Analytical Results for the Three-Body Radiative Attachment Rate Coefficient, with Application to the Positive Antihydrogen Ion H+
Abstract
:1. Introduction
2. The Radiative Attachment cross Section
3. Evaluating Integrals
4. Doing the Integrals Last
5. Comparison with Numerical Integration
6. Discussion and Concluding Remarks
Funding
Conflicts of Interest
References and Note
- Maury, S. The Antiproton Decelerator: AD. Hyperfine Interactions 1997, 109, 43–52. [Google Scholar] [CrossRef]
- Amoretti, M.; et al. (ATHENA Collaboration). Production and detection of cold antihydrogen atoms. Nature 2002, 419, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Gabrielse, G.; et al. (ATRAP Collaboration). Background-Free Observation of Cold Antihydrogen with Field-Ionization Analysis of Its States. Phys. Rev. Lett. 2002, 89, 213401. [Google Scholar] [CrossRef] [Green Version]
- Enomoto, Y.; Kuroda, N.; Michishio, K.; Kim, C.H.; Higaki, H.; Nagata, Y.; Kanai, Y.; Torii, H.A.; Corradini, M.; Leali, N.; et al. Synthesis of Cold Antihydrogen in a Cusp Trap. Phys. Rev. Lett. 2010, 105, 243401. [Google Scholar] [CrossRef] [PubMed]
- Andresen, G.B.; et al. (ALPHA Collaboration). Trapped antihydrogen. Nature 2010, 468, 673–676. [Google Scholar] [CrossRef]
- Andresen, G.B.; et al. (ALPHA Collaboration). Search for trapped antihydrogen. Phys. Lett. B 2011, 695, 95–104. [Google Scholar] [CrossRef]
- Gabrielse, G.; et al. (ATRAP Collaboration). Trapped Antihydrogen in Its Ground State. Phys. Rev. Lett. 2012, 108, 113002. [Google Scholar] [CrossRef] [Green Version]
- Andresen, G.B.; et al. (ALPHA Collaboration). Confinement of antihydrogen for 1000 seconds. Nat. Phys. 2011, 7, 558–564. [Google Scholar]
- Amole, C.; et al. (ALPHA Collaboration). Resonant quantum transitions in trapped antihydrogen atoms. Nature 2012, 483, 439–443. [Google Scholar] [CrossRef] [Green Version]
- Amole, C.; et al. (ALPHA Collaboration). An experimental limit on the charge of antihydrogen. Nat. Commun. 2014, 5, 3955. [Google Scholar] [CrossRef] [Green Version]
- The ALPHA Collaboration; Charman, A.E. Description and first application of a new technique to measure the gravitational mass of antihydrogen. Nat. Commun. 2013, 4, 1875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walz, J.; Hansch, T.W. A Proposal to Measure Antimatter Gravity Using Ultracold Antihydrogen Atoms. Gen. Rel. Grav. 2004, 150, 561–570. [Google Scholar] [CrossRef]
- Perez, P.; Sacquin, Y. The GBAR experiment: Gravitational behaviour of antihydrogen at rest. Class. Quant. Grav. 2012, 87, 184008. [Google Scholar] [CrossRef]
- Van der Werf, D.P. The GBAR experiment. Int. J. Mod. Phys. Conf. Ser. 2014, 30, 1460263. [Google Scholar] [CrossRef] [Green Version]
- Keating, C.M.; Charlton, M.; Straton, J.C. On the production of the positive antihydrogen ion via radiative attachment. J. Phys. B At. Mol. Opt. Phys. 2014, 47, 225202. [Google Scholar] [CrossRef]
- Keating, C.M.; Pak, K.Y.; Straton, J.C. Producing the positive antihydrogen ion via radiative attachment. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 074002. [Google Scholar] [CrossRef]
