Radiative Cascade Repopulation of 1s2s2p 4P States Formed by Single Electron Capture in 2–18 MeV Collisions of C4+ (1s2s 3S) with He
Abstract
:1. Introduction
2. Mathematical Description of Radiative Cascade Feeding
2.1. Definitions—The Cascade Rate Equation
2.2. Time-Dependence of Level Populations and Cascade Feeding Orders
2.3. Final Level Populations
2.4. X-ray and Auger Electron Emission Rates
2.5. The Cascade Matrix Formulation
3. Calculations of and SEC Populations Including Cascade Repopulation
3.1. Decay Rates and Radiative Branching Ratios for C States with and
3.2. Cascade Feeding Considerations
3.3. Initial State Populations
4. Results and Discussion
4.1. Cascade Enhancement of the Level Population and Contributing Cascade Orders
4.2. Spin Statistics—Ratio R of to Cross Sections
4.3. Comparison to Older Cascade Calculations on the C He Collision System
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Beiersdorfer, P. Laboratory X-ray Astrophysics. Annu. Rev. Astron. Astrophys. 2003, 41, 343–390. [Google Scholar] [CrossRef]
- Shevelko, V.; Tawara, H. (Eds.) Atomic Processes in Basic and Applied Physics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2012. [Google Scholar]
- Osterbrock, D.E.; Ferland, G.J. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei; University Science Books: Mill Valley, CA, USA, 2006. [Google Scholar]
- Pradhan, A.K.; Nahar, S.N. Atomic Astrophysics and Spectroscopy; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Bureyeva, L.A.; Lisitsa, V.S.; Namba, C.; Shuvaev, D.A. Radiative cascade following dielectronic recombination. J. Phys. B 2002, 35, 2505–2514. [Google Scholar] [CrossRef]
- Cumbee, R.S.; Mullen, P.D.; Lyons, D.; Shelton, R.L.; Fogle, M.; Schultz, D.R.; Stancil, P.C. Charge Exchange X-ray Emission due to Highly Charged Ion Collisions with H, He, and H2: Line Ratios for Heliospheric and Interstellar Applications. Astrophys. J. 2017, 852, 7. [Google Scholar] [CrossRef]
- Fritzsche, S. A fresh computational approach to atomic structures, processes and cascades. Comput. Phys. Commun. 2019, 240, 1–14. [Google Scholar] [CrossRef]
- Hahn, Y.; Lagattuta, K.J. Dielectronic recombination and related resonance processes. Phys. Rep. 1988, 166, 195–268. [Google Scholar] [CrossRef]
- Pradhan, A.K. Recombination-cascade X-ray spectra of highly charged helium-like ions. Astrophys. J. 1985, 288, 824–830. [Google Scholar] [CrossRef]
- Kabachnik, N.M.; Fritzsche, S.; Grum-Grzhimailo, A.N.; Meyer, M.; Ueda, K. Coherence and correlations in photoinduced Auger and fluorescence cascades in atoms. Phys. Rep. 2007, 451, 155–233. [Google Scholar] [CrossRef]
- Loch, S.D.; Pindzola, M.S.; Ballance, C.P.; Griffin, D.C. The effects of radiative cascades on the X-ray diagnostic lines of Fe16+. J. Phys. B 2006, 39, 85–104. [Google Scholar] [CrossRef] [Green Version]
- Mirakhmedov, M.N.; Parilis, E.S. Auger and X-ray cascades following inner-shell ionisation. J. Phys. B 1988, 21, 795–804. [Google Scholar] [CrossRef]
