjouad, A. Antibacterial and antifungal activity of essential oils of Mentha suaveolens. Phytother. Res. 2002, 16, 727–731. [Google Scholar] [CrossRef] [PubMed]
  70. El-Kashoury, S.A.; El-Askary, H.I.; Kandil, Z.A.; Salem, M.A. Chemical composition of the essential oil and botanical study of the flowers of Mentha suaveolens. Pharm. Biol. 2014, 52, 688–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  71. Garzoli, S.; Pirolli, A.; Vavala, E.; Di Sotto, A.; Sartorelli, G.; Božović, M.; Angiolella, L.; Mazzanti, G.; Pepi, F.; Ragno, R. Multidisciplinary approach to determine the optimal time and period for extracting the essential oil from Mentha suaveolens Ehrh. Molecules 2015, 20, 9640–9655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  72. Casiglia, S.; Jemia, M.B.; Riccobono, L.; Bruno, M.; Scandolera, E.; Senatore, F. Chemical composition of the essential oil of Moluccella spinosa L. (Lamiaceae) collected wild in Sicily and its activity on microorganisms affecting historical textiles. Nat. Prod. Res. 2015, 29, 1201–1206. [Google Scholar] [CrossRef]
  73. Sacchetti, G.; Medici, A.; Maietti, S.; Radice, M.; Muzzoli, M.; Manfredini, S.; Braccioli, E.; Bruni, R. Composition and functional properties of the essential oil of amazonian basil, Ocimum micranthum Willd., Labiatae in comparison with commercial essential oils. J. Agric. Food Chem. 2004, 52, 3486–3491. [Google Scholar] [CrossRef]
  74. Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822–1828. [Google Scholar] [CrossRef]
  75. Al-Maskri, A.Y.; Hanif, M.A.; Al-Maskari, M.Y.; Abraham, A.S.; Al-sabahi, J.N.; Al-Mantheri, O. Essential oil from Ocimum basilicum (Omani Basil): A desert crop. Nat. Prod. Commun. 2011, 6, 1487–1490. [Google Scholar]
  76. Avetisyan, A.; Markosian, A.; Petrosyan, M.; Sahakyan, N.; Babayan, A.; Aloyan, S.; Trchounian, A. Chemical composition and some biological activities of the essential oils from basil Ocimum different cultivars. BMC Complement Altern. Med. 2017, 17, 60. [Google Scholar] [CrossRef] [Green Version]
  77. Ali, N.A.A.; Chhetri, B.K.; Dosoky, N.S.; Shari, K.; Al-Fahad, A.J.A.; Wessjohann, L.; Setzer, W.N. Antimicrobial, antioxidant, and cytotoxic activities of Ocimum forskolei and Teucrium yemense (Lamiaceae) essential oils. Medicines 2017, 4, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  78. Dubey, N.K.; Tiwari, T.N.; Mandin, D.; Andriamboavonjy, H.; Chaumont, J.P. Antifungal properties of Ocimum gratissimum essential oil (ethyl cinnamate chemotype). Fitoterapia 2000, 71, 567–569. [Google Scholar] [CrossRef]
  79. Lemos Jde, A.; Passos, X.S.; Fernandes Ode, F.; Paula, J.R.; Ferri, P.H.; Souza, L.K.; Lemos Ade, A.; Silva Mdo, R. Antifungal activity from Ocimum gratissimum L. towards Cryptococcus neoformans. Mem. Inst. Oswaldo Cruz 2005, 100, 55–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  80. Mohr, F.B.; Lermen, C.; Gazim, Z.C.; Gonçalves, J.E.; Alberton, O. Antifungal activity, yield, and composition of Ocimum gratissimum essential oil. Genet. Mol. Res. 2017, 16. [Google Scholar] [CrossRef]
  81. Amber, K.; Aijaz, A.; Immaculata, X.; Luqman, K.A.; Nikhat, M. Anticandidal effect of Ocimum sanctum essential oil and its synergy with fluconazole and ketoconazole. Phytomedicine 2010, 17, 921–925. [Google Scholar] [CrossRef]
  82. Khan, A.; Ahmad, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Res. Microbiol. 2010, 161, 816–823. [Google Scholar] [CrossRef]
  83. Kumar, A.; Shukla, R.; Singh, P.; Dubey, N.K. Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial. Food Chem. Toxicol. 2010, 48, 539–543. [Google Scholar] [CrossRef]
  84. Santamarina, M.P.; Roselló, J.; Sempere, F.; Giménez, S.; Blázquez, M.A. Commercial Origanum compactum Benth. and Cinnamomum zeylanicum Blume essential oils against natural mycoflora in Valencia rice. Nat. Prod. Res. 2015, 29, 2215–2258. [Google Scholar] [CrossRef]
  85. Homa, M.; Fekete, I.P.; Böszörményi, A.; Singh, Y.R.; Selvam, K.P.; Shobana, C.S.; Manikandan, P.; Kredics, L.; Vágvölgyi, C.; Galgóczy, L. Antifungal effect of essential oils against Fusarium keratitis isolates. Planta Med. 2015, 81, 1277–1284. [Google Scholar] [CrossRef]
  86. Waller, S.B.; Madrid, I.M.; Ferraz, V.; Picoli, T.; Cleff, M.B.; de Faria, R.O.; Meireles, M.C.; de Mello, J.R. Cytotoxicity and anti-Sporothrix brasiliensis activity of the Origanum majorana Linn. oil. Braz. J. Microbiol. 2016, 47, 896–901. [Google Scholar] [CrossRef] [Green Version]
  87. Nikkhah, M.; Hashemi, M.; Habibi Najafi, M.B.; Farhoosh, R. Synergistic effects of some essential oils against fungal spoilage on pear fruit. Int. J. Food Microbiol. 2017, 257, 285–294. [Google Scholar] [CrossRef] [PubMed]
  88. Rosato, A.; Vitali, C.; Piarulli, M.; Mazzotta, M.; Argentieri, M.P.; Mallamaci, R. In vitro synergic efficacy of the combination of Nystatin with the essential oils of Origanum vulgare and Pelargonium graveolens against some Candida species. Phytomedicine 2009, 16, 972–975. [Google Scholar] [CrossRef] [PubMed]
  89. Vale-Silva, L.; Silva, M.J.; Oliveira, D.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L.; Pinto, E. Correlation of the chemical composition of essential oils from Origanum vulgare subsp. virens with their in vitro activity against pathogenic yeasts and filamentous fungi. J. Med. Microbiol. 2012, 61, 252–260. [Google Scholar] [PubMed]
  90. Jeršek, B.; Poklar Ulrih, N.; Skrt, M.; Gavarić, N.; Božin, B.; Smole Možina, S. Effects of selected essential oils on the growth and production of ochratoxin A by Penicillium verrucosum. Arhiv Higijenu i Toksikologiju 2014, 65, 199–208. [Google Scholar] [CrossRef] [Green Version]
  91. Elansary, H.O.; Abdelgaleil, S.A.M.; Mahmoud, E.A.; Yessoufou, K.; Elhindi, K.; El-Hendawy, S. Effective antioxidant, antimicrobial and anticancer activities of essential oils of horticultural aromatic crops in northern Egypt. BMC Complement Altern. Med. 2018, 18, 214. [Google Scholar] [CrossRef]
  92. Kocevski, D.; Du, M.; Kan, J.; Jing, C.; Lačanin, I.; Pavlović, H. Antifungal effect of Allium tuberosum, Cinnamomum cassia, and Pogostemon cablin essential oils and their components against population of Aspergillus species. J. Food Sci. 2013, 78, M731–M737. [Google Scholar] [CrossRef]
  93. Murugan, R.; Mallavarapu, G.R.; Padmashree, K.V.; Rao, R.R.; Livingstone, C. Volatile oil composition of Pogostemon heyneanus and comparison of its composition with patchouli oil. Nat. Prod. Commun. 2010, 5, 1961–1964. [Google Scholar] [CrossRef] [Green Version]
  94. Zhang, H.Y.; Gao, Y.; Lai, P.X. Chemical composition, antioxidant, antimicrobial and cytotoxic activities of essential oil from Premna microphylla Turczaninow. Molecules 2017, 22, 381. [Google Scholar] [CrossRef] [Green Version]
  95. Angioni, A.; Barra, A.; Cereti, E.; Barile, D.; Coïsson, J.D.; Arlorio, M.; Dessi, S.; Coroneo, V.; Cabras, P. Chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus officinalis L. J. Agric. Food Chem. 2004, 52, 3530–3535. [Google Scholar] [CrossRef]
  96. Bozin, B.; Mimica-Dukic, N.; Samojlik, I.; Jovin, E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J. Agric. Food Chem. 2007, 55, 7879–7885. [Google Scholar] [CrossRef]
  97. Ozcan, M.M.; Chalchat, J.C. Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. Int. J. Food Sci. Nutr. 2008, 59, 691–698. [Google Scholar] [CrossRef] [PubMed]
  98. Jiang, Y.; Wu, N.; Fu, Y.J.; Wang, W.; Luo, M.; Zhao, C.J.; Zu, Y.G.; Liu, X.L. Chemical composition and antimicrobial activity of the essential oil of Rosemary. Environ. Toxicol. Pharmacol. 2011, 32, 63–68. [Google Scholar] [CrossRef] [PubMed]
  99. Pitarokili, D.; Tzakou, O.; Loukis, A.; Harvala, C. Volatile metabolites from Salvia fruticosa as antifungal agents in soilborne pathogens. J. Agric. Food Chem. 2003, 51, 3294–3301. [Google Scholar] [CrossRef] [PubMed]
  100. Zomorodian, K.; Moein, M.; Pakshir, K.; Karami, F.; Sabahi, Z. Chemical composition and antimicrobial activities of the essential oil from Salvia mirzayanii leaves. J. Evid. Based Complementary Altern. Med. 2017, 22, 770–776. [Google Scholar] [CrossRef] [Green Version]
  101. Abu-Darwish, M.S.; Cabral, C.; Ferreira, I.V.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Al-bdour, T.H.; Salgueiro, L. Essential oil of common sage (Salvia officinalis L.) from Jordan: Assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential. BioMed Res. Int. 2013, 2013. [Google Scholar] [CrossRef] [Green Version]
  102. Yuce, E.; Yildirim, N.; Yildirim, N.C.; Paksoy, M.Y.; Bagci, E. Essential oil composition, antioxidant and antifungal activities of Salvia sclarea L. from Munzur Valley in Tunceli, Turkey. Cell. Mol. Biol. 2014, 60, 1–5. [Google Scholar]
  103. Güllüce, M.; Sökmen, M.; Daferera, D.; Ağar, G.; Ozkan, H.; Kartal, N.; Polissiou, M.; Sökmen, A.; Sahin, F. In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. J. Agric. Food Chem. 2003, 51, 3958–3965. [Google Scholar] [CrossRef]
  104. Omidbeygi, M.; Barzegar, M.; Hamidi, Z.; Naghdibadi, H. Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus flavus in liquid medium and tomato paste. Food Control 2007, 18, 1518–1523. [Google Scholar] [CrossRef]
  105. Giweli, A.; Džamić, A.M.; Soković, M.; Ristić, M.S.; Marin, P.D. Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya. Molecules 2012, 17, 4836–4850. [Google Scholar] [CrossRef] [Green Version]
  106. Serbetçi, T.; Demirci, B.; Güzel, C.B.; Kültür, S.; Ergüven, M.; Başer, K.H. Essential oil composition, antimicrobial and cytotoxic activities of two endemic Stachys cretica subspecies (Lamiaceae) from Turkey. Nat. Prod. Commun. 2010, 5, 1369–1374. [Google Scholar] [CrossRef] [Green Version]
  107. Lazarević, J.S.; Đorđević, A.S.; Kitić, D.V.; Zlatković, B.K.; Stojanović, G.S. Chemical composition and antimicrobial activity of the essential oil of Stachys officinalis (L.) Trevis. (Lamiaceae). Chem. Biodivers. 2013, 10, 1335–1349. [Google Scholar] [CrossRef] [PubMed]
  108. Mohammadi, A.; Nazari, H.; Imani, S.; Amrollahi, H. Antifungal activities and chemical composition of some medicinal plants. J. Mycol. Med. 2014, 24, e1–e8. [Google Scholar] [CrossRef] [PubMed]
  109. Salah, K.B.; Mahjoub, M.A.; Chaumont, J.P.; Michel, L.; Millet-Clerc, J.; Chraeif, I.; Ammar, S.; Mighri, Z.; Aouni, M. Chemical composition and in vitro antifungal and antioxidant activity of the essential oil and methanolic extract of Teucrium sauvagei Le Houerou. Nat. Prod. Res. 2006, 20, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
  110. Goren, A.C.; Bilsel, G.; Bilsel, M.; Demir, H.; Kocabaş, E.E. Analysis of essential oil of Coridothymus capitatus (L.) and its antibacterial and antifungal activity. Zeitschrift für Naturforschung C 2003, 58, 687–690. [Google Scholar] [CrossRef]
  111. Salgueiro, L.R.; Pinto, E.; Gonçalves, M.J.; Pina-Vaz, C.; Cavaleiro, C.; Rodrigues, A.G.; Palmeira, A.; Tavares, C.; Costa-de-Oliveira, S.; Martinez-de-Oliveira, J. Chemical composition and antifungal activity of the essential oil of Thymbra capitata. Planta Med. 2004, 70, 572–575. [Google Scholar] [CrossRef]
