Calculations of Electron Loss to Continuum in Collisions of Li- and Be-Like Uranium Ions with Nitrogen Targets
Abstract
:1. Introduction
2. Basic Formalism
2.1. Doubly Differential Cross Section within the First-Order Perturbation Theory
2.2. Lorentz Transformation of the Doubly Differential Cross Section
2.3. Screening Potential for Electron Wave Functions
3. Results and Discussion
3.1. Be-Like Projectiles
3.2. Li-Like Projectiles
4. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eichler, J.; Stöhlker, T. Radiative electron capture in relativistic ion–atom collisions and the photoelectric effect in hydrogen-like high-Z systems. Phys. Rep. 2007, 439, 1–99. [Google Scholar] [CrossRef]
- Steck, M.; Litvinov, Y.A. Heavy-ion storage rings and their use in precision experiments with highly charged ions. Prog. Part. Nucl. Phys. 2020, 115, 103811. [Google Scholar]
- Stolterfoht, N.; Schneider, D.; Burch, D.; Wieman, H.; Risley, J.S. Mechanisms for Electron Production in 30-MeV On++O2 Collisions. Phys. Rev. Lett. 1974, 33, 59–62. [Google Scholar] [CrossRef]
- Andersen, L.H.; Frost, M.; Hvelplund, P.; Knudsen, H.; Datz, S. Correlated Two-Electron Effects in Highly Charged Ion-Atom Collisions: Transfer Ionization and Transfer Excitation in 20-MeV Au15++He Collisions. Phys. Rev. Lett. 1984, 52, 518–521. [Google Scholar] [CrossRef]
- Crooks, G.B.; Rudd, M.E. Experimental Evidence for the Mechanism of Charge Transfer into Continuum States. Phys. Rev. Lett. 1970, 25, 1599–1601. [Google Scholar] [CrossRef] [Green Version]
- Dettmann, K.; Harrison, K.G.; Lucas, M.W. Charge exchange to the continuum for light ions in solids. J. Phys. B At. Mol. Phys. 1974, 7, 269–287. [Google Scholar] [CrossRef]
- Vane, C.R.; Sellin, I.A.; Suter, M.; Alton, G.D.; Elston, S.B.; Griffin, P.M.; Thoe, R.S. Z, Velocity, and Charge Dependence of Zero-Degree Electron “Cusps” from Charge Transfer to Continuum States of Bare and Highly Ionized Projectiles. Phys. Rev. Lett. 1978, 40, 1020–1023. [Google Scholar] [CrossRef]
- Breinig, M.; Elston, S.B.; Huldt, S.; Liljeby, L.; Vane, C.R.; Berry, S.D.; Glass, G.A.; Schauer, M.; Sellin, I.A.; Alton, G.D.; et al. Experiments concerning electron capture and loss to the continuum and convoy electron production by highly ionized projectiles in the 0.7–8.5-MeV/u range transversing the rare gases, polycrystalline solids, and axial channels in gold. Phys. Rev. A 1982, 25, 3015–3048. [Google Scholar] [CrossRef]
- Hillenbrand, P.M.; Hagmann, S.; Atanasov, D.; Banaś, D.; Blumenhagen, K.H.; Brandau, C.; Chen, W.; De Filippo, E.; Gumberidze, A.; Guo, D.L.; et al. Radiative-electron-capture-to-continuum cusp in U88+ + N2 collisions and the high-energy endpoint of electron-nucleus bremsstrahlung. Phys. Rev. A 2014, 90, 022707. [Google Scholar] [CrossRef]
- Hillenbrand, P.M.; Hagmann, S.; Voitkiv, A.B.; Najjari, B.; Banaś, D.; Blumenhagen, K.H.; Brandau, C.; Chen, W.; De Filippo, E.; Gumberidze, A.; et al. Electron-loss-to-continuum cusp in U88+ + N2 collisions. Phys. Rev. A 2014, 90, 042713. [Google Scholar] [CrossRef]