- Ohmura, T.; Ohmura, H. Electron-Hydrogen Scattering at Low Energies. Phys. Rev. 1960, 118, 154. [Google Scholar] [CrossRef]
- Cann, N.M. An Accurate Treatment of Heliumlike Ions: Properties and Wavefu net ions. Ph.D. Thesis, Dalhousie University, Halifax, NS, Canada, 1993. [Google Scholar]
- Thakkar, A.J.; Smith, V.H. Compact and accurate integral-transform wave functions. I. The 11S state of the helium-like ions from H− through Mg10+. Phys. Rev. A 1977, 15, 1–15. [Google Scholar] [CrossRef]
- Bhatia, A.K. Hybrid theory of P-wave electron-Li2+ elastic scattering and photoabsorption in two-electron systems. Phys. Rev. A 2013, 87, 042705. [Google Scholar] [CrossRef]
- Keating, C.M. A Method for Achieving Analytic Formulas for Three Body Integrals Consisting of Powers and Exponentials in All Three Interparticle Hyllerass Coordinates. Master’s Thesis, Portland State University, Portland, OR, USA, 2015. [Google Scholar]
- Wildt, R. Electron Affinity in Astrophysics. Astrophys. J. 1938, 89, 295–301. [Google Scholar] [CrossRef]
- Wildt, R. Negative Ions of Hydrogen and the Opacity of Stellar Atmospheres. Astrophys. J. 1939, 90, 611. [Google Scholar] [CrossRef]
- Chandrasekhar, S. On the Continuous Absorption Coefficient of the Negative Hydrogen Ion. Astrophys. J. 1945, 102, 223–231. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; Elbert, D.D. On the Continuous Absorption Coefficient of the Negative Hydrogen Ion, V. Astrophys. J. 1958, 128, 633–635. [Google Scholar] [CrossRef]
- Zanstra, H. A simple approximate formula for the recombination coefficient of hydrogen. Observatory 1954, 74, 66. [Google Scholar]
- Geltman, S. The Bound-Free Absorption Coefficient of the Hydrogen Negative Ion. Astrophys. J. 1962, 136, 935–945. [Google Scholar] [CrossRef]
- Doughty, N.A.; Fraser, P.A.; McEachran, R.P. The bound-free absorption coefficient of the negative hydrogen ion. MNRAS 1966, 132, 255–266. [Google Scholar] [CrossRef] [Green Version]
- John, T.L.; Seaton, M.J. The Limiting Behaviour of the Absorption Cross Sections of the Negative Hydrogen Ion. MNRAS 1966, 133, 447–448. [Google Scholar] [CrossRef] [Green Version]
- Bell, K.L.; Kingston, A.E. The bound-free absorption coefficient of the negative hydrogen ion. Proc. Phys. Soc. 1967, 90, 895–899. [Google Scholar] [CrossRef]
- Matese, J.J.; Oberoi, R.S. Choosing Pseudostates in the Close-Coupling Formalism for the Electron—Atomic-Hydrogen System. Phys. Rev. A 1971, 4, 569–579. [Google Scholar] [CrossRef]
- Hyman, H.A.; Jacobs, V.L.; Burke, P.G. Photoionization of H− and He above the n=2 threshold. J. Phys. B At. Mol. Phys. 1972, 5, 2282–2291. [Google Scholar] [CrossRef]
- Ajmera, M.P.; Chung, K.T. Photodetachment of negative hydrogen ions. Phys. Rev. A 1975, 12, 475–479. [Google Scholar] [CrossRef]
- Broad, J.T.; Reinhardt, W.P. One- and two-electron photoejection from H−: A multichannel J-matrix calculation. Phys. Rev. A 1976, 14, 2159–2173. [Google Scholar] [CrossRef]
- Reed, K.J.; Zimmerman, A.H.; Andersen, H.C.; Brauman, J.I. Cross sections for photodetachment of electrons from negative ions near threshold. J. Chem. Phys. 1976, 64, 1368–1375. [Google Scholar] [CrossRef]