- Pepino, R.; Kharchenko, V.; Dalgarno, A.; Lallement, R. Spectra of the X-ray Emission Induced in the Interaction between the Solar Wind and the Heliospheric Gas. Astrophys. J. 2004, 617, 1347–1352. [Google Scholar] [CrossRef]
- Trassinelli, M.; Prigent, C.; Lamour, E.; Mezdari, F.; Mérot, J.; Reuschl, R.; Rozet, J.P.; Steydli, S.; Vernhet, D. Investigation of slow collisions for (quasi) symmetric heavy systems: What can be extracted from high resolution X-ray spectra. J. Phys. B 2012, 45, 085202. [Google Scholar] [CrossRef]
- Tawara, H.; Richard, P.; Safronova, U.I.; Stancil, P.C. K X-ray production in H-like Si13+, S15+, and Ar17+ ions colliding with various atom and molecule gas targets at low collision energies. Phys. Rev. A 2001, 64, 042712. [Google Scholar] [CrossRef]
- Tawara, H.; Richard, P.; Safronova, U.I.; Stancil, P.C. Erratum. Phys. Rev. A 2002, 65, 059901. [Google Scholar] [CrossRef]
- Astner, G.; Curtis, L.J.; Liljeby, L.; Mannervik, S.; Martinson, I. A high precision beam-foil meanlife measurement of the 1s3p1P level in He I. Zeitschrift Phys. A 1976, 279, 1–6. [Google Scholar] [CrossRef]
- Träbert, E. Beam–foil spectroscopy—Quo vadis? Physica Scr. 2008, 78, 038103. [Google Scholar] [CrossRef]
- Curtis, L.J. Beam Foil Spectroscopy; Bashkin, S., Ed.; Springer: Berlin, Germany, 1976; p. 63. [Google Scholar]
- Charalambidis, D.; Brenn, R.; Koulen, K.J. Transition rates of 1s2s2p 4 states of Li-like ions (Z = 8, 7, 6). Phys. Rev. A 1989, 40, 2359–2364. [Google Scholar] [CrossRef]
- Träbert, E. Radiative-Lifetime measurements on highly charged Ions. In Accelerator-Based Atomic Physics: Techniques and Applications; Shafroth, S.M., Austin, J.C., Eds.; AIP: Woodbury, NY, USA, 1997; pp. 567–607, Chapter 17. [Google Scholar]
- Träbert, E. In pursuit of highly accurate atomic lifetime measurements of multiply charged ions. J. Phys. B 2010, 43, 074034. [Google Scholar] [CrossRef] [Green Version]
- Martinson, I. Mean life studies in light atoms. Nucl. Instrum. Methods 1970, 90, 81–84. [Google Scholar] [CrossRef]
- Schneider, D.; Bruch, R.; Schwarz, W.H.E.; Chang, T.C.; Moore, C.F. Identifications of Auger spectra from 2-MeV foil-excited carbon ions. Phys. Rev. A 1977, 15, 926–934. [Google Scholar] [CrossRef]
- Sellin, I.A.; Pegg, D.J.; Brown, M.; Smith, W.W.; Donnally, B. Spectra of Autoionization Electrons Emitted by Fast, Metastable Beams of Highly Stripped Oxygen and Fluorine Ions. Phys. Rev. Lett. 1971, 27, 1108–1111. [Google Scholar] [CrossRef]
- Donnally, B.; Smith, W.W.; Pegg, D.J.; Brown, M.; Sellin, I.A. Lifetimes of the Metastable Auto-Ionizing (1s2s2p)4P5/2 States of Lithiumlike F6+ and O5+ Ions. Phys. Rev. A 1971, 4, 122–125. [Google Scholar] [CrossRef]
- Berry, H.G.; Pinnington, E.H.; Subtil, J.L. Energies and Mean Lives of Doubly Excited Terms in Lithium. J. Opt. Soc. Am. 1972, 62, 767–771. [Google Scholar] [CrossRef]
- Sellin, I.A.; Pegg, D.J.; Griffin, P.M.; Smith, W.W. Metastable Autoionizing States of Highly Excited Heavy Ions. Phys. Rev. Lett. 1972, 28, 1229–1232. [Google Scholar] [CrossRef]