  112. Palmeira-de-Oliveira, A.; Gaspar, C.; Palmeira-de-Oliveira, R.; Silva-Dias, A.; Salgueiro, L.; Cavaleiro, C.; Pina-Vaz, C.; Martinez-de-Oliveira, J.; Queiroz, J.A.; Rodrigues, A.G. The anti-Candida activity of Thymbra capitata essential oil: Effect upon pre-formed biofilm. J. Ethnopharmacol. 2012, 140, 379–383. [Google Scholar] [CrossRef]
  113. Kiliç, T. Analysis of essential oil composition of Thymbra spicata var. spicata: Antifungal, antibacterial and antimycobacterial activities. Z. Naturforsch. C 2006, 61, 324–328. [Google Scholar]
  114. Unlü, M.; Vardar-Unlü, G.; Vural, N.; Dönmez, E.; Ozbaş, Z.Y. Chemical composition, antibacterial and antifungal activity of the essential oil of Thymbra spicata L. from Turkey. Nat. Prod. Res. 2009, 23, 572–579. [Google Scholar] [CrossRef]
  115. Jaradat, N.; Adwan, L.; Kaibni, S.; Shraim, N.; Zaid, A.N. Chemical composition, anthelmintic, antibacterial and antioxidant effects of Thymus bovei essential oil. BMC Complement Altern. Med. 2016, 16, 418. [Google Scholar] [CrossRef] [Green Version]
  116. Pina-Vaz, C.; Gonçalves Rodrigues, A.; Pinto, E.; Costa-de-Oliveira, S.; Tavares, C.; Salgueiro, L.; Cavaleiro, C.; Gonçalves, M.J.; Martinez-de-Oliveira, J. Antifungal activity of Thymus oils and their major compounds. J. Eur. Acad Dermatol. Venereol. 2004, 18, 73–78. [Google Scholar] [CrossRef]
  117. Alizadeh, A.; Zamani, E.; Sharaifi, R.; Javan-Nikkhah, M.; Nazari, S. Antifungal activity of some essential oils against toxigenic Aspergillus species. Commun. Agric. Appl. Biol. Sci. 2010, 75, 761–767. [Google Scholar] [PubMed]
  118. Alizadeh, A.; Sharaifi, R.; Javan-Nikkhah, M.; Sedaghat, N. Survey of Thymus migricus essential oil on aflatoxin inhibition in Aspergillus flavus. Commun. Agric. Appl. Biol. Sci. 2010, 75, 769–776. [Google Scholar] [PubMed]
  119. Pinto, E.; Pina-Vaz, C.; Salgueiro, L.; Gonçalves, M.J.; Costa-de-Oliveira, S.; Cavaleiro, C.; Palmeira, A.; Rodrigues, A.; Martinez-de-Oliveira, J. Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. J. Med. Microbiol. 2006, 55, 1367–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  120. Pagiotti, R.; Angelini, P.; Rubini, A.; Tirillini, B.; Granetti, B.; Venanzoni, R. Identification and characterisation of human pathogenic filamentous fungi and susceptibility to Thymus schimperi essential oil. Mycoses 2011, 54, e364–e376. [Google Scholar] [CrossRef]
  121. Couladis, M.; Tzakou, O.; Kujundzic, S.; Sokovic, M.; Mimica-Dukic, N. Chemical analysis and antifungal activity of Thymus striatus. Phytother. Res. 2004, 18, 40–42. [Google Scholar] [CrossRef]
  122. Segvić Klarić, M.; Kosalec, I.; Mastelić, J.; Piecková, E.; Pepeljnak, S. Antifungal activity of thyme (Thymus vulgaris L.) essential oil and thymol against moulds from damp dwellings. Lett. Appl. Microbiol. 2007, 44, 36–42. [Google Scholar] [CrossRef]
  123. De Lira Mota, K.S.; de Oliveira Pereira, F.; de Oliveira, W.A.; Lima, I.O.; de Oliveira Lima, E. Antifungal activity of Thymus vulgaris L. essential oil and its constituent phytochemicals against Rhizopus oryzae: Interaction with ergosterol. Molecules 2012, 17, 14418–14433. [Google Scholar] [CrossRef] [Green Version]
  124. Khan, M.S.; Ahmad, I.; Cameotra, S.S. Carum copticum and Thymus vulgaris oils inhibit virulence in Trichophyton rubrum and Aspergillus spp. Braz. J. Microbiol. 2014, 45, 523–531. [Google Scholar] [CrossRef] [Green Version]
  125. Kohiyama, C.Y.; Yamamoto Ribeiro, M.M.; Mossini, S.A.; Bando, E.; Bomfim Nda, S.; Nerilo, S.B.; Rocha, G.H.; Grespan, R.; Mikcha, J.M.; Machinski, M., Jr. Antifungal properties and inhibitory effects upon aflatoxin production of Thymus vulgaris L. by Aspergillus flavus Link. Food Chem. 2015, 173, 1006–1010. [Google Scholar] [CrossRef] [Green Version]
  126. Divband, K.; Shokri, H.; Khosravi, A.R. Down-regulatory effect of Thymus vulgaris L. on growth and Tri4 gene expression in Fusarium oxysporum strains. Microb. Pathog. 2017, 104, 1–5. [Google Scholar] [CrossRef]
  127. Lagha, R.; Ben Abdallah, F.; Al-Sarhan, B.O.; Al-Sodany, Y. Antibacterial and biofilm inhibitory activity of medicinal plant essential oils against Escherichia coli isolated from UTI patients. Molecules 2019, 24, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  128. Marongiu, B.; Piras, A.; Porcedda, S.; Falconieri, D.; Goncalves, M.J.; Salgueiro, L.; Maxia, A.; Lai, R. Extraction, separation and isolation of volatiles from Vitex agnus-castus L. (Verbenaceae) wild species of Sardinia, Italy, by supercritical CO2. Nat. Prod. Res. 2010, 24, 569–579. [Google Scholar] [CrossRef] [PubMed]
  129. Asdadi, A.; Hamdouch, A.; Oukacha, A.; Moutaj, R.; Gharby, S.; Harhar, H.; El Hadek, M.; Chebli, B.; Idrissi Hassani, L.M. Study on chemical analysis, antioxidant and in vitro antifungal activities of essential oil from wild Vitex agnus-castus L. seeds growing in area of Argan Tree of Morocco against clinical strains of Candida responsible for nosocomial infections. J. Mycol. Med. 2015, 25, e118–e127. [Google Scholar] [CrossRef] [PubMed]
  130. Mahboubi, M.; Heidary Tabar, R.; Mahdizadeh, E. The anti-dermatophyte activity of Zataria multiflora essential oils. J. Mycol. Med. 2017, 27, 232–237. [Google Scholar] [CrossRef] [PubMed]
  131. Shahbazi, Y. Chemical compositions, antioxidant and antimicrobial properties of Ziziphora clinopodioides Lam. essential oils collected from different parts of Iran. J. Food Sci. Technol. 2017, 54, 3491–3503. [Google Scholar] [CrossRef] [PubMed]
  132. Mohammadifard, F.; Alimohammadi, S. Chemical composition and role of opioidergic system in antinociceptive effect of Ziziphora clinopodioides essential oil. Basic Clin. Neurosci. 2018, 9, 357–366. [Google Scholar] [CrossRef] [PubMed]
  133. Abu-Darwish, M.S.; Cabral, C.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Paoli, M.; Tomi, F.; Efferth, T.; Salgueiro, L. Ziziphora tenuior L. essential oil from Dana Biosphere Reserve (Southern Jordan); Chemical characterization and assessment of biological activities. J. Ethnopharmacol. 2016, 194, 963–970. [Google Scholar] [CrossRef]
  134. Yang, D.; Michel, L.; Chaumont, J.P.; Millet-Clerc, J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia 1999, 148, 79–82. [Google Scholar] [CrossRef]
  135. Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
  136. Selestino Neta, M.C.; Vittorazzi, C.; Guimarães, A.C.; Martins, J.D.; Fronza, M.; Endringer, D.C.; Scherer, R. Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies. Pharm. Biol. 2017, 55, 190–197. [Google Scholar] [CrossRef] [Green Version]
  137. Bona, E.; Cantamessa, S.; Pavan, M.; Novello, G.; Massa, N.; Rocchetti, A.; Berta, G.; Gamalero, E. Sensitivity of Candida albicans to essential oils: Are they an alternative to antifungal agents? J. Appl. Microbiol. 2016, 121, 1530–1545. [Google Scholar] [CrossRef]
  138. Kordali, S.; Cakir, A.; Ozer, H.; Cakmakci, R.; Kesdek, M.; Mete, E. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene. Bioresour. Technol. 2008, 99, 8788–8795. [Google Scholar] [CrossRef]
  139. Marei, G.I.K.; Abdel Rasoul, M.A.; Abdelgaleil, S.A.M. Comparative antifungal activities and biochemical effects of monoterpenes on plant pathogenic fungi. Pesticide Biochem. Physiol. 2012, 103, 56–61. [Google Scholar] [CrossRef]
  140. Abbaszadeh, S.; Sharifzadeh, A.; Shokri, H.; Khosravi, A.R.; Abbaszadeh, A. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J. Mycol. Med. 2014, 24, e51–e56. [Google Scholar] [CrossRef]
  141. Rivera-Yañez, C.R.; Terrazas, L.I.; Jimenez-Estrada, M.; Campos, J.E.; Flores-Ortiz, C.M.; Hernandez, L.B.; Cruz-Sanchez, T.; Garrido-Fariña, G.I.; Rodriguez-Monroy, M.A.; Canales-Martinez, M.M. Anti-Candida activity of Bursera morelensis Ramirez essential oil and two compounds, α-pinene and γ-terpinene—an in vitro study. Molecules 2017, 22, 95. [Google Scholar] [CrossRef] [Green Version]
  142. de Oliveira Lima, M.I.; Araújo de Medeiros, A.C.; Souza Silva, K.V.; Cardoso, G.N.; de Oliveira Lima, E.; de Oliveira Pereira, F. Investigation of the antifungal potential of linalool against clinical isolates of fluconazole resistant Trichophyton rubrum. J. Mycol. Med. 2017, 27, 195–202. [Google Scholar] [CrossRef] [PubMed]
  143. de Macêdo Andrade, A.C.; Rosalen, P.L.; Freires, I.A.; Scotti, L.; Scotti, M.T.; Aquino, S.G.; de Castro, R.D. Antifungal activity, mode of action, docking prediction and anti-biofilm effects of (+)-β-pinene enantiomers against Candida spp. Curr. Top. Med. Chem. 2018, 18, 2481–2490. [Google Scholar] [CrossRef] [PubMed]
  144. Wang, K.; Jiang, S.; Pu, T.; Fan, L.; Su, F.; Ye, M. Antifungal activity of phenolic monoterpenes and structure-related compounds against plant pathogenic fungi. Nat. Prod. Res. 2019, 33, 1423–1430. [Google Scholar] [CrossRef]
  145. Shi, Y.; Si, H.; Wang, P.; Chen, S.; Shang, S.; Song, Z.; Wang, Z.; Liao, S. Derivatization of natural compound β-pinene enhances its in vitro antifungal activity against plant pathogens. Molecules 2019, 24, 3144. [Google Scholar] [CrossRef] [Green Version]
  146. Wojtunik-Kulesza, K.A.; Kasprzak, K.; Oniszczuk, T.; Oniszczuk, A. Natural monoterpenes: Much more than only a scent. Chem. Biodiv. 2019, 16, e19004. [Google Scholar] [CrossRef]
  147. Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
  148. Helal, G.A.; Sarhan, M.M.; Abu Shahla, A.N.K.; Abou El-Khair, E.K. Effects of Cymbopogon citratus L. essential oil on the growth, lipid content and morphogenesis of Aspergillus niger ML2-strain. J. Basic Microbiol. 2006, 46, 456–469. [Google Scholar] [CrossRef] [PubMed]
  149. Rammanee, K.; Hongpattarakere, T. Effects of tropical citrus essential oils on growth, aflatoxin production, and ultrastructure alterations of Aspergillus flavus and Aspergillus parasiticus. Food Bioprocess Technol. 2011, 4, 1050–1059. [Google Scholar] [CrossRef]
  150. Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Front. Microbiol. 2012, 3, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  151. Basak, S.; Guha, P. A review on antifungal activity and mode of action of essential oils and their delivery as nano-sized oil droplets in food system. J. Food Sci. Technol. 2018, 55, 4701–4710. [Google Scholar] [CrossRef]
  152. Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134. [Google Scholar] [CrossRef]
  153. Shin, S.; Kang, C.A. Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. Lett. Appl. Microbiol. 2003, 36, 111–115. [Google Scholar] [CrossRef]
  154. Gong, H.; Li, S.; He, L.; Kasimu, R. Microscopic identification and in vitro activity of Agastache rugosa (Fisch. et Mey) from Xinjiang, China. BMC Complement Altern. Med. 2017, 17, 95. [Google Scholar] [CrossRef] [Green Version]
  155. Zhang, C.; Li, H.; Yun, T.; Fu, Y.; Liu, C.; Gong, B.; Neng, B. Chemical composition, antimicrobial and antioxidant activities of the essential oil of Tibetan herbal medicine Dracocephalum heterophyllum Benth. Nat. Prod. Res. 2008, 22, 1–11. [Google Scholar] [CrossRef]
