#
Inner-Shell Photodetachment of Na^{−} Using R-Matrix Methods

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Methods

## 3. Results and Discussion

## 4. Summary and Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Buckman, S.J.; Clark, C.W. Atomic negative-ion resonances. Rev. Mod. Phys.
**1994**, 66, 539–655. [Google Scholar] [CrossRef] - Ivanov, V.K. Many-body effects in negative ion photodetachment. J. Phys. B At. Molec. Opt. Phys.
**1999**, 32, R67–R101. [Google Scholar] [CrossRef] - Andersen, T. Atomic negative ions: Structure, dynamics and collisions. Phys. Rep.
**2004**, 394, 157–313. [Google Scholar] [CrossRef] - Gorczyca, T.W. Inner-shell photodetachment dynamics. Radiat. Phys. Chem.
**2004**, 70, 407–415. [Google Scholar] [CrossRef] - Pegg, D. Photodetachment. In Springer Handbook of Atomic, Molecular, and Optical Physics; Springer: Berlin/Heidelberg, Germany, 2006; pp. 891–899. [Google Scholar]
- Froese Fischer, C. A general multi-configuration Hartree-Fock program. Comput. Phys. Commun.
**1991**, 64, 431–454. [Google Scholar] [CrossRef] - Kim, D.S.; Zhou, H.L.; Manson, S.T. Photodetachment of the 1s2s2p
^{4}P state of He^{−}from threshold to 100 eV. Phys. Rev. A**1997**, 55, 414–425. [Google Scholar] [CrossRef] - Kjeldsen, H.; Andersen, P.; Folkmann, F.; Kristensen, B.; Andersen, T. Inner-shell photodetachment of Li
^{−}. J. Phys. B At. Molec. Opt. Phys.**2001**, 34, L353–L357. [Google Scholar] [CrossRef] - Zhou, H.L.; Manson, S.T.; Voky, L.; Feautrier, N.; Hibbert, A. Dramatic Structure in the Photodetachment of Inner Shells of Negative Ions: Li
^{−}. Phys. Rev. Lett.**2001**, 87, 023001. [Google Scholar] [CrossRef] - Berrah, N.; Bozek, J.D.; Wills, A.A.; Turri, G.; Zhou, H.L.; Manson, S.T.; Akerman, G.; Rude, B.; Gibson, N.D.; Walter, C.W.; et al. K-Shell Photodetachment of Li
^{−}: Experiment and Theory. Phys. Rev. Lett.**2001**, 87, 253002. [Google Scholar] [CrossRef] [Green Version] - Berrah, N.; Bozek, J.D.; Turri, G.; Akerman, G.; Rude, B.; Zhou, H.L.; Manson, S.T. K-Shell Photodetachment of He
^{−}: Experiment and Theory. Phys. Rev. A**2002**, 88, 093001. [Google Scholar] - Zatsarinny, O.; Gorczyca, T.W.; Froese Fischer, C. Photodetachment of He
^{−}1s2s2p^{4}P^{o}in the region of the 1s threshold. J. Phys. B At. Molec. Opt. Phys.**2002**, 35, 4161–4178. [Google Scholar] [CrossRef] - Sanz-Vicario, J.L.; Lindroth, E. Resonant triply excited states in the photodetachment of He
^{−}1s2s2p^{4}P^{o}. Phys. Rev. A**2002**, 65, 060703. [Google Scholar] [CrossRef] - Sanz-Vicario, J.L.; Lindroth, E.; Brandefelt, N. Photodetachment of negative helium ions below and above the 1s ionization threshold: A complex scaled configuration-interaction approach. Phys. Rev. A
**2002**, 66, 052713. [Google Scholar] [CrossRef] - Gorczyca, T.W.; Zatsarinny, O.; Zhou, H.L.; Manson, S.T.; Felfli, Z.; Msezane, A.Z. Postcollision recapture in the K-shell photodetachment of Li
^{−}. Phys. Rev. A**2003**, 68, 050703. [Google Scholar] [CrossRef] - Bilodeau, R.C.; Bozek, J.D.; Ackerman, G.D.; Aguilar, A.; Berrah, N. Photodetachment of He
^{−}near the 1s threshold: Absolute cross-section measurements and postcollision interactions. Phys. Rev. A**2006**, 73, 034701. [Google Scholar] [CrossRef] - Dumitriu, I.; Bilodeau, R.C.; Gorczyca, T.W.; Walter, C.W.; Gibson, N.D.; Rolles, D.; Pešić, Z.D.; Aguilar, A.; Berrah, N. Inner-shell photodetachment from N i