- Mannervik, S. Optical studies of multiply excited states. Physica Scr. 1989, 40, 28–52. [Google Scholar] [CrossRef]
- Madesis, I.; Laoutaris, A.; Zouros, T.J.M.; Benis, E.P.; Gao, J.W.; Dubois, A. Pauli Shielding and Breakdown of Spin Statistics in Multielectron Multi-Open-Shell Dynamical Atomic Systems. Phys. Rev. Lett. 2020, 124, 113401. [Google Scholar] [CrossRef]
- Tanis, J.A.; Landers, A.L.; Pole, D.J.; Alnaser, A.S.; Hossain, S.; Kirchner, T. Evidence for Pauli Exchange Leading to Excited-State Enhancement in Electron Transfer. Phys. Rev. Lett. 2004, 92, 133201. [Google Scholar] [CrossRef] [Green Version]
- Tanis, J.A.; Landers, A.L.; Pole, D.J.; Alnaser, A.S.; Hossain, S.; Kirchner, T. Erratum. Phys. Rev. Lett. 2006, 96, 019901. [Google Scholar] [CrossRef]
- Zouros, T.J.M.; Sulik, B.; Gulyás, L.; Tökési, K. Selective enhancement of 1s2s2p 4PJ metastable states populated by cascades in single-electron transfer collisions of F7+ (1s2/1s2s 3S) ions with He and H2 targets. Phys. Rev. A 2008, 77, 050701. [Google Scholar] [CrossRef]
- Strohschein, D.; Röhrbein, D.; Kirchner, T.; Fritzsche, S.; Baran, J.; Tanis, J.A. Nonstatistical enhancement of the 1s2s2p 4P state in electron transfer in 0.5–1.0-MeV/u C4,5+ + He and Ne collisions. Phys. Rev. A 2008, 77, 022706. [Google Scholar] [CrossRef]
- Röhrbein, D.; Kirchner, T.; Fritzsche, S. Role of cascade and Auger effects in the enhanced population of the C3+ (1s2s2p 4P) states following single-electron capture in C4+ (1s2s 3S)-He collisions. Phys. Rev. A 2010, 81, 042701. [Google Scholar] [CrossRef]
- Benis, E.P.; Zouros, T.J.M.; Gorczyca, T.W.; González, A.D.; Richard, P. Elastic resonant and nonresonant differential scattering of quasifree electrons from B4+(1s) and B3+(1s2) ions. Phys. Rev. A 2004, 69, 052718. [Google Scholar] [CrossRef]
- Benis, E.P.; Zouros, T.J.M.; Gorczyca, T.W.; González, A.D.; Richard, P. Erratum. Phys. Rev. A 2006, 73, 029901. [Google Scholar] [CrossRef]
- Curtis, L.J. A Diagrammatic Mnemonic for Calculation of Cascading Level Populations. Am. J. Phys. 1968, 36, 1123–1125. [Google Scholar] [CrossRef]
- Cowan, R.D. The Theory of Atomic Structure and Spectra; University of California Press: Berkeley, CA, USA, 1981. [Google Scholar]
- Shiina, Y.; Kinoshita, R.; Funada, S.; Matsuda, M.; Imai, M.; Kawatsura, K.; Sataka, M.; Sasa, K.; Tomita, S. Measurement of Auger electrons emitted through Coster–Kronig transitions under irradiation of fast ions. Nucl. Instrum. Methods Phys. Res. Sect. B 2019, 460, 30–33. [Google Scholar] [CrossRef]
- Badnell, N.R.; Pindzola, M.S.; Griffin, D.C. Dielectronic recombination from the ground and excited states of C4+ and O6+. Phys. Rev. A 1990, 41, 2422–2428. [Google Scholar] [CrossRef]
- Stolterfoht, N. High resolution Auger spectroscopy in energetic ion atom collisions. Phys. Rep. 1987, 146, 315–424. [Google Scholar] [CrossRef]