  156. Souza, L.K.; de Oliveira, C.M.; Ferri, P.H.; de Oliveira Júnior, J.G.; de Souza Júnior, A.H.; Fernandes Ode, F.; Silva Mdo, R. Antimicrobial activity of Hyptis ovalifolia towards dermatophytes. Memórias do Instituto Oswaldo Cruz 2003, 98, 963–965. [Google Scholar] [CrossRef] [Green Version]
  157. Dolatabadi, S.; Salari, Z.; Mahboubi, M. Antifungal effects of Ziziphora tenuior, Lavandula angustifolia, Cuminum cyminum essential oils against clinical isolates of Candida albicans from women suffering from vulvovaginal candidiasis. Infect 2019, 23, 222–226. [Google Scholar] [CrossRef]
  158. Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Brazell, C.B.; Olsen, E.L.; Moriarity, D.M.; Satyal, P.; Setzer, W.N. Antifungal and cytotoxic activities of sixty commercially-available essential oils. Molecules 2018, 23, 1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  159. Ozcakmak, S.; Dervisoglu, M.; Yilmaz, A. Antifungal activity of lemon balm and sage essential oils on the growth of ochratoxigenic Penicillium verrucosum. Afr. J. Microbiol. Res. 2012, 6, 3079–3084. [Google Scholar] [CrossRef] [Green Version]
  160. Tyagi, A.K.; Malik, A. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: Microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complement Altern. Med. 2010, 10, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  161. Sharma, A.; Rajendran, S.; Srivastava, A.; Sharma, S.; Kundu, B. Antifungal activities of selected essential oils against Fusarium oxysporum f. sp. lycopersici 1322, with emphasis on Syzygium aromaticum essential oil. J. Biosci. Bioeng. 2017, 123, 308–313. [Google Scholar]
  162. Piras, A.; Porcedda, S.; Falconieri, D.; Maxia, A.; Gonçalves, M.; Cavaleiro, C.; Salgueiro, L. Antifungal activity of essential oil from Mentha spicata L. and Mentha pulegium L. growing wild in Sardinia island (Italy). Nat. Prod. Res. 2019. [Google Scholar] [CrossRef]
  163. Fancello, F.; Zara, S.; Petretto, G.L.; Chessa, M.; Addis, R.; Rourke, J.P.; Pintore, G. Essential oils from three species of Mentha harvested in Sardinia: Chemical characterization and evaluation of their biological activity. Int. J. Food Prop. 2017, 20, 1751–1761. [Google Scholar] [CrossRef] [Green Version]
  164. Houicher, A.; Hechachna, H.; Teldji, H.; Ozogul, F. In vitro study of the antifungal activity of essential oils obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis. Recent Pat. Food Nutr. Agric. 2016, 8, 99–106. [Google Scholar] [CrossRef]
  165. Ji, H.; Kim, H.; Beuchat, L.R.; Ryu, J.H. Synergistic antimicrobial activities of essential oil vapours against Penicillium corylophilum on a laboratory medium and beef jerky. Int. J. Food Microbiol. 2019, 291, 104–110. [Google Scholar] [CrossRef]
  166. Pietrella, D.; Angiolella, L.; Vavala, E.; Rachini, A.; Mondello, F.; Ragno, R.; Bistoni, F.; Vecchiarelli, A. Beneficial effect of Mentha suaveolens essential oil in the treatment of vaginal candidiasis assessed by real-time monitoring of infection. BMC Complement Altern. Med. 2011, 11, 18. [Google Scholar] [CrossRef]
  167. Angiolella, L.; Vavala, E.; Sivric, S.; D’Auria, F.D.; Ragno, R. In vitro activity of Mentha suaveolens essential oil against Cryptococcus neoformans and dermatophytes. Int. J. Essent. Oil Ther. 2010, 4, 35–36. [Google Scholar]
  168. Bisht, D.S.; Padalia, R.C.; Singh, L.; Pande, V.; Lal, P.; Mathela, C.S. Constituents and antimicrobial activity of the essential oils of six Himalayan Nepeta species. J. Serb. Chem. Soc. 2010, 75, 739–747. [Google Scholar] [CrossRef]
  169. Cardoso, N.N.; Alviano, C.S.; Blank, A.F.; Arrigoni-Blank, M.F.; Romanos, M.T.; Cunha, M.M.; da Silva, A.J.; Alviano, D.S. Anti-cryptococcal activity of ethanol crude extract and hexane fraction from Ocimum basilicum var. Maria bonita: Mechanisms of action and synergism with amphotericin B and Ocimum basilicum essential oil. Pharm. Biol. 2017, 55, 1380–1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  170. Al-Hajj, N.Q.M.; Wang, H.X.; Ma, C.; Lou, Z.; Bashari, M.; Thabit, R. Antimicrobial and antioxidant activities of the essential oils of some aromatic medicinal plants (Pulicaria inuloides-Asteraceae and Ocimum forskolei-Lamiaceae). Trop. J. Pharmaceut. Res. 2014, 13, 1287–1293. [Google Scholar] [CrossRef] [Green Version]
  171. Nakamura, C.V.; Ishida, K.; Faccin, L.C.; Filho, B.P.; Cortez, D.A.; Rozental, S.; de Souza, W.; Ueda-Nakamura, T. In vitro activity of essential oil from Ocimum gratissimum L. against four Candida species. Res. Microbiol. 2004, 155, 579–586. [Google Scholar] [CrossRef]
  172. Silva, M.R.; Oliveira, J.G., Jr.; Fernandes, O.F.; Passos, X.S.; Costa, C.R.; Souza, L.K.; Lemos, J.A.; Paula, J.R. Antifungal activity of Ocimum gratissimum towards dermatophytes. Mycoses 2005, 48, 172–175. [Google Scholar] [CrossRef]
  173. Bedoya-Serna, C.M.; Dacanal, G.C.; Fernandes, A.M.; Pinho, S.C. Antifungal activity of nanoemulsions encapsulating oregano (Origanum vulgare) essential oil: In vitro study and application in Minas Padrão cheese. Braz. J. Microbiol. 2018, 49, 929–935. [Google Scholar] [CrossRef]
  174. Vinciguerra, V.; Rojas, F.; Tedesco, V.; Giusiano, G.; Angiolella, L. Chemical characterization and antifungal activity of Origanum vulgare, Thymus vulgaris essential oils and carvacrol against Malassezia furfur. Nat. Prod. Res. 2018, 33, 3273–3277. [Google Scholar] [CrossRef]
  175. Wang, G.S.; Deng, J.H.; Ma, Y.H.; Shi, M.; Li, B. Mechanisms, clinically curative effects, and antifungal activities of cinnamon oil and pogostemon oil complex against three species of Candida. J. Tradit. Chin. Med. 2012, 32, 19–24. [Google Scholar] [CrossRef] [Green Version]
  176. Farisa Banu, S.; Rubini, D.; Shanmugavelan, P.; Murugan, R.; Gowrishankar, S.; Karutha Pandian, S.; Nithyanand, P. Effects of patchouli and cinnamon essential oils on biofilm and hyphae formation by Candida species. J. Mycol. Med. 2018, 28, 332–339. [Google Scholar] [CrossRef]
  177. Sookto, T.; Srithavaj, T.; Thaweboon, S.; Thaweboon, B.; Shrestha, B. In vitro effects of Salvia officinalis L. essential oil on Candida albicans. Asian Pac. J. Trop. Biomed. 2013, 3, 376–380. [Google Scholar] [CrossRef] [Green Version]
  178. Sharifzadeh, A.; Khosravi, A.R.; Ahmadian, S. Chemical composition and antifungal activity of Satureja hortensis L. essentiall oil against planktonic and biofilm growth of Candida albicans isolates from buccal lesions of HIV(+) individuals. Microb. Pathog. 2016, 96, 1–9. [Google Scholar] [CrossRef]
  179. Marković, T.; Chatzopoulou, P.; Šiljegović, J.; Nikolić, M.; Glamočlija, J.; Ćirić, A.; Soković, M. Chemical analysis and antimicrobial activities of the essential oils of Satureja thymbra L. and Thymbra spicata L. and their main components. Arch. Biol. Sci. Belgrade 2011, 63, 457–464. [Google Scholar] [CrossRef]
  180. Tabti, L.; Dib Mel, A.; Gaouar, N.; Samira, B.; Tabti, B. Antioxidant and antifungal activity of extracts of the aerial parts of Thymus capitatus (L.) Hoffmanns against four phytopathogenic fungi of Citrus sinensis. Jundishapur J. Nat. Pharm. Prod. 2014, 9, 49–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  181. Nasir, M.; Tafess, K.; Abate, D. Antimicrobial potential of the Ethiopian Thymus schimperi essential oil in comparison with others against certain fungal and bacterial species. BMC Complement Altern. Med. 2015, 15, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  182. Sokolić-Mihalak, D.; Frece, J.; Slavica, A.; Delaš, F.; Pavlović, H.; Markov, K. The effects of wild thyme (Thymus serpyllum L.) essential oil components against ochratoxin-producing Aspergilli. Arhiv za Higijenu i Toksikologiju 2012, 63, 457–462. [Google Scholar] [CrossRef]
  183. Perina, F.J.; Amaral, D.C.; Fernandes, R.S.; Labory, C.R.; Teixeira, G.A.; Alves, E. Thymus vulgaris essential oil and thymol against Alternaria alternata (Fr.) Keissler: Effects on growth, viability, early infection and cellular mode of action. Pest Manag. Sci. 2015, 71, 1371–1378. [Google Scholar] [CrossRef]
  184. Sharifzadeh, A.; Javan, A.J.; Shokri, H.; Abbaszadeh, S.; Keykhosravy, K. Evaluation of antioxidant and antifungal properties of the traditional plants against foodborne fungal pathogens. J. Mycol. Med. 2016, 26, e11–e17. [Google Scholar] [CrossRef]
  185. Liu, J.; Sui, G.; He, Y.; Liu, D.; Yan, J.; Liu, S.; Qin, W. Prolonging storage time of baby ginger by using a sand-based storage medium and essential oil treatment. J. Food Sci. 2014, 79, M593–M599. [Google Scholar] [CrossRef]
  186. Moghadam, H.D.; Sani, A.M.; Sangatash, M.M. Antifungal activity of essential oil of Ziziphora clinopodioides and the inhibition of aflatoxin B1 production in maize grain. Toxicol. Ind. Health 2016, 32, 493–499. [Google Scholar] [CrossRef]
  187. Dreger, M.; Wielgus, K. Application of essential oils as natural cosmetic preservatives. Herba Pol. 2013, 59, 142–156. [Google Scholar] [CrossRef] [Green Version]
  188. Sarkic, A.; Stappen, I. Essential oils and their single compounds in cosmetics—A critical review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef] [Green Version]
  189. Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.A.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef] [Green Version]
  190. Helms, S.; Miller, A.L. Natural treatment of chronic rhinosinusitis. Altern. Med. Rev. 2006, 11, 196–207. [Google Scholar]
  191. Schilcher, H. Efficient phytotherapy. Herbal medicines in the upper respiratory tract for catarrh. Herba Pol. 2000, 46, 52–57. [Google Scholar]
  192. Vranic, E.; Lacević, A.; Mehmedagić, A.; Uzunovic, A. Formulation ingredients for toothpastes and mouthwashes. Bosnian J. Basic Med. Sci. 2004, 4, 51–58. [Google Scholar] [CrossRef]
  193. Guven, Y.; Ustun, N.; Tuna, E.B.; Aktoren, O. Antimicrobial effect of newly formulated toothpastes and a mouthrinse on specific microorganisms: An in vitro study. Eur. J. Dent. 2019, 13, 172–177. [Google Scholar] [CrossRef] [Green Version]
  194. DOZ Pharmacy. Available online: (accessed on 17 December 2019).
  195. Ehlers, V.; Helm, S.; Kasaj, A.; Willershausen, B. The effect of Parodontax® on the MMP-8 concentration in gingivitis patients. Schweiz Monatsschr. Zahnmed. 2011, 121, 1041–1051. [Google Scholar]
  196. Adwan, G.; Salameh, Y.; Adwan, K.; Barakat, A. Assessment of antifungal activity of herbal and conventional toothpastes against clinical isolates of Candida albicans. Asian Pac. J. Trop. Biomed. 2012, 2, 375–379. [Google Scholar] [CrossRef] [Green Version]
Figure 1. Cultures of selected yeast fungi on Sabouraud agar (Author of photos: Tomasz M. Karpiński).
Figure 1. Cultures of selected yeast fungi on Sabouraud agar (Author of photos: Tomasz M. Karpiński).
Biomolecules 10 00103 g001aBiomolecules 10 00103 g001b
Figure 2. Chemical formulas of ten substances the most commonly found in essential oils of Lamiaceae plants presented in Table 1.
Figure 2. Chemical formulas of ten substances the most commonly found in essential oils of Lamiaceae plants presented in Table 1.
Biomolecules 10 00103 g002
Table 1. Fungal pathogens of humans and most often observed mycoses (based on [6,7]).
Table 1. Fungal pathogens of humans and most often observed mycoses (based on [6,7]).