- Hillenbrand, P.M.; Hagmann, S.; Jakubassa-Amundsen, D.H.; Monti, J.M.; Banaś, D.; Blumenhagen, K.H.; Brandau, C.; Chen, W.; Fainstein, P.D.; De Filippo, E.; et al. Electron-capture-to-continuum cusp in U88+ + N2 collisions. Phys. Rev. A 2015, 91, 022705. [Google Scholar] [CrossRef]
- Hillenbrand, P.M.; Hagmann, S.; Litvinov, Y.A.; Stöhlker, T. Forward-angle electron spectroscopy in heavy-ion atom collisions studied at the ESR. J. Phys. Conf. Ser. 2015, 635, 012011. [Google Scholar] [CrossRef]
- Hillenbrand, P.M.; Hagmann, S.; Groshev, M.E.; Banaś, D.; Benis, E.P.; Brandau, C.; De Filippo, E.; Forstner, O.; Glorius, J.; Grisenti, R.E.; et al. Radiative electron capture to the continuum in U89+ + N2 collisions: Experiment and theory. Phys. Rev. A 2020, 101, 022708. [Google Scholar] [CrossRef] [Green Version]
- Pauli, M.; Rosel, F.; Trautmann, D. Electronic relativistic effects in the semiclassical theory of K-shell ionisation. J. Phys. B At. Mol. Phys. 1978, 11, 2511–2526. [Google Scholar] [CrossRef]
- Amundsen, P.A.; Aashamar, K. Impact parameter dependence of K-shell ionisation by relativistic ions. J. Phys. B At. Mol. Phys. 1981, 14, 4047–4063. [Google Scholar] [CrossRef]
- Valluri, S.R.; Becker, U.; Grün, N.; Scheid, W. K-shell ionisation in relativistic heavy-ion collisions. J. Phys. B At. Mol. Phys. 1984, 17, 4359–4370. [Google Scholar] [CrossRef]
- Becker, U.; Grün, N.; Scheid, W. Cross sections for K-shell ionisation in relativistic heavy-ion collisions. J. Phys. B At. Mol. Phys. 1985, 18, 4589–4595. [Google Scholar] [CrossRef]
- Momberger, K.; Grün, N.; Scheid, W.; Becker, U. Angular distribution of electrons emitted from 1s1/2 and 2s1/2 states in relativistic heavy-ion collisions. J. Phys. B At. Mol. Opt. Phys. 1989, 22, 3269–3273. [Google Scholar] [CrossRef]
- Halabuka, Z.; Perger, W.; Trautmann, D. SCA calculations of the inner shell ionization with Dirac-Fock electronic wave functions. Z. Für Phys. Atoms Mol. Clust. 1994, 29, 151–158. [Google Scholar] [CrossRef]
- Voitkiv, A.; Grün, N.; Scheid, W. Plane-wave Born treatment of projectile-electron excitation and loss in relativistic collisions with atomic targets. Phys. Rev. A 2000, 61, 052704. [Google Scholar] [CrossRef]
- Voitkiv, A.B. Theory of projectile-electron excitation and loss in relativistic collisions with atoms. Phys. Rep. 2004, 392, 191–277. [Google Scholar] [CrossRef] [Green Version]
- Surzhykov, A.; Fritzsche, S. Electron angular and energy distributions following the ionization of highly charged projectile ions. J. Phys. B At. Mol. Opt. Phys. 2005, 38, 2711–2721. [Google Scholar] [CrossRef]
- Najjari, B.; Voitkiv, A.B. Excitation of heavy hydrogenlike ions by light atoms in relativistic collisions with large momentum transfers. Phys. Rev. A 2012, 85, 052712. [Google Scholar] [CrossRef] [Green Version]
- Lyashchenko, K.N.; Andreev, O.Y.; Voitkiv, A.B. Electron loss from hydrogen-like highly charged ions in collisions with electrons, protons and light atoms. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 055204. [Google Scholar] [CrossRef] [Green Version]
- Eichler, J.; Meyerhof, W.E. Relativistic Atomic Collisions; Academic Press: San Diego, CA, USA, 1995. [Google Scholar] [CrossRef]
- Varshalovich, D.A.; Moskalev, A.N.; Khersonskii, V.K. Quantum Theory of Angular Momentum; World Scientific: Singapore, 1988. [Google Scholar]