- Benis, E.P.; Zouros, T.J.M. Determination of the 1s2ℓ2ℓ′ state production ratios 4Po/2P, 2D/2P and 2P+/2P− from fast (1s2, 1s2s 3S) mixed-state He-like ion beams in collisions with H2 targets. J. Phys. B 2016, 49, 235202. [Google Scholar] [CrossRef]
- Mack, M.; Niehaus, A. Radiative and Auger decay channels in K-Shell excited Li-like ions (Z = 6–8). Nucl. Instrum. Methods Phys. Res. Sect. B 1987, 23, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Younger, S.M.; Wiese, W.L. Theoretical simulation of beam-foil decay curves for resonance transitions of heavy ions. Phys. Rev. A 1978, 17, 1944–1955. [Google Scholar] [CrossRef]
- Zouros, T.J.M.; Lee, D.H. Zero Degree Auger Electron Spectroscopy of Projectile Ions. In Accelerator-Based Atomic Physics: Techniques and Applications; Shafroth, S.M., Austin, J.C., Eds.; AIP: Woodbury, NY, USA, 1997; pp. 426–479, Chapter 13. [Google Scholar]
- Rigazio, M.; Kharchenko, V.; Dalgarno, A. X-ray emission spectra induced by hydrogenic ions in charge transfer collisions. Phys. Rev. A 2002, 66, 064701. [Google Scholar] [CrossRef]
- Heckmann, P.H.; Träbert, E.; Bashkin, S. Introduction to the Spectroscopy of Atoms; North-Holland: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Träbert, E. E1-forbidden transition rates in ions of astrophysical interest. Physica Scr. 2014, 89, 114003. [Google Scholar] [CrossRef]
- Cheng, K.T.; Kim, Y.-K.; Desclaux, J.P. Electric dipole, quadrupole, and magnetic dipole transition probabilities of ions isoelectronic to the first-row atoms, Li through F. At. Data Nucl. Data Tables 1979, 24, 111–189. [Google Scholar] [CrossRef]
- Chen, M.H. Dielectronic satellite spectra for He-like ions. At. Data Nucl. Data Tables 1986, 34, 301–356. [Google Scholar] [CrossRef]
- Vainshtein, L.A.; Safronova, U.I. Dielectronic satellite spectra for highly charged H-like ions (2l′3l′′ − 1s2l,2l′3l′′ − 1s3l) and He-like ions (1s2l′3l′′ − 1s22l,1s2l′3l′′ − 1s23l) with Z = 6 − 33. At. Data Nucl. Data Tables 1980, 25, 311–385. [Google Scholar] [CrossRef]
- Safronova, U.I.; Bruch, R. Transition and Auger Energies of Li-like ions (1s2lnl’ configurations). Physica Scr. 1994, 50, 45. [Google Scholar] [CrossRef]
- Goryaev, F.F.; Vainshtein, L.A.; Urnov, A.M. Atomic data for doubly-excited states 2lnl′ of He-like ions and 1s2lnl′ of Li-like ions with Z = 6 − 36 and n = 2, 3. At. Data Nucl. Data Tables 2017, 113, 117–257. [Google Scholar] [CrossRef]
- Davis, B.F.; Chung, K.T. Spin-induced autoinization and radiative transition rates for the (1s2s2p) 4 states in lithiumlike ions. Phys. Rev. A 1989, 39, 3942–3955. [Google Scholar] [CrossRef]
- Benis, E.P.; Doukas, S.; Zouros, T.J.M.; Indelicato, P.; Parente, F.; Martins, C.; Santos, J.P.; Marques, J.P. Evaluation of the effective solid angle of a hemispherical deflector analyser with injection lens for metastable Auger projectile states. Nucl. Instrum. Methods Phys. Res. Sect. B 2015, 365, 457–461. [Google Scholar] [CrossRef]
- Santos, J.P.; Parente, F.; Martins, M.C.; Indelicato, P.; Benis, E.P.; Zouros, T.J.M.; Marques, J.P. Radiative transition rates of 1s2s(3S)3p levels for Li-like ions with 5 ≤ Z ≤ 10. Nucl. Instrum. Methods Phys. Res. Sect. B 2017, 408, 100–102. [Google Scholar] [CrossRef]