Superficial mycoses
  • Hortae werneckii (Tinea nigra)
  • Malassezia furfur (Pityriasis versicolor)
  • Piedraia hortae (Black piedra)
  • Trichosporon spp. (White piedra)
Cutaneous and subcutaneous mycoses
  • Aspergillus spp. (Onychomycosis, Keratitis)
  • Candida spp. (Tinea pedis, Tinea cruris, Onychomycosis, Keratitis)
  • Chaetomium spp. (Subcutaneous phaeohyphomycosis)
  • Curvularia spp. (Subcutaneous phaeohyphomycosis)
  • Epidermophyton spp. (Tinea pedis, Tinea cruris, Onychomycosis)
  • Exophiala spp. (Chromoblastomycosis, Subcutaneous phaeohyphomycosis)
  • Fonsecaea spp. (Chromoblastomycosis)
  • Fusarium spp. (Onychomycosis, Keratitis, Eumycotic mycetoma)
  • Geotrichum spp. (Onychomycosis)
  • Microsporum spp. (Tinea corporis, Tinea capitis)
  • Phaeoacremonium spp. (Eumycotic mycetoma)
  • Phialophora spp. (Chromoblastomycosis, Subcutaneous phaeohyphomycosis)
  • Scopulariopsis brevicaulis (Onychomycosis)
  • Sporothrix schenckii (Lymphocutaneous sporotrichosis)
  • Trichophyton spp. (Tinea pedis, Tinea corporis, Tinea cruris, Tinea capitis, Onychomycosis)
  • Trichosporon spp. (Onychomycosis)
Endemic mycoses
  • Blastomyces dermatitidis (Blastomycosis)
  • Histoplasma capsulatum (Histoplasmosis)
  • Coccidioides immitis/posadasii (Coccidioidomycosis)
  • Penicillium marneffei (Penicilliosis)
  • Paracoccidioides brasiliensis (Paracoccidioidomycosis)
Opportunistic mycoses
  • Acremonium spp. (Hyalohyphomycosis-cutaneous, disseminated infection)
  • Alternaria spp. (Phaeohyphomycosis-subcutaneous, sinusitis, disseminated infection)
  • Aspergillus spp. (Allergic reactions, Aspergillosis-nasal, sinusitis, bronchial, pulmonary, systemic dissemination)
  • Bipolaris spp. (Phaeohyphomycosis-subcutaneous, sinusitis, brain abscess)
  • Candida spp. (Candidiasis-superficial mucosal, cutaneous, widespread hematogenous distribution involving target organs)
  • Cryptococcus spp. (Cryptococcosis-cutaneous, pulmonary, meningitis)
  • Curvularia spp. (Phaeohyphomycosis-subcutaneous, sinusitis, disseminated infection)
  • Fusarium spp. (Hyalohyphomycosis-cutaneous, disseminated infection)
  • Lichtheimia spp. (Mucormycosis-cutaneous, invasive)
  • Mucor spp. (Mucormycosis-cutaneous, invasive)
  • Paecilomyces spp. (Hyalohyphomycosis-cutaneous, disseminated infection)
  • Pneumocystis jirovecii (Pneumocystosis-pneumonia, extrapulmonary manifestations)
  • Rhizomucor spp. (Mucormycosis-cutaneous, invasive)
  • Rhizopus spp. (Mucormycosis-cutaneous, invasive)
  • Scedosporium spp. (Hyalohyphomycosis-cutaneous, disseminated infection)
  • Trichosporon spp. (Trichosporonosis-invasive disease)
  • Wangiella spp. (Phaeohyphomycosis-subcutaneous, sinusitis, brain abscess)
Table 2. The main chemical components of the essential oils of selected Lamiaceae family plants.
Table 2. The main chemical components of the essential oils of selected Lamiaceae family plants.
Essential OilMain Chemical ComponentsReferences
Aeollanthus suaveolens Mart. ex Spreng. = A. heliotropioides Oliv.Linalool (38.5%), α-Farnesene (25.1%), Massoialactone (4.5%), β-Caryophyllene (3.6%), Germacrene D (2.0%)[34]
Agastache rugosa (Fisch. and C.A.Mey.) KuntzeMethyl chavicol (93.45%), Methyl eugenol (2.48–50.51%), Estragole (8.55%), Eugenol (0.15–7.54%), Thymol (3.62%), Pulegone (2.56%), Limonene (2.49%), β-Caryophyllene (1.19–2.38%),[35,36]
Ballota nigra subsp. foetida (Vis.) Hayekβ-Caryophyllene (21.8–22.6%), Caryophyllene oxide (18.0–20.5%), Germacrene D (13.1–16.5%), 2-Hexenal (6.5–11.2%), 1-Octen-3-ol (3.5–5.5%), β-Pinene (1.6–4.4%), Limonene (2.2–4.1%), Linalool (1.2–3.5%), β-Bourbonene (1.5–2.7%), α-Humulene (2.2–2.6%), α-Copaene (1.5–2.2%)[37]
Clinopodium dalmaticum (Benth.) Bräuchler and Heubl = Micromeria dalmatica Benth.Piperitenone oxide (41.77%), Pulegone (15.94%), Piperitenone (10.19%), Limonene (5.77%), Piperitone (3.39%), α-Pinene (2.9%), β-Pinene (2.16%),[38]
Clinopodium nepeta subsp. glandulosum (Req.) Govaerts = Calamintha glandulosa (Req.) Bentham = Calamintha officinalis MoenchPiperitenone (trace–42.6%), Piperitone (0.0–40.3%), Carvone (1–38.7%), Pulegone (0.6–9.7%), Shisofuran (0.1–9.7%), Menthone (trace–8.3%), Dihydrocarveol acetate (0.1–7.6%), Dihydrocarveol (0–6.9%),1,8-Cineole (0.0–6.4%), cis-Carvyl acetate (0.0–6.1%),[39,40]
Clinopodium nepeta (L.) Kuntze = Calamintha nepeta (L.) SaviPulegone (2.4–84.7%), Isomenthone (1.9–51.3%), Menthone (0.0–35.4%), Crysanthenone (1.3–33.9%), 1,8-Cineole (0.3–21.4%), Piperitenone oxide (0.0–19.1%), Limonene (0.0–13.6%), Isopulegone (0.0–9.4%), Piperitenone (0.0–7.7%), Cinerolone (0.0–5.8%), Isopulegol (0.0–4.1%), Isomenthol (0.0–3.9%), β-Caryophyllene (0.0–3.8%), 3-Octanol (0.0–3.0%), β-Pinene (0.0–2.3%), cis-Piperitone oxide (0.0–2.2%)[41,42]
Clinopodium thymifolium (Scop.) Kuntze = Micromeria thymifolia (Scop.) FritschPulegone (32.81%), Piperitenone (25.7%), Piperitone (11.71%), Isomenthone (4.98%), Limonene (2.4%), β-Caryophyllene (2.39%)[38]
Clinopodium umbrosum (M.Bieb.) Kuntze = Calamintha umbrosa Benth.β-Caryophyllene (13.9%), Germacrene D (11.6%), Spathulenol (10.6%)[43]
Dracocephalum heterophyllum Benth.Citronellol (74.2%), Geraniol (2.8%), cis-Rose oxide (2.2%), Citronellyl acetate (1.7%)[44]
Hymenocrater longiflorus Benth.δ-Cadinol (18.49%), α-Pinene (10.16%), p-Menth-1-en-8-ol (9.82%), Hedycaryol (6.42%), β-Eudesmol (4.56%), Spathulenol (4.14%), δ-Cadenene (3.02%), Linalool (2.98%), Caryophyllene oxide (2.81%), β-Bourbonene (2.72%), β-Caryophyllene (2.29%)[45]
Hyptis ovalifolia Benth. (R)-6-[(Z)-1-Heptenyl]-5,6-dihydro-2H-pyran-2-one (60.0%), γ-Cadinene (6.6%), Viridiflorol (6.08%), Caryophyllene oxide (4.98%), γ-Elemene (4.38%)[46]
Hyssopus officinalis L.Pinocamphone (5.78–50.77%), 1,8-Cineole (0.47–36.43%), Pinocarvone (0.44–23.4%), β-Pinene (13.38–19.55%), Isopinocamphone (15.32%), α-Phellandrene (trace–3.74%), Sabinene (1.7–2.9%), Myrtenol (1.39–2.7%), α-Pinene (1.01–2.57%), cis-Sabinene hydrate (0.0–2.5%), Myrtenyl methyl ether (1.64–2.1%)[44,47,48]
Lavandula angustifolia Mill.Linalool (20.18–45.8%), Linalyl acetate (4.6–43.13%), Lavandulyl acetate (0–16.01%), 1,8-Cineole (0.6–13.1%), Camphor (0.52–11.2%), Borneol (0.76–7.5%), Terpinen-4-ol (1.05–5.8%), β-Caryophyllene (0.6–4.95%), Lavandulol (0–3.09%), β-Ocimene (1.5–2.84%), Myrcene (0.4–2.41%)[49,50,51]
Lavandula multifida L.Carvacrol (41.5–42.8%), β-Ocimene (27.0–27.4%), Myrcene (5.5–5.7%), β-Bisabolene (5.0–5.6%), Terpinolene (2.1–3.1%), α-Farnesene (2.6–2.8%)[52]
Lavandula pedunculata (Mill.) Cav.Fenchone (6.2–44.5%), 1,8-Cineole (5.1–34.3%), Camphor (8.7–34.0%), β-Pinene (1.4–9.0%), α-Pinene (2.5–8.0%), Camphene (0.8–6.1%), Linalool (0.5–3.8%), Bornyl acetate (0.9–3.5%), Borneol (0.6–3.4%), α-Cadinol (0.2–3.1%), cis-Verbenol (0.2–2.8%), Myrtenal (0.8–2.4%), trans-Verbenol (1.1–2.0%)[53]
Lavandula stoechas L.Fenchone (0.0–36.2%), 1,8-Cineole (0–33.9%), Camphor (2.2–18%), α-trans-Necrodyl acetate (0.0–17.4%), Lavandulyl acetate (0.0–7.6%), α-trans-Necrodol (0.0–7.1%), Linalool (0.0–6.2%), α-Copaene-8-ol (0.7–4.7%), Viridiflorol (1.4–3.6%), α-Pinene (1.1–3.2%), 2,3,4,4-Tetramethyl-5-methylene-cyclopenten-1-one (0.0–2.8%), Lyratyl acetate (0–2.4%), Myrtenyl acetate (1.0–2.0%), 1,1,2,3-Tetramethyl-4-hidroximethyl-2-cyclopentene (0.0–2.0%)[51,54]
Lavandula viridis L’Her.1,8-Cineole (34.5–42.2%), Camphor (13.4%), α-Pinene (9.0%), Linalool (6.7–7.9%)[55]
Lepechinia mutica (Benth.) EplingΔ3-Carene (8.69–24.23%), Thujopsan-2-α-ol (0.0–11.9%), Shyobunol (0.0–10.8%), β-Pinene (3.78–7.96%), δ-Cadinene (0.0–6.96%), Globulol (0.0–5.91%), Valerianol (0.0–5.19%), epi-Cubebol (0.0–4.62%), β-Caryophyllene (0.0–4.55%), Limonene (3.79–4.47%), α-Eudesmol (0.0–4.47%), α-Phellandrene (0.34–3.8%), β-Phellandrene (3.79%), γ-Cadinene (0.0–2.86%), α-Pinene (1.23–2.68%), o-Cymene (0.0–2.04%), Isobornyl acetate (0.0–2.2%)[56,57]
Marrubium vulgare L.γ-Eudesmol (11.93%), β-Citronellol (9.9%), Citronellyl formate (9.5%), Germacrene-D (9.37%), Geranyl formate (6.25%), Geranyl tiglate (5.53%), Ledene (5.35%), 1,8-Cineole (3.72%), Neryl acetate (3.41%), δ-Cadinene (3.3%), Cyclononasiloxane octadecamethyl (3.08%), Geraniol (2.74%), N-trimethylsilyl trifluoroacetamide (2.35%), Eicosamethylcyclodecasiloxane (2.29%), α-Thujone (2.29%), trans-Caryophyllene (2.15%)[58]
Melissa officinalis L.Geranial (23.4%), Neral (16.5%), Citronellal (13.7%), β-Caryophyllene (4.6%), Geraniol (3.4%), Isomenthone (3.0%), Menthol (2.9%), Methyl citronellate (2.7%), Germacrene D (2.4%), Limonene (2.2%)[59]
Mentha cervina L.Isomenthone (8.7–77%), Pulegone (12.9–75.1%), Menthone (0.8–4.4%), Limonene (0.8–4.3%)[60]
Mentha × piperita L.Menthol (34.82–43.85%), Menthone (9.1–31.68%), Carvone (0.0–19.54%), Menthyl acetate (1.64–17.4%), Anethole (0.0–9.54%), Isomenthone (4.71–8.08%), Limonene (0.86–6.9%), Menthofuran (6.8%), Eucalyptol (4.36–6.21%), 1,8-Cineole (5.6%), Pulegone (0.47–5.15%), Isomenthol acetate (4.56–4.91%), Isomenthol (0.68–3.58%), Sabinene (0.0–2.5%)[61,62,63,64]
Mentha pulegium L.Pulegone (2.3–70.66%), Piperitone (0.24–38.0%), Piperitenone (1.58–33.0%), Neomenthol (11.21%), α-Terpineol (0.0–4.7%), 1,8-Cineole (0.11–4.0%), Piperitenone oxide (0.0–3.4%), Menthone (2.63–3.0%), Borneol (0.0–2.9%), Isopulegone (2.33%)[65,66]
Mentha requienii Benth.Pulegone (77.6%), Isomenthone (18.2%), Limonene (1.76%)[67]
Mentha spicata L.Pulegone (0.0–78.7%), Carvone (0.0–59.12%), Menthol (0.0–39%), Menthone (5.1–21.9%), Neomenthol (11.2%), Menthyl acetate (0.0–6.9%), Dihydrocarveol (0.0–6.27%), Limonene (1.0–5.8%), 1,8-Cineole (3.0–5.42%), cis-Dihydrocarvone (0.0–4.9%), cis-Carveol (0.0–3.9%), β-Caryophyllene (0.7–2.8%), β-Myrcene (0.3–2.3%)[49,51,61,68]