- Nascimento, M.A.C.; Goddard, W.A., III. The photodetachment cross section of the negative hydrogen ion. Phys. Rev. A 1977, 16, 1559–1567. [Google Scholar] [CrossRef]
- Stewart, A.L. A perturbation-variation study of photodetachment from H−. J. Phys. B At. Mol. Phys. 1978, 11, 3851–3861. [Google Scholar] [CrossRef]
- Daskhan, M.; Roy, K.; Ghosh, A.S. Photodetachment cross section of negative hydrogen. Indian J. Phys. 1979, 53B, 183–189. [Google Scholar] [CrossRef]
- Daskhan, M.; Ghosh, A.S. Photodetachment cross section of the negative hydrogen ion. Phys. Rev. A 1983, 28, 2767–2769. [Google Scholar] [CrossRef]
- Wishart, A.W. The bound-free photodetachment cross section of H−. J. Phys. B At. Mol. Phys. 1979, 12, 3511–3519. [Google Scholar] [CrossRef]
- Esaulov, V.A. Electron detachment from atomic negative ions. Ann. Phys. Fr. 1986, 11, 493–592. [Google Scholar] [CrossRef]
- Saha, H.P. Multiconfiguration Hartree-Fock calculation for the bound-free photodetachment cross section of H−. Phys. Rev. A 1988, 38, 4546–4551. [Google Scholar] [CrossRef] [PubMed]
- Venuti, M.; Decleva, P. Convergent multichannel continuum states by a general configuration interaction expansion in a B-spline basis: Application to H− photodetachment. J. Phys. B At. Mol. Opt. Phys. 1997, 30, 4839–4859. [Google Scholar] [CrossRef]
- Kuan, W.H.; Jiang, T.F.; Chung, K.T. Photodetachment of H−. Phys. Rev. A 1999, 60, 364–369. [Google Scholar] [CrossRef]
- Ivanov, V.K. Theoretical studies of photodetachment. Radiat. Phys. Chem. 2004, 70, 345–370. [Google Scholar] [CrossRef]
- Frolov, A.M. Theoretical studies of photodetachment. J. Phys. B At. Mol. Opt. Phys. 2004, 37, 853. [Google Scholar] [CrossRef]
- Morita, M.; Yabushita, S. Calculations of photoionization cross-sections with variationally optimized complex Gaussian-type basis functions. Chem. Phys. 2008, 349, 126–132. [Google Scholar] [CrossRef]
- Kar, S.; Ho, Y.K. Photodetachment of the hydrogen negative ion in weakly coupled plasmas. Phys. Plasmas 2008, 15, 013301. [Google Scholar] [CrossRef]
- Oanaa, C.M.; Krylov, A.I. Cross sections and photoelectron angular distributions in photodetachment from negative ions using equation-of-motion coupled-cluster Dyson orbitals. J. Chem. Phys. 2009, 131, 124114. [Google Scholar] [CrossRef]
- Ghoshal, A.; Ho, Y.K. Photodetachment of H−. Phys. Rev. E 2010, 81, 016403. [Google Scholar] [CrossRef]
- Frolov, A.M. On the absorption of radiation by the negatively charged hydrogen ion. I. General theory and construction of the wave functions. arXiv 2013, arXiv:1110.3432v7. [Google Scholar]
- Ward, S.J.; McDowell, M.R.C.; Humberston, J.W. The Photodetachment of the Negative Ion of Positronium (Ps−). Europhys. Lett. 1986, 1, 167–171. [Google Scholar] [CrossRef]
- Hylleraas, E.A. Neue Berechnung der Energie des Heliums im Grundstande, sowie des tiefsten Terms von Ortho-Heliium. Z. Physik 1929, 54, 347–366. [Google Scholar] [CrossRef]
- Thakkar, A.J. Ph.D. Thesis (Queen’s Univ. 1976). Available online: https://dl.dropboxusercontent.com/u/40687383/ThakkarPhD.pdf (accessed on 14 December 2014).