- Schneider, D.; Bruch, R.; Butscher, W.; Schwarz, W.H.E. Prompt and time-delayed electron decay-in-flight spectra of gas-excited carbon ions. Phys. Rev. A 1981, 24, 1223–1236. [Google Scholar] [CrossRef]
- Mann, R. High-resolution K and L Auger electron spectra induced by single- and double-electron capture from H2, He, and Xe atoms to C4+ and C5+ ions at 10–100-keV energies. Phys. Rev. A 1987, 35, 4988–5004. [Google Scholar] [CrossRef] [PubMed]
- Deveney, E.F.; Kessel, Q.C.; Fuller, R.J.; Reaves, M.P.; Bellantone, R.A.; Shafroth, S.M.; Jones, N. Projectile-Auger-electron spectra of C3+ following 12-MeV collisions with He targets. Phys. Rev. A 1993, 48, 2926–2933. [Google Scholar] [CrossRef] [PubMed]
- Blanke, J.H.; Heckmann, P.H.; Träbert, E. Beam-Foil Lifetimes of Doubly-Excited n = 3 States of Three-Electron Ions C3+–F6+. Physica Scr. 1985, 32, 509. [Google Scholar] [CrossRef]
- Blanke, J.H.; Heckmann, P.H.; Träbert, E.; Hucke, R. Quartet Term Systems of C3+-F6+ Ions. Physica Scr. 1987, 35, 780–786. [Google Scholar] [CrossRef]
- Laughlin, C. Calculations on transitions in singly- and doubly-excited C IV. Zeitschrift Phys. D 1988, 9, 273–277. [Google Scholar] [CrossRef]
- Kramida, A. Corrigendum to “Configuration interactions of class 11: An error in Cowan’s atomic structure theory” [Comput. Phys. Commun. 215 (2017) 47–48]. Comput. Phys. Commun. 2018, 232, 266–267. [Google Scholar] [CrossRef]
- Sisourat, N.; Pilskog, I.; Dubois, A. Non perturbative treatment of multielectron processes in ion-molecule scattering: Application to He2+-H2 collisions. Phys. Rev. A 2011, 84, 052722. [Google Scholar] [CrossRef]
- Gao, J.W.; Wu, Y.; Wang, J.G.; Sisourat, N.; Dubois, A. State-selective electron transfer in He++He collisions at intermediate energies. Phys. Rev. A 2018, 97, 052709. [Google Scholar] [CrossRef]
- Sisourat, N.; Dubois, A. Semiclassical close-coupling approaches. In Ion-Atom Collision—The Few-Body Problem in Dynamic Systems; Schultz, M., Ed.; de Gruyter: Berlin, Germany; Boston, MA, USA, 2019; pp. 157–178. [Google Scholar]
- Madesis, I.; Laoutaris, A.; Zouros, T.J.M.; Nanos, S.; Benis, E.P. Projectile electron spectroscopy and new answers to old questions: Latest results at the new atomic physics beamline in Demokritos, Athens. In State-of-the-Art Reviews on Energetic Ion-Atom and Ion-Molecule Collisions; Interdisciplinary Research on Particle Collisions and Quantitative Spectroscopy; Belkić, D., Bray, I., Kadyrov, A., Eds.; World Scientific: Singapore, 2019; Volume 2, pp. 1–31, Chapter 1. [Google Scholar]
1 | It is assumed that any populating channel due to autoionization is negligible—this is justified for the system studied here, i.e., energetic collisions of C + He. In principle, such an autoionizing feeding channel would require the production of Be-like states of the type C by low probability double capture events, which could then autoionize to the C states considered here and in Ref. [35]. This is not known to happen, but could happen due to Coster-Kronig transitions for other carbon transitions such as C for [40] or C for [41]. |