Mentha suaveolens Ehrh.Piperitenone oxide (0.0–87.25%), Carvone (0.0–50.59%), Pulegone (0.0–50.0%), Demelverine (0.0–43.46%), Cinerolone (0.0–38.79%), p-Cymenene (0.0–35.22%), Limonene (0.0–31.25%), Piperitone oxide (0.0–26.0%), p-Cymenol-8 (0.0–20.6%), Spathulenol (0.0–18.35%), β-Caryophyllene oxide (0.3–17.25%), α-Pharnesene (0.0–16.54%), α-Cadinol (0.09–10.69%), Calamenene (0.44–10.63%), α-Cubenene (0.0–10.08%), α-Caryophyllene (2.0–9.8%), Veridiflorol (0.0–7.59%), Cubenol (0.0–7.46%), Verbenone (0.0–6.56%), δ-Fenchol (0.3–5.9%), Menthone (0.0–5.7%), Borneol (0.12–5.6%), Citronellyl acetate (0.0–5.45%), δ-Cadinene (0.0–4.89), Eucalyptol (0.0–4.21%), cis-8-Menthene (0.3–4.2%), Fenchone (0.1–3.6%), Geraniol (1.0–3.4%), τ-Muurolol (0.0–3.29%), α-Pinene (0.1–2.7%), β-Caryophyllene (2.56%), cis-Carveol (2.31%), Germacrene D (0.0–2.04%)[69,70,71]
Micromeria albanica (K. Maly) SilicPiperitenone oxide (38.73%), Pulegone (13.43%), Piperitenone (9.72%), Piperitone (5.62%), Limonene (3.2%), α-Copaene (2.12%)[38]
Moluccella spinosa L.α-Pinene (26.6%), Caryophyllene oxide (16.8%), β-Caryophyllene (8.6%), α-Thujene (5.9%), Nonacosane (5.5%), Heptacosane (5.3%), Ethylbenzaldehyde (3.4%), Pentacosane (2.5%), Tetracosane (2.3%), Sabinene (2.2%)[72]
Nepeta ciliaris Benth. = Nepeta leucophylla Benth.Caryophyllene oxide (14.8–26.3%), β-Caryophyllene (18.0%), β-Sesquiphellandrene (15.0%), Iridodial b-monoenol acetate (9.8%)[43]
Nepeta clarkei Hook. f.β-Sesquiphellandrene (22.0%), Actinidine (10.0%), Germacrene D (8.0%)[43]
Ocimum basilicum L.Linalool (18.0–68.0%), Methyl chavicol (0.0–57.3%), Geraniol (0.0–16.5%), 1,8-Cineole (1.4–15.1%), p-Allylanisole (0.2–13.8%), Eugenol (0.0–12.32%), Limonene (0.2–10.4%), β-Farnesene (0.0–6.3%), τ-Cadinol (trace–5.8%), β-Caryophyllene (0.0–4.5%), α-Bergamotene (0.0–4.34%), α-Cadinol (0.0–4.05%), β-Elemene (0.0–3.62%), δ-Cadinene (0.0–3.6%), Germacrene D (0.0–3.5%), γ-Cadinene (0.0–2.8%), Camphor (0.0–2.4%), β-Myrcene (0.2–2.3%), Terpinen-4-ol (0.0–2.2%), Guaiene (0.0–2.1%), Estragole (0.0–2.03%), Isolimonene (0.0–2.0%), α-Bulnesene (0.0–2.0%), γ-Terpinene (0.0–2.0%)[64,68,73,74,75,76]
Ocimum × africanum Lour. = Ocimum × citriodorumNerol (23.0%), Geranial (15.77%), Methyl chavicol (9.45%), Linalool (9.42%), β-Bisabolenene (8.31%), β-Caryophyllene (7.8%), Geraniol (5.2%), Neral (4.93%), α-Bergamotene (3.52%), α-Bisabolene (2.29%), β-Cubebene (2.26%)[76]
Ocimum campechianum Mill. = Ocimum micranthum Willd.Eugenol (46.55%), β-Caryophyllene (11.94%), β-Elemene (9.06%), 1,8-Cineole (5.35%), δ-Elemene (4.17%), Bicyclogermacrene (2.9%), cis-Ocimene (2.69%), allo-Ocimene (2.42%), α-Humulene (2.4%)[73]
Ocimum forskolei Benth.endo-Fenchol (31.1%), τ-Cadinol (12.2%), Fenchone (12.2%), Camphor (6.2%), Linalool (5.7%), Methyl(E)-cinnamate (5.1%), α-Bergamotene (3.1%), γ-Cadinene (2.9%), endo-Fenchyl acetate (2.8%), Limonene (2.5%)[77]
Ocimum gratissimum L.Eugenol (7.42–57.82%), Ethyl cinnamate (0.0–34.0%), Linalool (30.0–32.95%), 1,8-Cineole (6.5–21.91%), α-Bisabolene (0.0–17.19%), Camphor (3.8–11.97%), Thymol (0.0–9.8%), α-Cadinol (5.18%), Germacrene D (0.79–4.76%), α-Terpineol (3.36%), γ-Terpinene (0.0–3.06%), β-Caryophyllene (1.68–3.03%), p-Cymene (0.0–2.11%)[78,79,80]
Ocimum tenuiflorum L. = Ocimum sanctum L.Eugenol (0.0–61.3%), Methyl chavicol (0.0–44.63%), Linalool (0.26–21.84%), α-Caryophyllene (3.3–11.89%), Germacrene D (0.37–9.14%), Carvone (0.0–6.31%), Limonene (0.71–4.39%), β-Caryophyllene (1.4–3.3%), α-Cubebene (0.0–2.54%), Carvacrol (0.0–2.04%)[81,82,83]
Origanum compactum Benth.Carvacrol (43.26%), Thymol (21.64%), p-Cymene (13.95%), γ-Terpinene (11.28%)[84]
Origanum majorana L.Terpinen-4-ol (6.66–33.84%), Sabinene hydrate (2.31–28.33%), 1,8-Cineole (0.0–20.9%), Carvacrol (0.0–20.8%), γ-Terpinene (7.59–19.5%), Thymol (0.0–12.18%), α-Terpinene (3.03–10.08%), β-Phellandrene (1.96–8.0%), p-Cymene (2.45–7.84%), Sabinene (3.2–6.7%), Limonene (0.0–5.3%), α-Terpineol (2.7–4.7%), Linalool (0.0–4.4%), Terpinolene (0.98–3.76%), Linalool acetate (1.82–3.2%), Geraniol (2.7%), β-Caryophyllene (1.7–2.38%), α-Pinene (0.0–2.0%)[62,68,85,86,87]
Origanum vulgare L.Pulegone (0.0–77.45%), Carvacrol (0.21–65.9%), Cymenol (0.0–58.6%), Thymol (3.7–45.22%), o-Cymene (0.0–14.33%), Terpinen-4-ol (0.03–12.55%), β-Terpineol (0.0–10.46%), p-Cymene (0.5–9.3%), γ-Terpinene (3.1–9.12%), Borneol (0.0–6.1%), α-Pinene (0.0–5.1%), Menthone (0.0–4.86%), Linalool (0.0–4.8%), β-Bisabolene (0.0–4.5%), Caryophyllene oxide (0.0–4.5%), Sabinene (0.0–3.91%), β-Phellandrene (0.0–3.74%), β-Caryophyllene (00–3.7%), α-Terpineol (0.0–3.35%), Sabinene hydrate (0.0–3.31%), α-Cadinol (0.0–3.3%), α-Terpinene (1.63–3.1%), Eucalyptol (0.0–2.8%), β-Ocimene (0.0–2.77%), cis-Isopulegone (2.22%), β-Myrcene (0.0–2.2%), Anisole (0.0–2.13%), Piperitenone (0.0–2.13%), Germacrene D (0.0–1.23%)[49,62,64,68,74,88,89,90,91]
Pogostemon cablin (Blanco) Benth.Patchouli alcohol (38.3–44.52%), α-Bulnesene (0.0–13.3%), δ-Guaiene (12.64%), α-Guaiene (8.89–9.6%), Pogostol (0.0–6.2%), Seychellene (5.8%), α-Bergamotene (5.76%), Eremophilene (4.34%), β-Guaiene (3.54%), β-Caryophyllene (1.93–3.0%), β-Patchoulene (1.8–2.77%)[92,93]
Pogostemon heyneanus Benth.Acetophenone (51.0%), Patchouli alcohol (14.0%), Nerolidol (5.4%), β-Pinene (5.3%), Limonene (4.0%), Benzoyl acetone (3.1%), α-Pinene (2.4%), β-Caryophyllene (2.0%)[93]
Premna microphylla Turcz.Blumenol C (49.7%), β-Cedrene (6.1%), Limonene (3.8%), α-Guaiene (3.3%), Cryptone (3.1%), α-Cyperone (2.7%), cis-14-nor-Muurol-5-en-4-one (2.4%)[94]
Rosmarinus officinalis L.α-Pinene (5.4–37.9%), 1,8-Cineole (0.88–26.54%), Eucalyptol (0.0–24.34%), Limonene (0.0–21.7%), Camphor (2.45–21.6%), Myrcene (0.9–20.18%), Borneol (0.0–18.08%), Bornyl acetete (0.92–14.9%), Verbenone (1.36–12.0%)Camphene (1.7–11.38%), Linalool oxide (0.0–10.8%), β-Pinene (0.0–6.95%), β-Caryophyllene (0.0–6.3%), Linalool (00–5.32%), o-Cymene (0.0–4.43%), p-Cymene (0.0–4.34%), β-Phellandrene (0.0–3.9%), Sabinene (0.0–3.72%), α-Terpineol (1.19–3.36%), Isobornyl acetate (0.0–3.3%), Carvacrol (0.0–3.15%), Verbenol (0.7–3.03%), α-Humulene (0.0–2.6%), α-Terpinene (0.21–2.4%), Terpinen-4-ol (0.34–2.15%)[51,62,68,87,91,95,96,97,98]
Salvia fruticosa Miller1,8-Cineole (16.9–54.4%), Camphor (0.6–18.34%), Manool (0–11.2%), β-Thujone (0.6–9.0%), β-Pinene (0.0–9.0%), Sabinene (0.0–8.6%), Viridiflorol (0.0–8.4%)β-Caryophyllene (1.53–8.3%), α-Thujone (trace–8.1%), Borneol (0.0–8.0%), Camphene (0.0–7.0%), α-Pinene (1.5–6.85%), Bornyl acetate (0.0–6.8%), α-Terpineol (trace–6.7%), Myrcene (1.3–5.2%), Caryophyllene oxide (0.0–3.9%), α-Terpinyl acetate (0.0–2.2%), α-Humulene (0.16–1.5%)[49,51,99]
Salvia mirzayanii Rech. f. and Esfand1,8-Cineole (41.2%), Linalool acetate (10.7%), α-Terpinyl acetate (5.7%), Myrcene (4.7%), Geranyl acetate (3.7%), γ-Cadinene (3.3%), Linalool (2.5%), Neryl acetate (2.3%)[100]
Salvia officinalis L.1,8-Cineole (4.2–50.3%), Camphor (8.8–25.0%), α-Thujone (1.2–19.9%), Viridiflorol (0.5–17.5%), β-Thujone (0.1–9.9%), β-Pinene (0.8–7.3%), β-Caryophyllene (1.4–5.5%), Borneol (1.5–5.4%), α-Pinene (0.5–4.8%), Camphene (0.2–3.9%), Bornyl acetate (0.2–3.3%), α-Terpineol (0.0–3.1%), α-Terpenyl acetate (1.4–2.9%), α-Humulene (0.4–2.6%),α-Farnesene (0.0–2.5%), Eicosane (0.0–2.0%)[96,101]
Salvia sclarea L.Linalyl acetate (84%), Caryophyllene oxide (24.1%), Linalool (13.6%), 1H-Naphtho(2,1,6)pyran (8.6%), Sclareol (11.5%), Spathulenol (11.4%), β-Caryophyllene (5.1%)[85,102]
Satureja hortensis L.Thymol (23.12–29.0%), Carvacrol (24.5–26.5%), γ-Terpinene (20.72–22.6%), p-Cymene (6.3–9.3%), α-Terpinene (2.2–2.93%), α-Pinene (2.6–2.91%), β-Pinene (0.92–2.7%), Limonene (0.0–2.55%), β-Bisabolene (0.2–2.2%)[103,104]
Satureja montana L.Carvacrol (47.1%), p-Cymene (9.0%), γ-Terpinene (6.1%), β-Caryophyllene (3.6%), Linalool (3.1%), Thymol (2.6%), Borneol (2.1%)[68]
Satureja thymbra L.Thymol (25.16–44.5%), γ-Terpinene (11.1–39.23%), p-Cymene (7.17–21.7%), Carvacrol (4.18–5.3%), Carvacrol methyl ether (0.1–3.33%), α-Terpinene (1.0–3.26%), β-Caryophyllene (1.2–2.76%), Caryophyllene oxide (0.32–2.0%)[51,105]
Stachys cretica L.Germacrene D (12.9–20.3%), β-Caryophyllene (0.9–9.5%), α-Pinene (0.7–8.6%), Octacosane (0.0–7.2%), β-Pinene (1.5–6.2%), Linalyl acetate (0.0–5.2%), Nonacosane (0.4–4.9%), 9-Geranyl-p-cymene (0.0–4.9%), Heptacosane (0.3–4.8%), cis-Chrysanthenyl acetate (0.0–4.8%), β-Farnesene (3.1–4.0%), Hexadecanoic acid (1.3–3.5%), Caryophyllene oxide (0.5–2.9%), β-Bisabolene (1.6–2.8%), Linalool (0.0–2.6%), Pentacosane (0.0–2.5%), Sesquisabinene (2.1%), Geranyl acetate (0.0–2.1%)[106]
Stachys officinalis (L.) TrevisGermacrene D (19.9%), β-Caryophyllene (14.1%), α-Humulene (7.5%), δ-Cadinene (4.0%), β-Bourbonene (3.8%), α-Selinene (3.4%), γ-Muurolene (3.2%), Oct-1-en-3-ol (2.9%), Caryophyllene oxide (2.5%), Hexadecanoic acid (2.4%), β-Selinene (2.1%), γ-Cadinene (2.0%), τ-Muurolol (2.0%)[107]
Stachys pubescens Ten.Germacrene (22.4%), δ-Cadinene (19.7%), 2,6-Octadien (11.5%), Linalool (9.7%), Limonene (6.3%), δ-Elemene (5.4%), β-Ocimene (2.8%), α-Terpinene (2.7%), 2,6-Octadienal (2.1%)[108]
Teucrium sauvagei Le Houerouβ-Eudesmol (28.8%), τ-Cadinol (17.5%), α-Thujene (8.7%), γ-Cadinene (5.6%), Sabinene (4.8%), β-Selinene (4.2%), Limonene (2.8%), γ-Selinene (2.8%), α-Selinene (2.8%), δ-Cadinene (2.2%), Terpinen-4-ol (2.2%), p-Cymene (2.0%),[109]
Teucrium yemense Deflers.Caryophyllene oxide (4.3–20.1%), 7-epi-α-Selinene (1.3–20.1%), β-Caryophyllene (11.2–19.1%), α-Cadinol (2.0–9.5%), α-Pinene (2.3–6.6%), δ-Cadinene (0.4–6.5%), α-Humulene (4.0–6.4%), τ-Cadinol (2.0–5.7%), γ-Selinene (0.4–5.5%), τ-Muurolol (0.6–4.9%), Shyobunol (0.0–4.6%), Valencene (0.0–3.7%), Ledol (0.5–3.6%), cis-Sesquisabinene hydrate (0.9–3.4%), β-Pinene (1.1–3.1%), Germacrene D-4-ol (0.0–3.1%), γ-Cadinene (0.0–2.7%), β-Selinene (0.3–2.5%), Alloaromadendrene (trace–2.2%)[77]