- Rose, M.E. Relativistic Electron Theory; Wiley: New York, NY, USA, 1961. [Google Scholar]
- Jakubassa-Amundsen, D.H.; Amundsen, P.A. Charge transfer in heavy-ion collisions at relativistic velocities. Z. Für Phys. Atoms Nucl. 1980, 298, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Salvat, F.; Fernández-Varea, J.; Williamson, W., Jr. Accurate numerical solution of the radial Schrödinger and Dirac wave equations. Comput. Phys. Commun. 1995, 90, 151–168. [Google Scholar] [CrossRef]
- Shabaev, V.M.; Tupitsyn, I.I.; Pachucki, K.; Plunien, G.; Yerokhin, V.A. Radiative and correlation effects on the parity-nonconserving transition amplitude in heavy alkali-metal atoms. Phys. Rev. A 2005, 72, 062105. [Google Scholar] [CrossRef] [Green Version]
- Latter, R. Atomic Energy Levels for the Thomas-Fermi and Thomas-Fermi-Dirac Potential. Phys. Rev. 1955, 99, 510–519. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, A.H.; Vosko, S.H. A relativistic density functional formalism. J. Phys. Solid State Phys. 1979, 12, 2977–2990. [Google Scholar] [CrossRef]
- Weber, G.; Herdrich, M.O.; DuBois, R.D.; Hillenbrand, P.M.; Beyer, H.; Bozyk, L.; Gassner, T.; Grisenti, R.E.; Hagmann, S.; Litvinov, Y.A.; et al. Total projectile electron loss cross sections of U28+ ions in collisions with gaseous targets ranging from hydrogen to krypton. Phys. Rev. ST Accel. Beams 2015, 18, 034403. [Google Scholar] [CrossRef] [Green Version]
- Hillenbrand, P.M.; Hagmann, S.; Monti, J.M.; Rivarola, R.D.; Blumenhagen, K.H.; Brandau, C.; Chen, W.; DuBois, R.D.; Gumberidze, A.; Guo, D.L.; et al. Electron emission spectra of U28+-ions colliding with gaseous targets. J. Phys. Conf. Ser. 2015, 635, 022049. [Google Scholar] [CrossRef]
- Hillenbrand, P.M.; Hagmann, S.; Monti, J.M.; Rivarola, R.D.; Blumenhagen, K.H.; Brandau, C.; Chen, W.; DuBois, R.D.; Gumberidze, A.; Guo, D.L.; et al. Strong asymmetry of the electron-loss-to-continuum cusp of multielectron U28+ projectiles in near-relativistic collisions with gaseous targets. Phys. Rev. A 2016, 93, 042709. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bondarev, A.I.; Kozhedub, Y.S.; Tupitsyn, I.I.; Shabaev, V.M.; Plunien, G. Calculations of Electron Loss to Continuum in Collisions of Li- and Be-Like Uranium Ions with Nitrogen Targets. Atoms 2020, 8, 89. https://doi.org/10.3390/atoms8040089
Bondarev AI, Kozhedub YS, Tupitsyn II, Shabaev VM, Plunien G. Calculations of Electron Loss to Continuum in Collisions of Li- and Be-Like Uranium Ions with Nitrogen Targets. Atoms. 2020; 8(4):89. https://doi.org/10.3390/atoms8040089
Chicago/Turabian StyleBondarev, Andrey I., Yury S. Kozhedub, Ilya I. Tupitsyn, Vladimir M. Shabaev, and Günter Plunien. 2020. "Calculations of Electron Loss to Continuum in Collisions of Li- and Be-Like Uranium Ions with Nitrogen Targets" Atoms 8, no. 4: 89. https://doi.org/10.3390/atoms8040089
APA StyleBondarev, A. I., Kozhedub, Y. S., Tupitsyn, I. I., Shabaev, V. M., & Plunien, G. (2020). Calculations of Electron Loss to Continuum in Collisions of Li- and Be-Like Uranium Ions with Nitrogen Targets. Atoms, 8(4), 89. https://doi.org/10.3390/atoms8040089