2 | The transition rates are related to the corresponding widths . It is important not to confuse the decay line width , which is the sum of the widths of both initial and final states, , with the natural width of a level which is related to its lifetime through the uncertainty relationship, or . |
3 | At collision energies below 0.3 MeV/u, even higher order cascades might need to be considered since the value of n at which SEC is maximized moves from for MeV/u collisions to higher values 3–5 for keV/u collisions [44]. |
4 | See [30] Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.124.113401 for additional details on the theoretical 3eAOCC approach. |
5 | New calculations (this work): 29 configurations consisting of . Previous calculations ([30]): 20 configurations consisting of . |
i | Initial | j | Final | RBR— | ||||
---|---|---|---|---|---|---|---|---|
# | # | (Equation (2)) | (Equation (4)) | (Equation (5)) | ||||
1 | - | - | - | 3.39 × | 3.401 × | - | 0.996 | |
2 | - | - | - | 1.37 × | 1.374 × | - | 0.997 | |
3 | - | - | - | 8.26 × | 8.239 × | - | 0.998 | |
4 | 1 | 3.038 × | - | 1.820 × | 0.167 | - | ||
4 | 2 | 6.071 × | - | 0.333 | - | |||
4 | 3 | 9.095 × | - | 0.500 | - | |||
5 | 4 | 8.643 × | 2.730 × | 1.492 × | 0.579 | 0.183 | ||
6 | 4 | 1.733 × | 1.380 × | 3.886 × | 0.446 | 0.355 | ||
7 | 4 | 2.611 × | - | 3.615 × | 0.722 | - | ||
8 | 1 | 4.661 × | - | 5.595 × | 0.833 | - | ||
8 | 2 | 9.316 × | - | 0.167 | - | |||
9 | 1 | 4.661 × | 3.240 × | 1.119 × | 0.417 | - | ||
9 | 2 | 5.962 × | - | 0.533 | - | |||
9 | 3 | 5.584 × | - | 0.050 | - | |||
10 | 2 | 1.174 × | 7.590 × | 1.677 × | 0.700 | - | ||
10 | 3 | 5.026 × | - | 0.300 | - | |||
11 | 3 | 2.234 × | - | 2.235 × | 1.000 | - | ||
12 | 2 | 1.875 × | - | 1.051 × | 0.178 | - | ||
12 | 3 | 2.810 × | - | 0.267 | - | |||
12 | 6 | 1.630 × | - | 0.155 | - | |||
12 | 7 | 2.442 × | - | 0.232 | - | |||
13 | 4 | 1.214 × | 1.280 × | 1.630 × | 0.745 | - | ||
13 | 8 | 1.866 × | - | 0.114 | - | |||
13 | 9 | 1.866 × | - | 0.114 | - | |||
14 | 4 | 2.427 × | 6.460 × | 3.302 × | 0.735 | - | ||
14 | 10 | 4.703 × | - | 0.142 | - | |||
15 | 4 | 3.642 × | - | 4.850 × | 0.751 | - | ||
15 | 11 | 8.960 × | - | 0.185 | - | |||
16 | 1 | 1.614 × | - | 2.314 × | 0.698 | - | ||
16 | 2 | 3.225 × | - | 0.139 | - | |||
16 | 5 | 3.141 × | - | 0.136 | - | |||
17 | 1 | 1.614 × | 1.560 × | 4.626 × | 0.349 | - | ||
17 | 2 | 2.064 × | - | 0.446 | - | |||
18 | 2 | 4.064 × | 3.640 × | 6.936 × | 0.586 | - | ||
18 | 3 | 1.740 × | - | 0.251 | - | |||
18 | 6 | 7.911 × | - | 0.114 | - | |||
19 | 3 | 7.735 × | - | 9.243 × | 0.837 | - | ||
19 | 7 | 1.506 × | - | 0.163 | - | |||
20 | 8 | 1.153 × | - | 1.647 × | 0.700 | - | ||
20 | 9 | 4.614 × | - | 0.280 | - | |||
21 | 9 | 1.845 × | 7.060 × | 2.471 × | 0.747 | - | ||
21 | 10 | 6.025 × | - | 0.244 | - | |||