Thymbra capitata (L.) Cav. = Thymus capitatus (L.) Hoffmanns. and Link = Coridothymus capitatus (L.) Rchb.f. SolmsCarvacrol (35.6–75.0%), Thymol (0.1–29.3%), p-Cymene (5.0–21.0%), γ-Terpinene (4.0–12.3%), α-Terpinene (1.0–3.0%), β-Myrcene (0.8–3.0%), Linalool (0.5–2.9%), β-Caryophyllene (0.2–2.5%)[51,110,111,112]
Thymbra spicata L.Carvacrol (20.1–64.0%), γ-Terpinene (11.6–31.2%), p-Cymene (9.6–26.0%), α-Terpinene (1.2–10.1%), β-Myrcene (0.9–7.7%), Thujene (trace–5.2%), β-Caryophyllene (0.5–5.1%)[51,113,114]
Thymus bovei Benth.Geraniol (35.38%), α-Citral (20.37%), β-Citral (14.76%), Nerol (7.38%), 3-Octanol (4.38%)[115]
Thymus daenensis Celak.Carvacrol (31.46%), α-Terpineol (22.95%), Thymol (20.2%), Camphene (6.27%), 2,6-Octadien (2.22%), Borneol (2.17%), Cyclohexanone (2.1%)[108]
Thymus kotschyanus Boiss. and Hohen.Thymol (46.72%), Benzene (6.88%), Carvacrol (3.73%), γ-Terpinene (3.58%), β-Caryophyllene (3.39%), Linalool (2.88%), Phenol (2.61%), Borneol (2.51%), Isopropyl (2.07%)[108]
Thymus mastichina (L.) L.1,8-Cineole (67.4%), Linalool (4.3%), β-Pinene (4.0%), α-Terpineol (3.5%), α-Pinene (3.0%), Sabinene (2.4%)[116]
Thymus migricus Klokov et Des.-Shost.Thymol (44.9%), Geraniol (10.8%), γ-Terpinene (10.3%), Citronellol (8.5%), p-Cymene (7.2%)[117,118]
Thymus pulegioides L.Thymol (26.0%), Carvacrol (21.0%), γ-Terpinene (8.8%), p-Cymene (7.8%), Octan-3-one (3.9%), Camphor (3.9%), β-Bisabolene (3.0%), Borneol (2.9%), Oct-1-en-3-ol (2.0%)[119]
Thymus schimperi RonnigerCarvacrol (13.91–39.07%), Thymol (11.53–34.66%), o-Cymene (18.72–27.06%), γ-Terpinene (4.13–13.73%), Linalool (3.34–3.59%), 3-Octanone (1.05–2.67%), α-Terpinene (1.67–2.37%)[120]
Thymus serpyllum L.Thymol (52.6%), p-Cymene (15.3%), β-Caryophyllene (6.8%), Sabinene hydrate (3.8%), γ-Terpinene (2.9%), Terpinen-4-ol (2.4%)[68]
Thymus striatus Vahl.Thymol (59.5%), γ-Terpinene (11.6%), p-Cymene (6.4%), Carvacrol methyl ether (5.9%), Carvacrol (4.9%), α-Terpinene (3.3%), β-Caryophyllene (2.3%)[121]
Thymus vulgaris L.Carvacrol (3.5–70.3%), Thymol (0.6–51.8%), Borneol (0.0–40.6%), p-Cymene (2.9–38.9%), o-Cymene (0.0–31.7%), α-Terpineol (0.0–19.9%), Linalool (0.0–16.0%), γ-Terpinene (0.3–12.65%), Camphene (0.0–12.3%), 1,8-Cineole (0.0–11.3%), α-Pinene (0.2–6.1%), β-Caryophyllene (0.0–3.5%), Neomenthol (0.0–2.8%), β-Cubebene (0.0–2.4%), Geraniol (0.0–2.32%), Menthone (0.0–2.2%)[61,64,74,85,87,104,116,122,123,124,125,126]
Thymus zygis L.Linalool (5.5–39.7%), Thymol (0.52–39.6%), p-Cymene (2.2–21.2%), Terpinen-4-ol (1.0–11.7%), β-Myrcene (3.0–8.6%), γ-Terpinene (7.6–7.9%), α-Terpinene (1.2–4.2%), β-Caryophyllene (1.6–3.6%), α-Pinene (0.9–3.6%), Limonene (1.7–2.6%), Carvacrol (0.08–2.4%), Terpinolene (0.2–2.0%)[116,127]
Vitex agnus-castus L.Eucalyptol (20.5%), 1,8-Cineole (1.5–19.61%), Bicyclogermacrene (0.0–16.2%), β-Farnesene (0.0–16.1%), Sabinene (0.0–14.57%), Sclarene (0.0–10.9%), α-Pinene (0.9–9.76%), Manool (0.0–8.2%), β-Caryophyllene (3.0–6.6%), β-Caryophyllene oxide (0.0–5.83%), Limonene (0.0–4.89%), Vulgarol B (0.0–4.7%), β-Pinene (0.4–4.4%), α-Terpinyl acetate (1.2–4.21%), β-Sitosterol (3.13%), p-Cymene (0.0–3.11%), Geranyl linalool (0.0–3.1%), β-Phellandrene (0.0–3.0%), Cembrene A (0.7–2.8%), Beyrene (0.0–2.6%), β-Myrcene (trace–2.12%), γ-Elemene (2.11%), s-Cadinol (2.01%)[51,128,129]
Zataria multiflora Boiss.Thymol (25.8–48.4%), Carvacrol (1.5–34.36%), Carvacrol methyl ether (0.0–28.32%), p-Cymene (2.27–13.2%), γ-Terpinene (0.92–10.6%), Linalool (0.9–6.52%), α-Terpinenyl acetate (5.4%), α-Terpineol (0.5–3.69%), α-Pinene (0.02–3.13%), β-Caryophyllene (2.24–3.12%), Carvacrol acetate (0.0–2.26%), Terpinen-4-ol (0.0–2.21%)[117,130]
Ziziphora clinopodioides L.Carvacrol (0.63–74.29%), Thymol (7.28–55.6%), γ-Terpinene (1.54–24.56%), p-Cymene (2.21–10.25%), α-Terpinene (0.39–2.77%)[131,132]
Ziziphora tenuior L.Pulegone (46.8%), p-Menth-3-en-8-ol (12.5%), Isomenthone (6.6%), 8-Hydroxymenthone (6.2%), Isomenthol (4.7%), Limonene (3.2%)[133]
Table 3. Minimal inhibitory concentrations (MICs) of essential oils against fungi.
Table 3. Minimal inhibitory concentrations (MICs) of essential oils against fungi.
Source of the Essential OilTargeted FungusMICs (µg/mL; µl/mL)Reference(s)
Aeollanthus suaveolens Mart. ex Spreng. = A. heliotropioides Oliv.Candida albicans1200–5000[34]
Candida glabrata5000[34]
Candida krusei2500[34]
Candida parapsilosis2500[34]
Candida tropicalis1200[34]
Cryptococcus neoformans600–5000[34]
Agastache rugosa (Fisch. and C.A.Mey.) KuntzeAspergillus flavus10,000[153]
Aspergillus niger5000[153]
Blastoschizomyces capitatus5000[153]
Candida albicans28–5000[153,154]
Candida utilis5000[153]
Candida tropicalis5000[153]
Cryptococcus neoformans10,000[153]
Trichoderma viride5000[153]
Trichophyton erinacei780[153]
Trichophyton mentagrophytes3120[153]
Trichophyton rubrum1560[153]
Trichophyton schoenleinii1560[153]
Trichophyton soudanense1560[153]
Trichophyton tonsurans10,000[153]
Trichosporon mucoides5000[153]
Ballota nigra subsp. foetida (Vis.) HayekAlternaria solani750[37]
Botrytis cinerea600[37]
Fusarium coeruleum350[37]
Fusarium culmorum300[37]
Fusarium oxysporum300[37]
Fusarium solani350[37]
Fusarium sporotrichioides350[37]
Fusarium tabacinum350[37]
Fusarium verticillioides300[37]
Clinopodium dalmaticum (Benth.) Bräuchler and Heubl = Micromeria dalmatica Benth.Aspergillus niger0.4[38]
Aspergillus ochraceus0.4[38]
Cladosporium cladosporioides0.4[38]
Fusarium tricinctum0.4[38]
Penicilium ochrochloron0.4[38]
Phomopsis helianthi0.2[38]
Trichoderma viride0.4[38]
Clinopodium nepeta subsp. glandulosum (Req.) Govaerts = Calamintha glandulosa (Req.) Bentham = Calamintha officinalis MoenchAspergillus niger1250[39]
Candida albicans2500[39]
Clinopodium nepeta (L.) Kuntze = Calamintha nepeta (L.) SaviAspergillus flavus1.25–10[41]
Aspergillus fumigatus0.64–5[41]
Aspergillus niger0.32–10[41]
Candida albicans1.25–12,480[41,42]
Candida guillermondii1.25–2.5[41]
Candida krusei1.25–2.5[41]
Candida parapsilosis1.25–2.5[41]
Candida tropicalis1.25–2.5[41]
Cryptococcus neoformans0.32–1.25[41]
Epidermophyton floccosum0.64–2.5[41]
Microsporum canis0.64–2.5[41]
Microsporum gypseum1.25–5[41]
Trichophyton mentagrophytes0.64–5[41]
Trichophyton rubrum0.64–5[41]
Clinopodium thymifolium (Scop.) Kuntze = Micromeria thymifolia (Scop.) FritschAspergillus niger2[38]
Aspergillus ochraceus2[38]
Cladosporium cladosporioides2[38]
Fusarium tricinctum2[38]
Penicillium ochrochloron2[38]
Phomopsis helianthi0.4[38]
Trichoderma viride2[38]
Clinopodium umbrosum (M.Bieb.) Kuntze = Calamintha umbrosa Benth.Alternaria solani3000[43]
Fusarium oxysporum2000[43]
Helminthosporium maydis1500[43]
Dracocephalum heterophyllum Benth.Alternaria solani625[155]
Candida albicans625–1000[44,155]
Epidermophyton floccosum2500[155]
Fusarium semitectum313[155]
Hymenocrater longiflorus Benth.Aspergillus niger480[45]
Candida albicans240[45]
Hyptis ovalifolia Benth.Microsporum canis15.6–1000[46,156]
Microsporum gypseum7.8–1000[46,156]
Trichophyton mentagrophytes15.6–1000[46,156]
Trichophyton rubrum7.8–1000[46,156]
Hyssopus officinalis L.Aspergillus niger52,200[47]
Aspergillus ochraceus26,100[47]
Aspergillus versicolor10,440[47]
Candida albicans128–1000[44,48]
Candida glabrata512–1024[48]
Candida krusei128–256[48]
Candida parapsilosis256–512[48]
Candida tropicalis512–1024[48]
Cladosporium cladosporioides10,440[47]
Cladosporium fulvum26,100[47]
Penicillium funiculosum52,200[47]
Penicillium ochrochloron26,100[47]
Trichoderma viride10,440[47]
Lavandula angustifolia Mill.Candida albicans0.125–512[50,51,157]
Malassezia furfur>4[49]
Trichophyton rubrum1–512[49,51]
Trichosporon beigelii2[49]
Lavandula multifida L.Aspergillus flavus0.64[52]
Aspergillus fumigatus0.32[52]
Aspergillus niger0.32[52]
Candida albicans0.32[52]
Candida guilliermondii0.32[52]
Candida krusei0.64[52]
Candida parapsilosis0.32[52]
Candida tropicalis0.32[52]
Cryptococcus neoformans0.16[52]
Epidermophyton floccosum0.16[52]
Microsporum canis0.16[52]
Microsporum gypseum0.16[52]
Trichophyton mentagrophytes0.16[52]
Trichophyton mentagrophytes var. interdigitale0.16[52]
Trichophyton rubrum0.16[52]
Trichophyton verrucosum0.16[52]
Lavandula pedunculata (Miller) Cav.Aspergillus flavus5–10[53]
Aspergillus fumigatus2.5–5[53]
Aspergillus niger5[53]
Candida albicans2.5[53]
Candida guillermondii1.25[53]
Candida krusei1.25–2.5[53]
Candida parapsilosis2.5–5[53]
Candida tropicalis1.25–2.5[53]
Cryptococcus neoformans0.32–1.25[53]
Epidermophyton floccosum0.32–0.64[53]
Microsporum canis0.32–1.25[53]
Microsporum gypseum0.64–2.5[53]
Trichophyton mentagrophytes0.64–1.25[53]
Trichophyton rubrum0.32–1.25[53]
Lavandula stoechas L.Aspergillus flavus1.25–10[54]
Aspergillus fumigatus0.64–1.25[54]
Aspergillus niger0.32–1.25[54]
Candida albicans0.64–512[51,54]
Candida guillermondii1.25[54]
Candida krusei2.5[54]
Candida parapsilosis2.5[54]
Candida tropicalis2.5[54]
Cryptococcus neoformans0.64[54]
Epidermophyton floccosum0.16–0.32[54]
Microsporum canis0.16–0.64[54]
Microsporum gypseum0.32–0.64[54]
Trichophyton mentagrophytes0.32–0.64[54]
Trichophyton mentagrophytes var. interdigitale0.16–0.64[54]
Trichophyton rubrum0.16–256[51,54]
Trichophyton verrucosum0.32[54]
Lavandula viridis L’Her.Aspergillus flavus5[55]
Aspergillus fumigatus2.5[55]
Aspergillus niger2.5[55]
Candida albicans1.25–2.5[55]
Candida guillermondii0.64–1.25[55]
Candida krusei1.25–2.5[55]
Candida parapsilosis1.25[55]
Candida tropicalis1.25–2.5[55]
Cryptococcus neoformans0.64[55]
Epidermophyton floccosum0.32[55]
Microsporum canis0.32[55]
Microsporum gypseum0.64[55]
Trichophyton mentagrophytes0.32–0.64[55]
Trichophyton mentagrophytes var. interdigitale0.32–0.64[55]