^{−}: A giant Feshbach resonance. Phys. Rev. A**2017**, 96, 023405. [Google Scholar] [CrossRef] [Green Version] - Perry-Sassmannshausen, A.; Buhr, T.; Borovik, A.; Martins, M.; Reinwardt, S.; Ricz, S.; Stock, S.O.; Trinter, F.; Müller, A.; Fritzsche, S.; et al. Multiple Photodetachment of Carbon Anions via Single and Double Core-Hole Creation. Phys. Rev. Lett.
**2020**, 124, 083203. [Google Scholar] [CrossRef] [Green Version] - Covington, A.M.; Aguilar, A.; Davis, V.T.; Alvarez, I.; Bryant, H.C.; Cisneros, C.; Halka, M.; Hanstorp, D.; Hinojosa, G.; Schlachter, A.S.; et al. Correlated processes in inner-shell photodetachment of the Na
^{−}ion. J. Phys. B At. Molec. Opt. Phys.**2001**, 34, L735–L740. [Google Scholar] [CrossRef] - Ivanov, V.K.; Yatsyshin, P.I. Resonances in the cross section of photodetachment of 2 p electrons from negative ions Na
^{−}. J. Tech. Phys.**2009**, 54, 7–12. [Google Scholar] [CrossRef] - Jose, J.; Pradhan, G.B.; Radojevic, V.; Manson, S.T.; Deshmukh, P.C. Inner Shell Photodetachment of Na- Using The Multi-Configuration Tamm-Dancoff Approximation. Pub. Astronom. Obs. Belgrade
**2010**, 89, 29–32. [Google Scholar] - Zhou, H.L.; Manson, S.T.; Hibbert, A.; Gorczyca, T.W. Inner-shell Photodetachment of Na
^{−}. Bull. Am. Phys. Soc.**2006**, 51, 151. [Google Scholar] - Hibbert, A. CIV3—A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths. Comput. Phys. Commun.
**1975**, 9, 141–172. [Google Scholar] [CrossRef] - Gorczyca, T.W.; Robicheaux, F.; Pindzola, M.S.; Griffin, D.C.; Badnell, N.R. Elimination of electron-ion pseudoresonances associated with approximate target wave functions. Phys. Rev. A
**1995**, 52, 3877–3888. [Google Scholar] [CrossRef] [PubMed] - Burke, P.G. R-Matrix Theory of Atomic Collisions; Springer: New York, NY, USA, 2011. [Google Scholar]
- Berrington, K.A.; Eissner, W.B.; Norrington, P.H. RMATRX1: Belfast atomic R-matrix codes. Comput. Phys. Commun.
**1995**, 92, 290–420. [Google Scholar] [CrossRef] - Ralchenko, Y.; Kramida, A.E.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (ver. 4.1.0). National Institute of Standards and Technology. 2011. Available online: http://physics.nist.gov/asd (accessed on 1 April 2020).
- Andersen, T.; Haugen, H.K.; Hotop, H. Binding Energies in Atomic Negative Ions: III. J. Phys. Chem. Ref. Data
**1999**, 28, 1511–1533. [Google Scholar] [CrossRef] - Starace, A.F. Theory of Atomic Photoionization. Handbuch Physik
**1982**, 31, 1–121. [Google Scholar] - Gorczyca, T.W.; Manson, S.T. Outer-Shell Photodetachment of Li
^{−}Near Inner-Shell Thresholds. J. Phys. B At. Molec. Opt. Phys.**2020**, 53, 195203. [Google Scholar] [CrossRef] - Russek, A.; Mehlhorn, W. Post-collision interaction and the Auger lineshape. J. Phys. B At. Molec. Phys.
**1986**, 19, 911–927. [Google Scholar] [CrossRef] - Kuchiev, M.Y.; Sheinerman, S.A. The post collision interaction in the inner-shell photoionisation of Ar and Xe. J. Phys. B At. Molec. Phys.
**1985**, 18, L551–L556. [Google Scholar] [CrossRef] - Cubaynes, D.; Voky, L.; Wuilleumier, F.J.; Rouvellou, B.; Hibbert, A.; Faucher, P.; Bizau, J.M.; Journel, L.; Saraph, H.E.; Bely-Dubau, F. Inner-shell photoionization of sodium: Experiment and theory. Phys. Rev. A
**1998**, 57, 4432–4451. [Google Scholar] [CrossRef]