22 | 10 | 2.824 × | 1.290 × | 3.295 × | 0.857 | - | ||
22 | 11 | 4.706 × | - | 0.143 | - | |||
23 | 11 | 4.118 × | - | 4.118 × | 1.000 | - |
i | Initial | j | Final | RBR— | ||||
---|---|---|---|---|---|---|---|---|
# | # | (Equation (2)) | (Equation (4)) | (Equation (5)) | ||||
1 | - | - | - | 1.47 × | 1.52 × | - | 0.968 | |
2 | - | - | - | 1.43 × | 1.48 × | - | 0.967 | |
3 | - | - | - | 3.86 × | 3.87 × | - | 0.998 | |
4 | - | - | - | 3.86 × | 3.87 × | - | 0.998 | |
5 | 1 | 2.954 × | 2.380 × | 2.381 × | - | 1.00 | ||
5 | 2 | 5.795 × | - | |||||
5 | 3 | 1.734 × | - | |||||
5 | 4 | 3.482 × | - | |||||
6 | 3 | 2.084 × | 1.380 × | 1.382 × | - | 0.999 | ||
7 | 6 | 1.561 × | 5.130 × | 5.494 × | - | 0.934 | ||
8 | 5 | 3.107 × | 1.030 × | 1.103 × | - | 0.934 | ||
9 | 6 | 4.573 × | 1.880 × | 1.893 × | - | 0.993 | ||
10 | 6 | 9.235 × | 3.760 × | 3.785 × | - | 0.993 | ||
11 | 3 | 4.768 × | 5.690 × | 6.751 × | 0.071 | 0.843 | ||
12 | 4 | 8.646 × | 8.540 × | 1.013 × | 0.085 | 0.843 | ||
13 | 1 | 4.480 × | 1.830 × | 1.937 × | 0.023 | 0.945 | ||
14 | 2 | 8.120 × | 2.740 × | 2.901 × | 0.028 | 0.945 | ||
15 | 4 | 1.716 × | 9.530 × | 9.536 × | - | 0.999 | ||
16 | 4 | 1.920 × | 4.780 × | 4.792 × | - | 0.997 | ||
17 | 5 | 3.251 × | 4.020 × | 4.369 × | - | 0.920 | ||
18 | 6 | 2.667 × | 1.510 × | 1.519 × | - | 0.994 | ||
19 | 1 | 1.865 × | 2.130 × | 2.627 × | 0.071 | 0.811 | ||
20 | 4 | 2.507 × | 3.190 × | 3.936 × | 0.064 | 0.810 | ||
21 | 3 | 2.477 × | 1.040 × | 1.084 × | 0.022 | 0.960 | ||
22 | 4 | 4.442 × | 1.550 × | 1.615 × | 0.028 | 0.960 | ||
23 | 11 | 2.081 × | 5.170 × | 2.835 × | 0.734 | 0.182 | ||
24 | 12 | 2.973 × | 6.890 × | 3.780 × | 0.787 | 0.182 | ||
25 | 13 | 2.241 × | 6.550 × | 3.186 × | 0.703 | 0.206 | ||
26 | 14 | 3.201 × | 8.730 × | 4.247 × | 0.754 | 0.206 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zouros, T.J.M.; Nikolaou, S.; Madesis, I.; Laoutaris, A.; Nanos, S.; Dubois, A.; Benis, E.P. Radiative Cascade Repopulation of 1s2s2p 4P States Formed by Single Electron Capture in 2–18 MeV Collisions of C4+ (1s2s 3S) with He. Atoms 2020, 8, 61. https://doi.org/10.3390/atoms8030061
Zouros TJM, Nikolaou S, Madesis I, Laoutaris A, Nanos S, Dubois A, Benis EP. Radiative Cascade Repopulation of 1s2s2p 4P States Formed by Single Electron Capture in 2–18 MeV Collisions of C4+ (1s2s 3S) with He. Atoms. 2020; 8(3):61. https://doi.org/10.3390/atoms8030061
Chicago/Turabian StyleZouros, Theo J. M., Sofoklis Nikolaou, Ioannis Madesis, Angelos Laoutaris, Stefanos Nanos, Alain Dubois, and Emmanouil P. Benis. 2020. "Radiative Cascade Repopulation of 1s2s2p 4P States Formed by Single Electron Capture in 2–18 MeV Collisions of C4+ (1s2s 3S) with He" Atoms 8, no. 3: 61. https://doi.org/10.3390/atoms8030061
APA StyleZouros, T. J. M., Nikolaou, S., Madesis, I., Laoutaris, A., Nanos, S., Dubois, A., & Benis, E. P. (2020). Radiative Cascade Repopulation of 1s2s2p 4P States Formed by Single Electron Capture in 2–18 MeV Collisions of C4+ (1s2s 3S) with He. Atoms, 8(3), 61. https://doi.org/10.3390/atoms8030061