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics (Non-relativistic Theory), Course of Theoretical Physics Volume 3; Pergamon Press: Oxford, UK, 1977; p. 606. [Google Scholar]
- Drake, G.W.F. Electron-Hydrogen Photoattachment as a Source of Ultraviolet Absorption. Ap. J. 1974, 189, 161–163. [Google Scholar] [CrossRef]
- Jacobs, V.L.; Bhatia, A.K.; Temkin, A. Photodetachment and Radiative Attachment Involving the 2PE3PE State of H−. Astrophys. J. 1980, 242, 1278–1281. [Google Scholar] [CrossRef]
- Ley-Koo, E.; Bunge, C.F. General evaluation of atomic electron-repulsion integrals in orbital methods without using a series representation for . Phys. Rev. A 1989, 40, 1215–1219. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, A.R. Angular Momentum in Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1957; p. 124. [Google Scholar]
- Joachain, C.J. Quantum Collision Theory; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Gorden and Breach: New York, NY, USA, 1986; Volume 3, p. 594, No. 7.13.1.1. [Google Scholar]
- Luke, Y.L. The Special Functions and their Approximations; Academic Press: Cambridge, MA, USA, 2012; Volume 1, p. 212, No. 6.2.7.1. [Google Scholar]
- Available online: http://functions.wolfram.com/03.01.26.0002.01 (accessed on 4 March 2020).
- Bateman, H. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume 1, p. 187, No. 4.3.14. [Google Scholar]
- Available online: http://functions.wolfram.com/07.17.16.0002.01 (accessed on 4 March 2020).
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 5th ed.; Academic: New York, NY, USA, 1994. [Google Scholar]
- We used the result Mathematica 7 gave, though it is likely one can get the same result from Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Gorden and Breach: New York, NY, USA, 1986; Volume 3, p. 220, No. 2.21.2.11. [Google Scholar]
- Available online: http://functions.wolfram.com/06.05.16.0001.01 (accessed on 4 March 2020).
- Holzscheiter, M.H.; Charlton, M.; Nieto, M.M. The route to ultra-low energy antihydrogen. Phys. Rep. 2004, 402, 1–101. [Google Scholar] [CrossRef]
- Bartmann, W.; Belochitskii, P.; Breuker, H.; Butin, F.; Marini de Carli, C.; Eriksson, T.; Maury, S.; Oelert, W.; Pasinelli, S.; Tranquille, G.A. Past, present and future low energy antiproton facilities at CERN. Int. J. Mod. Phys. Conf. Ser. 2014, 30, 1460261. [Google Scholar] [CrossRef]
1. | Since the cross section differences between velocity and length gauge formulations (due to the approximate nature of the two-positron wave functions used) are small, we will present only length gauge results in this work. |
Positron Temperature (K) | Analytical Integration | Number of Terms in m-Sum (34) | Numerical Integration |
---|---|---|---|
1 | 0.001059 | 3 | 0.001026 |
10 | 0.01056 | 4 | 0.01053 |
100 | 0.1030 | 15 | 0.1030 |
400 | 0.3809 | 15 | 0.3810 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straton, J.C. Analytical Results for the Three-Body Radiative Attachment Rate Coefficient, with Application to the Positive Antihydrogen Ion H+. Atoms 2020, 8, 13. https://doi.org/10.3390/atoms8020013
Straton JC. Analytical Results for the Three-Body Radiative Attachment Rate Coefficient, with Application to the Positive Antihydrogen Ion H+. Atoms. 2020; 8(2):13. https://doi.org/10.3390/atoms8020013
Chicago/Turabian StyleStraton, Jack C. 2020. "Analytical Results for the Three-Body Radiative Attachment Rate Coefficient, with Application to the Positive Antihydrogen Ion H+" Atoms 8, no. 2: 13. https://doi.org/10.3390/atoms8020013
APA StyleStraton, J. C. (2020). Analytical Results for the Three-Body Radiative Attachment Rate Coefficient, with Application to the Positive Antihydrogen Ion H+. Atoms, 8(2), 13. https://doi.org/10.3390/atoms8020013