**Figure 1.**Calculated R-matrix Na${}^{-}$ photodetachment cross sections compared to experiment [28]. The calculated inner-shell thresholds are shown as vertical black lines.

**Figure 2.**Present R-matrix Na photoionization cross sections compared to present R-matrix Na${}^{-}$ photodetachment cross sections, in length and velocity gauges. The calculated inner-shell thresholds are shown as vertical black lines.

**Figure 3.**Photodetachment of Na${}^{-}$ near the Feshbach resonance just above 36 eV. The calculated inner-shell thresholds are shown as vertical black lines.

Term State | R-Matrix (Ryd) | EXP (Ryd) |
---|---|---|

Na${}^{-}\phantom{\rule{0.166667em}{0ex}}2{p}^{6}3{s}^{2}$ | −0.0395 | −0.0403 |

$2{p}^{6}3s{(}^{2}S)$ | 0.00000 | 0.00000 |

$2{p}^{6}3p{(}^{2}P)$ | 0.15827 | 0.15462 |

$2{p}^{6}4s{(}^{2}S)$ | 0.23623 | 0.23456 |

$2{p}^{6}3d{(}^{2}D)$ | 0.26720 | 0.26584 |

$2{p}^{6}4p{(}^{2}P)$ | 0.27809 | 0.27585 |

$2{p}^{6}5S{(}^{2}S)$ | 0.30255 | |

$2{p}^{6}4d{(}^{2}D)$ | 0.31606 | 0.31483 |

$2{p}^{6}4f{(}^{2}F)$ | 0.31651 | 0.31518 |

⋮ | ||

Na${}^{+}\phantom{\rule{0.166667em}{0ex}}2{p}^{6}{(}^{1}s)$ | 0.37772 | |

⋮ | ||

$2{p}^{5}3{s}^{2}{(}^{2}P)$ | 2.26134 | 2.26550 |

$2{p}^{5}3s3p{(}^{2}D)$ | 2.47510 | 2.46049 |

$2{p}^{5}3s3p{(}^{2}P)$ | 2.47950 | 2.46751 |

$2{p}^{5}3s3p{(}^{2}S)$ | 2.50273 | 2.48991 |

$2{p}^{5}3s3p{(}^{2}S)$ | 2.58706 | 2.55864 |

$2{p}^{5}3s3p{(}^{2}D)$ | 2.58870 | 2.55624 |

⋮ |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gorczyca, T.W.; Zhou, H.-L.; Hibbert, A.; Hasoglu, M.F.; Manson, S.T.
Inner-Shell Photodetachment of Na^{−} Using R-Matrix Methods. *Atoms* **2020**, *8*, 60.
https://doi.org/10.3390/atoms8030060

**AMA Style**

Gorczyca TW, Zhou H-L, Hibbert A, Hasoglu MF, Manson ST.
Inner-Shell Photodetachment of Na^{−} Using R-Matrix Methods. *Atoms*. 2020; 8(3):60.
https://doi.org/10.3390/atoms8030060

**Chicago/Turabian Style**

Gorczyca, T. W., H.-L. Zhou, A. Hibbert, M. F. Hasoglu, and S. T. Manson.
2020. "Inner-Shell Photodetachment of Na^{−} Using R-Matrix Methods" *Atoms* 8, no. 3: 60.
https://doi.org/10.3390/atoms8030060