Trichophyton rubrum0.32[55]
Trichophyton verrucosum0.32[55]
Lepechinia mutica (Benth.) EplingCandida albicans>9000[56]
Fusarium graminearum>9000[56]
Microsporum canis2200–4500[56]
Pyricularia oryzae>9000[56]
Trichophyton rubrum2200–4500[56]
Marrubium vulgare L.Aspergillus niger>1180[58]
Botrytis cinerea>1100[58]
Fusarium solani>1190[58]
Penicillium digitatum>1120[58]
Melissa officinalis L.Aspergillus niger313[158]
Candida albicans30–313[59,158]
Cryptococcus neoformans78[158]
Epidermophyton floccosum30[59]
Microsporum canis30[59]
Penicillium verrucosum125[159]
Trichophyton mentagrophytes var. mentagrophytes15[59]
Trichophyton rubrum15[59]
Trichophyton tonsurans15[59]
Mentha cervina L.Aspergillus flavus2.5–5[60]
Aspergillus fumigatus1.25–2.5[60]
Aspergillus niger1.25–2.5[60]
Candida albicans1.25–2.5[60]
Candida guillermondii1.25–2.5[60]
Candida krusei1.25–2.5[60]
Candida parapsilosis1.25–2.5[60]
Candida tropicalis1.25–2.5[60]
Cryptococcus neoformans1.25[60]
Epidermophyton floccosum0.64–1.25[60]
Microsporum canis1.25[60]
Microsporum gypseum1.25–2.5[60]
Trichophyton mentagrophytes1.25–2.5[60]
Trichophyton rubrum1.25[60]
Mentha × piperita L.Aspergillus flavus1450–5000[62,64]
Aspergillus niger625–10,000[64,158]
Aspergillus parasiticus2500[64]
Candida albicans225–1125[63,158,160]
Candida glabrata225[62]
Candida tropicalis225–230[62]
Cryptococcus neoformans313[158]
Fusarium oxysporum125[161]
Penicillium chrysogenum1250[64]
Penicillium minioluteum2050–2200[62]
Penicillium oxalicum1300–2050[62]
Penicillium verrucosum2500[90]
Mentha pulegium L.Aspergillus niger0.25–1.25[65,162]
Aspergillus flavus1.25[162]
Aspergillus fumigatus1.25[162]
Candida albicans0.94–3.75[65,66,162,163]
Candida bracarensis3.75[163]
Candida guillermondii1.25[162]
Candida krusei0.94–1.25[162,163]
Candida parapsilosis1.25[162]
Candida tropicalis1.25[162]
Cryptococcus neoformans0.64[162]
Epidermophyton floccosum1.25[162]
Microsporum canis1.25[162]
Microsporum gypseum1.25–2.5[162]
Saccharomyces cervisiae<0.3–0.94[66,163]
Trichophyton mentagrophytes1.25–2.5[162]
Trichophyton mentagrophytes var. interdigitale2.5[162]
Trichophyton rubrum1.25[162]
Trichophyton verrucosum1.25[162]
Mentha requienii BenthamAlternaria spp.>40[67]
Aspergillus fumigatus>60[67]
Candida albicans0.94–40[67,163]
Candida bracarensis3.75[163]
Candida krusei0.94[163]
Fusarium spp.>40[67]
Penicillum spp.>60[67]
Rhodotorula spp.45[67]
Saccharomyces cerevisiae0.94[163]
Mentha spicata L.Aspergillus flavus1.25[162]
Aspergillus fumigatus0.64[162]
Aspergillus niger0.64–313[158,162]
Candida albicans1.25–625[51,158,162]
Candida guillermondii1.25[162]
Candida krusei1.25[162]
Candida parapsilosis1.25[162]
Candida tropicalis1.25[162]
Cryptococcus neoformans0.32–313[158,162]
Epidermophyton floccosum0.64[162]
Fusarium graminearum2.5[164]
Fusarium moniliforme2.5[164]
Malassezia furfur>4[49]
Microsporum canis0.64–2[68,162]
Microsporum gypseum0.64–3[162]
Penicillium corylophilum0.625[165]
Penicillium expansum2.5[164]
Trichophyton erinacei3[68]
Trichophyton mentagrophytes0.64–3[68,162]
Trichophyton mentagrophytes var. interdigitale0.64[162]
Trichophyton rubrum0.25–512[49,51,162]
Trichophyton terrestre3[68]
Trichophyton verrucosum0.32[162]
Trichosporon beigelii0.25[49]
Mentha suaveolens Ehrh.Candida albicans0.34–1250[69,71,166]
Candida glabrata0.69–2.77[69]
Cryptococcus neoformans300[167]
Microsporum canis1250[167]
Microsporum gypseum1250[167]
Trichophyton mentagrophytes600–1250[167]
Trichophyton rubrum5000[167]
Trichophyton violaceum600[167]
Micromeria albanica (Griseb. ex K. Maly) SilicAspergillus niger0.2[38]
Aspergillus ochraceus0.2[38]
Cladosporium cladosporioides0.2[38]
Fusarium tricinctum0.4[38]
Penicilium ochrochloron0.2[38]
Phomopsis helianthi0.2[38]
Trichoderma viride0.4[38]
Moluccella spinosa L.Aspergillus niger50[72]
Candida albicans100[72]
Fusarium oxysporum100[72]
Nepeta ciliaris Benth. = Nepeta leucophylla Benth.Alternaria solani3000[43]
Candida albicans0.78[168]
Fusarium oxysporum1000[43]
Trichophyton rubrum0.19[168]
Helminthosporium maydis1500[43]
Nepeta clarkei Hook. f.Alternaria solani3000[43]
Fusarium oxysporum2000[43]
Helminthosporium maydis2000[43]
Ocimum basilicum L.Aspergillus flavus10,000[64]
Aspergillus fumigatus>50[75]
Aspergillus niger>50–10,000[64,75,158]
Aspergillus parasiticus5000[64]
Candida albicans30–625[73,74,158]
Candida guilliermondii3.125–6.25[76]
Cryptococcus neoformans313–1250[158,169]
Debaryomyces hansenii6.25[76]
Epidermophyton floccosum15[74]
Microsporum canis1–15.2[68,74]
Microsporum gypseum3[68]
Penicillium chrysogenum10,000[64]
Penicillium italicum>50[75]
Rhizopus stolonifer>50[75]
Rhodotorula glutinis86[73]
Trichophyton erinacei2.5[68]
Trichophyton mentagrophytes2.5–8.3[68,74]
Trichophyton terrestre3[68]
Saccharomyces cerevisiae28[73]
Schizosaccharomyces pombe86[73]
Trichophyton rubrum8.3[74]
Trichophyton tonsurans8[74]
Yarrowia lypolytica57[73]
Ocimum × africanum Lour. = Ocimum × citriodorumCandida guilliermondii3.125[76]
Debaryomyces hansenii1.56[76]
Ocimum campechianum Mill. = Ocimum micranthum Willd.Candida albicans69[73]
Rhodotorula glutinis139[73]
Saccharomyces cerevisiae69[73]
Schizosaccharomyces pombe104[73]
Yarrowia lypolytica69[73]
Ocimum forskolei Benth.Candida albicans35.3–8600[77,170]
Ocimum gratissimum L.Aspergillus fumigatus>1000[78]
Candida albicans350–1500[78,171]
Candida krusei750[171]
Candida parapsilosis380[171]
Candida tropicalis1500[171]
Cryptococcus neoformans250–300[78,79]
Fusarium oxysporum f. sp. cubense62.5[80]
Fusarium oxysporum f. sp. lycopersici31.25[80]
Fusarium oxysporum f. sp. tracheiphilum62.5[80]
Fusarium solani62.5[80]
Macrophomina phaseolina62.5–125[80]
Malassezia pachydermatis300[78]
Microsporum canis200–500[78,172]
Microsporum gypseum150–250[78,172]
Rhizoctonia solani31.25[80]
Scopulariopsis brevicaulis400[78]
Trichophyton interdigitale250[78]
Trichophyton mentagrophytes200–250[78,172]
Trichophyton rubrum150–250[78,172]
Ocimum tenuiflorum L. = Ocimum sanctum L.Aspergillus flavus300[83]
Candida albicans0.1–300[81,82]
Candida glabrata0.15–300[81,82]
Candida krusei0.35–450[81,82]
Candida parapsilosis0.25–500[81,82]
Candida tropicalis0.1–300[81,82]
Origanum compactum Benth.Alternaria alternata300[84]
Bipolaris oryzae300[84]
Fusarium equiseti300[84]
Fusarium graminearum300[84]
Fusarium verticillioides300[84]
Origanum majorana L.Aspergillus flavus450–650[62]
Aspergillus niger625[158]
Botrytis cinerea5000[87]
Candida albicans625[158]
Cryptococcus neoformans313[158]
Fusarium delphinoides1800–14,400[85]
Fusarium incarnatum-equiseti450–3600[85]
Fusarium napiforme3600–14,400[85]
Fusarium oxysporum900–3600[85]
Fusarium solani900–3600[85]
Fusarium verticillioides14,400[85]
Microsporum canis0.5[68]
Microsporum gypseum2[68]
Penicillium expansum10,000[87]
Penicillium minioluteum400–500[62]
Penicillium oxalicum350–400[62]
Sporothrix brasiliensis≤2250–9000[86]
Sporothrix schenckii≤2250–9000[86]
Trichophyton erinacei1[68]
Trichophyton mentagrophytes1.5[68]
Trichophyton terrestre2[68]
Origanum vulgare L.Aspergillus flavus0.64–2500[64,89,91]
Aspergillus fumigatus0.32–0.64[89]
Aspergillus niger0.32–623[62,89,91,158]
Aspergillus ochraceus470[91]
Aspergillus parasiticus2500[64]
Candida albicans0.32–700[74,88,89,91,158]
Candida glabrata350[88]
Candida guillermondii0.64–1.25[89]
Candida krusei0.64–700[88,89]
Candida parapsilosis0.64–170[88,89]
Candida tropicalis0.32–700[88,89]
Cladosporium sp.0.05–0.3[173]
Cryptococcus neoformans0.16–78[89,158]
Epidermophyton floccosum0.32–2[74,89]
Fusarium sp.0.1–0.5[173]
Malassezia furfur1–780[49,174]
Microsporum canis0.025–2[68,74,89]
Microsporum gypseum0.025–1.25[68,89]
Penicillium sp.0.1–0.5[173]
Penicillium chrysogenum625[64]
Penicillium corylophilum0.625[165]
Penicillium funiculosum610[91]
Penicillium ochrochloron710[91]
Penicillium verrucosum1.1719[90,91]
Trichophyton mentagrophytes0.32–1.25[74,89]
Trichophyton rubrum0.16–1.25[49,74,89]
Trichophyton tonsurans1[74]
Trichosporon beigelii0.25[49]
Trichophyton erinacei0.5[68]
Trichophyton mentagrophytes0.5[68]
Trichophyton terrestre0.25[68]
Pogostemon cablin (Blanco) Benth.Aspergillus flavus>1500[92]
Aspergillus niger156[158]
Aspergillus oryzae>1500[92]
Candida albicans32–625[158,175]
Candida krusei64–257[175]
Candida tropicalis32–257[175]
Cryptococcus neoformans20[158]
Pogostemon heyneanus Benth.Candida albicans6000[176]
Candida glabrata6000[176]
Candida tropicalis10,000[176]
Premna microphylla Turcz.Aspergillus niger>500[94]
Candida albicans>500[94]
Fusarium oxysporum>500[94]
Rosmarinus officinalis L.Aspergillus flavus330[91]
Aspergillus ochraceus590[91]
Aspergillus niger380–10,000[91,98,158]
Botrytis cinerea2500[87]
Candida albicans30.2–1000[51,91,96,98,158]
Cryptococcus neoformans313[158]
Epidermophyton floccosum30[96]
Microsporum canis2.5–30.2[68,96]
Microsporum gypseum2.5[68]
Penicillium expansum5000[87]
Penicillium ochrochloron470[91]
Penicillium funiculosum570[91]
Trichophyton erinacei1.5[68]
Trichophyton mentagrophytes5–15.3[68,96]
Trichophyton rubrum15–256[51,96]
Trichophyton terrestre5[68]
Trichophyton tonsurans15.2[96]
Salvia fruticosa MillerCandida albicans512[51]
Fusarium oxysporum f. sp. dianthi>2000[99]
Fusarium proliferatum>2000[99]
Fusarium solani f. sp. cucurbitae>2000[99]
Malassezia furfur>4[99]
Rhizoctonia solani>2000[99]
Sclerotinia sclerotiorum>2000[99]
Trichophyton rubrum2–256[49,99]
Trichosporon beigelii4[49]
Salvia mirzayanii Rech. f. and EsfandCandida albicans0.5–2[100]
Candida krusei1[100]
Candida dubliniensis0.06–0.5[100]
Candida glabrata0.06–1[100]
Candida parapsilosis0.25–1[100]
Candida tropicalis0.25–2[100]
Trichosporon sp.1[100]
Salvia officinalis L.Aspergillus flavus5–10[101]
Aspergillus fumigatus2.5–5[101]
Aspergillus niger5–1250[101,158]
Candida albicans2.5–2780[96,101,158,177]
Candida guillermondii1.25–2.5[101]
Candida krusei2.5–5[101]
Candida parapsilosis5[101]
Candida tropicalis5[101]
Cryptococcus neoformans0.64–625[101,158]
Epidermophyton floccosum0.64–100[96,101]
Microsporum canis1.25–100.2[96,101]
Microsporum gypseum1.25–2.5[101]
Trichophyton mentagrophytes1.25–60[96,101]
Trichophyton mentagrophytes var. interdigitale1.25[101]
Trichophyton rubrum0.64–60[96,101]
Trichophyton tonsurans60[96]
Trichophyton verrucosum1.25–2.5[101]
Salvia sclarea L.Aspergillus niger1250[158]
Candida albicans1250[158]
Cryptococcus neoformans313[158]
Fusarium delphinoides1800–3600[85]
Fusarium incarnatum-equiseti1800–3600[85]
Fusarium napiforme1800–3600[85]
Fusarium oxysporum1800–3600[85]
Fusarium solani3600–7200[85]
Fusarium verticillioides1800[85]
Satureja hortensis L.Alternaria alternata62.5[103]
Aspergillus flavus31.25–500[103,104,117]
Aspergillus niger471[117]
Aspergillus ochraceus423[117]
Aspergillus parasiticus373[117]
Aspergillus terreus389[117]
Aspergillus variecolor125[103]
Candida albicans200–400[103,178]
Fusarium culmorum125[103]
Fusarium oxysporum250[103]
Microsporum canis62.5[103]
Moniliania fructicola31.25[103]
Penicillium spp.125[103]
Rhizoctonia solani125[103]
Rhizopus spp.250[103]
Sclerotinia minor250[103]
Sclerotinia sclerotiorum125[103]
Trichophyton mentagrophytes62.5[103]
Trichophyton rubrum31.25[103]
Satureja montana L.Microsporum canis0.5[68]
Microsporum gypseum2[68]
Trichophyton erinacei2[68]
Trichophyton mentagrophytes2[68]
Trichophyton terrestre3[68]
Satureja thymbra L.Aspergillus flavus25[105]
Aspergillus fumigatus1.25–25[105,179]
Aspergillus niger2.5–25[105,179]
Aspergillus ochraceus2.5–25[105,179]
Aspergillus versicolor1.25[179]
Candida albicans25–128[51,105]
Penicillium funiculosum2.5–25[105,179]
Penicillium ochrochloron1–1.25[105,179]
Trichoderma viride1.25–25[105,179]
Trichophyton rubrum128[51]
Stachys cretica L.Candida albicans625[106]
Stachys officinalis (L.) TrevisAspergillus niger2500[107]
Candida albicans5000[107]
Stachys pubescens Ten.Alternaria alternata1[108]
Aspergillus flavus0–5[108]
Fusarium oxysporum1[108]
Teucrium sauvagei Le HouerouAspergillus fumigatus>1000[109]
Candida albicans>1000[109]
Cryptococcus neoformans>1000[109]
Epidermophyton floccosum850[109]
Microsporum canis800[109]
Microsporum gypseum900[109]
Scopulariopsis brevicaulis>1000[109]
Scytalidium dimidiatum>1000[109]
Trichophyton mentagrophytes var. interdigitale950[109]
Trichophyton mentagrophytes var. mentagrophytes900[109]
Trichophyton rubrum800[109]
Trichophyton soudanense800[109]
Teucrium yemense Deflers.Aspergillus niger313[77]
Botrytis cinerea313[77]
Candida albicans1250[77]
Thymbra capitata (L.) Cav. = Thymus capitatus (L.) Hoffmanns. and Link = Coridothymus capitatus (L.) Rchb.f. SolmsAspergillus flavus0.32[111]
Aspergillus fumigatus0.16–0.32[111]
Aspergillus niger0.1–0.16[111,180]
Aspergillus oryzae0.2[180]
Candida albicans0.16–128[51,110,111,112]
Candida glabrata0.32[111,112]
Candida guilliermondii0.16–0.32[111,112]
Candida krusei0.32[111]
Candida parapsilosis0.32[111,112]
Candida tropicalis0.32[111,112]
Epidermophyton floccosum0.08[111]
Fusarium solani0.2[180]
Microsporum canis0.08[111]
Microsporum gypseum0.08[111]
Penicillium digitatum0.5[180]
Trichophyton mentagrophytes0.08[111]
Trichophyton rubrum0.16–64[51,111]
Thymbra spicata L.Aspergillus fumigatus0.3[179]
Aspergillus niger0.6[179]
Aspergillus versicolor0.3[179]
Aspergillus ochraceus0.6[179]
Candida albicans1.12–3750[51,113,114]
Candida krusei1.12[114]
Candida parapsilosis0.6–1.12[114]
Penicillium funiculosum0.3[179]
Penicillium ochrochloron0.3[179]
Trichoderma viride0.3[179]
Trichophyton rubrum64[51]
Thymus bovei Benth.Candida albicans250[115]
Thymus daenensis Celak.Alternaria alternata>8[108]
Aspergillus flavus1[108]
Fusarium oxysporum4[108]
Thymus kotschyanus Boiss. and Hohen.Alternaria alternata1[108]
Aspergillus flavus0.5[108]
Fusarium oxysporum0–5[108]
Thymus mastichina (L.) L.Candida albicans1.25–2.5[116]
Candida glabrata1.25–1.5[116]
Candida guilliermondii1.25[116]
Candida krusei1.25–2.5[116]
Candida parapsilosis2.5–5[116]
Candida tropicalis2.5–10[116]
Thymus migricus Klokov et Des.-Shost.Aspergillus flavus452[117]
Aspergillus niger460[117]
Aspergillus ochraceus430[117]
Aspergillus parasiticus581[117]
Aspergillus terreus447[117]
Thymus pulegioides L.Aspergillus flavus0.32[119]
Aspergillus fumigatus0.16[119]
Aspergillus niger0.32[119]
Candida albicans0.32–0.64[119]
Candida glabrata0.32–0.64[119]
Candida guilliermondii0.32[119]
Candida krusei0.32–0.64[119]
Candida parapsilosis0.64[119]
Candida tropicalis0.32–0.64[119]
Epidermophyton floccosum0.16[119]
Microsporum canis0.16[119]
Microsporum gypseum0.16[119]
Trichophyton mentagrophytes0.16[119]
Trichophyton rubrum0.32[119]
Thymus schimperi RonningerAspergillus minutus0.512–2[120]
Aspergillus niger0.16[181]
Aspergillus tubingensis1–4[120]
Beauveria bassiana0.128–1[120]
Candida albicans0.16[181]
Microsporum spp.0.08[181]
Microsporum gypseum0.128–1[120]
Penicillium chrysogenum0.512–2[120]
Rhodotorula spp.0.08[181]
Tricophyton spp.0.08–0.31[181]
Verticillium sp.0.512–2[120]
Thymus serpyllum L.Aspergillus carbonarius1.25[182]
Aspergillus ochraceus0.625[182]
Aspergillus niger2.5[182]
Microsporum canis0.025[68]
Microsporum gypseum0.25[68]
Trichophyton erinacei0.1[68]
Trichophyton mentagrophytes0.2[68]
Trichophyton terrestre0.1[68]
Thymus striatus Vahl.Alternaria alternata1[121]
Aspergillus flavus1.5[121]
Aspergillus niger1[121]
Aspergillus ochraceus1[121]
Aspergillus terreus1[121]
Aspergillus versicolor1[121]
Cladosporium cladosporioides0.5[121]
Epidermophyton floccosum1[121]
Microsporum canis1.5[121]
Penicillium funiculosum2[121]
Penicillium ochrochloron2[121]
Phomopsis helianthi0.5[121]
Trichoderma viride2[121]
Trichophyton mentagrophytes1[121]
Thymus vulgaris L.Absidia spp.7 ± 4[122]
Alternaria spp.9.4 ± 4.5[122]
Alternaria alternata4.7–500[122,183]
Aspergillus spp.3.2[122]
Aspergillus flavus9.35–1500[64,104,122,125,184]
Aspergillus fumigatus144–1000[124,184]
Aspergillus niger9.35–1250[64,122,158,184]
Aspergillus ochraceus2.5–750[164,184]
Aspergillus parasiticus1250[64]
Aspergillus sulphureus10.88 ± 3.1[122]
Aspergillus versicolor9.6 ± 9.25[122]
Botrytis cinerea312[87]
Candida albicans0.16–313[73,74,116,158]
Candida glabrata0.16–0.32[116]
Candida krusei0.08–0.16[116]
Candida guillermondii0.16[116]
Candida parapsilosis0.16–0.32[116]
Candida tropicalis0.16–0.32[116]
Chaetomium globosum1.6[122]
Cladosporium spp.12.8[122]
Cladosporium sphaerospermum19.6[122]
Cryptococcus neoformans78[158]
Epidermophyton floccosum4[74]
Fusarium spp.62.5[185]
Fusarium delphinoides900–1800[85]
Fusarium incarnatum-equiseti450–3600[85]
Fusarium napiforme900[85]
Fusarium oxysporum5–900[85,126]
Fusarium solani1800–3600[85]
Fusarium verticillioides900[85]
Malassezia furfur920[174]
Microsporum canis2.2[74]
Mortierella spp.250[185]
Mucor spp.50.2 ± 8.4[122]
Penicilium spp.18.95–500[122,185]
Penicilium brevicompactum19.6[122]
Penicillium chrysogenum312.5–1750[64,184]
Penicilium chrysogenum19.6[122]
Penicillium citrinum1250[184]
Penicillium expansum625[87]
Penicillium griseofulvum19.6[122]
Rhizopus spp.12.6[122]
Rhodotorula glutinis72[73]
Rhizopus oryzae256–512[123]
Saccharomyces cerevisiae72[73]
Schizosaccharomyces pombe36[73]
Stachybotrys chartarum6.2[122]
Trichoderma spp.16.8[122]
Trichophyton mentagrophytes2.2[74]
Trichophyton rubrum2–72[74,124]
Trichophyton tonsurans2.2[74]
Ulocladium spp.5.45 ± 1.5[122]
Yarrowia lypolytica36[73]
Thymus zygis L.Candida albicans0.16–0.32[116]
Candida glabrata0.32[116]
Candida krusei0.16–0.32[116]
Candida guillermondii0.16[116]
Candida parapsilosis0.32[116]
Candida tropicalis0.16–0.32[116]
Penicillium corylophilum0.3125–0.625[165]
Vitex agnus-castus L.Candida albicans0.53–512[51,129]
Candida dubliniensis0.27[129]
Candida famata2.13[129]
Candida glabrata0.27[129]
Candida krusei0.27[129]
Candida lusitaniae2.13[129]
Candida parapsilosis1.06[129]
Candida tropicalis0.13[129]
Epidermophyton floccosum0.64–2.5[128]
Microsporum canis0.64–5[128]
Microsporum gypseum1.25–10[128]
Trichophyton mentagrophytes1.25–10[128]
Trichophyton rubrum0.64–512[51,128]
Zataria multiflora Boiss.Aspergillus flavus358[117]
Aspergillus niger358[117]
Aspergillus ochraceus341[117]
Aspergillus parasiticus367[117]
Aspergillus terreus447[117]
Microsporum canis0.125–0.25[130]
Microsporum gypseum0.03–0.06[130]
Trichophyton mentagrophytes0.03[130]
Trichophyton rubrum0.03–0.06[130]
Trichophyton schoenleinii0.125–0.6[130]
Ziziphora clinopodioides Lam.Aspergillus flavus48.82[184,186]
Aspergillus fumigatus1750[184]
Aspergillus niger3000[184]
Aspergillus ochraceus1500[184]
Aspergillus parasiticus48.82[186]
Penicillium chrysogenum3000[184]
Penicillium citrinum1750[184]
Ziziphora tenuior L.Aspergillus flavus1.25[133]
Aspergillus fumigatus0.64[133]
Aspergillus niger0.64[133]
Candida albicans1.25[133]
Candida guillermondii1.25[133]
Candida krusei1.25[133]
Candida parapsilosis1.25[133]
Candida tropicalis1.25[133]
Cryptococcus neoformans0.16[133]
Epidermophyton floccosum0.64[133]
Microsporum canis0.64–1.25[133]
Microsporum gypseum1.25[133]
Trichophyton mentagrophytes1.25[133]
Trichophyton mentagrophytes var. interdigitale1.254[133]
Trichophyton rubrum0.64[133]
Trichophyton verrucosum0.64[133]

Share and Cite

MDPI and ACS Style

Karpiński, T.M. Essential Oils of Lamiaceae Family Plants as Antifungals. Biomolecules 2020, 10, 103.

AMA Style

Karpiński TM. Essential Oils of Lamiaceae Family Plants as Antifungals. Biomolecules. 2020; 10(1):103.

Chicago/Turabian Style

Karpiński, Tomasz M. 2020. "Essential Oils of Lamiaceae Family Plants as Antifungals" Biomolecules 10, no. 1: 103.

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop