Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = antihydrogen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
6 pages, 3992 KiB  
Article
The Effect of Gravity on Antimatter: The ALPHA Experiment
by Germano Bonomi
Particles 2025, 8(1), 20; https://doi.org/10.3390/particles8010020 - 20 Feb 2025
Viewed by 1272
Abstract
Although the gravitational interaction between matter and antimatter has been the subject of theoretical speculation since the discovery of the latter in 1928, only recently was the ALPHA experiment at CERN able to observe, for the first time, the effects of gravity on [...] Read more.
Although the gravitational interaction between matter and antimatter has been the subject of theoretical speculation since the discovery of the latter in 1928, only recently was the ALPHA experiment at CERN able to observe, for the first time, the effects of gravity on antimatter atoms, namely on antihydrogen. After an introduction of the concept of antimatter, along with its still-unresolved mysteries, details about how antihydrogen is produced at the Antimatter Factory at CERN will be given. Finally, the measurement of the acceleration of gravity of antihydrogen atoms falling in the Earth’s gravitational field will be described. Full article
Show Figures

Figure 1

19 pages, 2836 KiB  
Article
Optimization of Pressurized Liquid Extraction (PLE) Parameters for Extraction of Bioactive Compounds from Moringa oleifera Leaves and Bioactivity Assessment
by Theodoros Chatzimitakos, Vassilis Athanasiadis, Konstantina Kotsou, Martha Mantiniotou, Dimitrios Kalompatsios, Ioannis Makrygiannis, Eleni Bozinou and Stavros I. Lalas
Int. J. Mol. Sci. 2024, 25(9), 4628; https://doi.org/10.3390/ijms25094628 - 24 Apr 2024
Cited by 16 | Viewed by 2953
Abstract
Moringa oleifera leaves are rich sources of bioactive compounds with potential health benefits, including antioxidants and anti-inflammatory agents. Pressurized liquid extraction (PLE) stands out as a promising technique for effectively extracting valuable compounds from natural sources. In this study, we aimed to optimize [...] Read more.
Moringa oleifera leaves are rich sources of bioactive compounds with potential health benefits, including antioxidants and anti-inflammatory agents. Pressurized liquid extraction (PLE) stands out as a promising technique for effectively extracting valuable compounds from natural sources. In this study, we aimed to optimize PLE parameters, such as temperature, extraction duration, and pressure, to maximize bioactive compound (polyphenols, flavonoids, and ascorbic acid) yield from M. oleifera leaves and evaluate their antioxidant and anti-inflammatory activities. According to the outcomes of this research, the maximum achieved total polyphenol content was 24.10 mg gallic acid equivalents (GAE)/g of dry weight (dw), and the total flavonoid content was increased up to 19.89 mg rutin equivalents (RtE)/g dw. Moreover, after HPLC-DAD analysis, neochlorogenic and chlorogenic acids, catechin and epicatechin, rutin, and narirutin were identified and quantified. As far as the optimum ascorbic acid content is concerned, it was found to be 4.77 mg/g dw. The antioxidant activity was evaluated by three different methods: ferric reducing antioxidant power (FRAP), the DPPH method, and the anti-hydrogen peroxide activity (AHPA) method, resulting in 124.29 μmol ascorbic acid equivalent (AAE)/g dw, 131.28 μmol AAE/g dw, and 229.38 μmol AAE/g dw values, respectively. Lastly, the albumin denaturation inhibition was found to be 37.54%. These findings underscore the potential of PLE as an efficient extraction method for preparing extracts from M. oleifera leaves with the maximum content of bioactive compounds. Full article
Show Figures

Figure 1

9 pages, 12026 KiB  
Proceeding Paper
A Bayesian Data Analysis Method for an Experiment to Measure the Gravitational Acceleration of Antihydrogen
by Danielle Hodgkinson, Joel Fajans and Jonathan S. Wurtele
Phys. Sci. Forum 2023, 9(1), 9; https://doi.org/10.3390/psf2023009009 - 28 Nov 2023
Viewed by 1069
Abstract
The ALPHA-g experiment at CERN intends to observe the effect of gravity on antihydrogen. In ALPHA-g, antihydrogen is confined to a magnetic trap with an axis aligned parallel to the Earth’s gravitational field. An imposed difference in the magnetic field of the confining [...] Read more.
The ALPHA-g experiment at CERN intends to observe the effect of gravity on antihydrogen. In ALPHA-g, antihydrogen is confined to a magnetic trap with an axis aligned parallel to the Earth’s gravitational field. An imposed difference in the magnetic field of the confining coils above and below the trapping region, known as a bias, can be delicately adjusted to compensate for the gravitational potential experienced by the trapped anti-atoms. With the bias maintained, the magnetic fields of the coils can be ramped down slowly compared to the anti-atom motion; this releases the antihydrogen and leads to annihilations on the walls of the apparatus, which are detected by a position-sensitive detector. If the bias cancels out the gravitational potential, antihydrogen will escape the trap upwards or downwards with equal probability. Determining the downward (or upward) escape probability, p, from observed annihilations is non-trivial because the annihilation detection efficiency may be up–down asymmetric; some small fraction of antihydrogen escaping downwards may be detected in the upper region (and vice versa) meaning that the precise number of trapped antihydrogen atoms is unknown. In addition, cosmic rays passing through the apparatus lead to a background annihilation rate, which may also be up–down asymmetric. We present a Bayesian method to determine p by assuming annihilations detected in the upper and lower regions are independently Poisson distributed, with the Poisson mean expressed in terms of experimental quantities. We solve for the posterior p using the Markov chain Monte Carlo integration package, Stan. Further, we present a method to determine the gravitational acceleration of antihydrogen, ag, by modifying the analysis described above to include simulation results. In the modified analysis, p is replaced by the simulated probability of downward escape, which is a function of ag. Full article
Show Figures

Figure 1

16 pages, 5782 KiB  
Article
Study on the Properties and Synergistic Antioxidant Effects of Novel Bifunctional Fusion Proteins Expressed Using the UTuT6 System
by Qi Yan, Jingyan Wei, Junxia Song, Mengna Li, Xin Guan and Jian Song
Antioxidants 2023, 12(9), 1766; https://doi.org/10.3390/antiox12091766 - 14 Sep 2023
Viewed by 1624
Abstract
Important antioxidant enzymes, glutathione peroxidase (GPx) and superoxide dismutase (SOD), are involved in maintaining redox balance. They can protect each other and result in more efficiently removing excessive reactive oxygen species (ROS), protecting cells against injury, and maintaining the normal metabolism of ROS. [...] Read more.
Important antioxidant enzymes, glutathione peroxidase (GPx) and superoxide dismutase (SOD), are involved in maintaining redox balance. They can protect each other and result in more efficiently removing excessive reactive oxygen species (ROS), protecting cells against injury, and maintaining the normal metabolism of ROS. In this study, human cytosolic GPx (hGPx1) and human phospholipid hydroperoxide GPx (hGPx4) genes were integrated into the same open reading frame with human extracellular SOD active site (SOD3-72P) genes, respectively, and several novel fusion proteins were obtained by using the UTuT6 expression system for the first time. Among them, Se-hGPx1UAG-L4-SOD3-72P is the bifunctional fusion protein with the highest GPx activity and the best anti-hydrogen peroxide inactivation ability thus far. The Se-hGPx4UAG-L3-SOD3-72P fusion protein exhibits the strongest alkali and high temperature resistance and a greater protective effect against lipoprotein peroxidation damage. Se-hGPx1UAG-L4-SOD3-72P and Se-hGPx4UAG-L3-SOD3-72P fusion proteins both have good synergistic and antioxidant abilities in H2O2-induced RBCs and liver damage models. We believe that this research will help with the development of novel bifunctional fusion proteins and the investigation of the synergistic and catalytic mechanisms of GPx and SOD, which are important in creating novel protein therapeutics. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

11 pages, 320 KiB  
Review
Antihydrogen and Hydrogen: Search for the Difference
by Ksenia Khabarova, Artem Golovizin and Nikolay Kolachevsky
Symmetry 2023, 15(8), 1603; https://doi.org/10.3390/sym15081603 - 18 Aug 2023
Cited by 1 | Viewed by 2064
Abstract
Our universe consists mainly of regular matter, while the amount of antimatter seems to be negligible. The origin of this difference, known as the baryon asymmetry, remains undiscovered. Since the discovery of antimatter, many experiments have been carried out to study antiparticles and [...] Read more.
Our universe consists mainly of regular matter, while the amount of antimatter seems to be negligible. The origin of this difference, known as the baryon asymmetry, remains undiscovered. Since the discovery of antimatter, many experiments have been carried out to study antiparticles and to compare matter and antimatter twins. Two of the most sensitive methods in physics, radiofrequency and optical spectroscopy, can be efficiently used to search for the difference. The successful synthesis and trapping of cold antihydrogen atoms opened the possibility of significantly increasing the sensitivity of matter/antimatter tests. This brief review focuses on a hydrogen/antihydrogen comparison using other independent spectroscopic measurements of single particles in traps and other simple atomic systems like positronium. Although no significant difference is detected in today’s level of accuracy, one can push forward the sensitivity by improving the accuracy of 1S–2S positronium spectroscopy, spectroscopy of hyperfine transition in antihydrogen, and gravitational measurements. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

11 pages, 3198 KiB  
Article
A Study of Hydrogen Embrittlement of SA-372 J Class High Pressure Hydrogen Storage Seamless Cylinder (≥100 MPA)
by Ruifeng Yin, Ruidong Fu, Ningning Gu and Yongjiu Liu
Materials 2022, 15(21), 7714; https://doi.org/10.3390/ma15217714 - 2 Nov 2022
Cited by 6 | Viewed by 2700
Abstract
The spinning process will lead to changes in the micro-structure and mechanical properties of the materials in different positions of the high-pressure hydrogen storage cylinder, which will show different hydrogen embrittlement resistance in the high-pressure hydrogen environment. In order to fully study the [...] Read more.
The spinning process will lead to changes in the micro-structure and mechanical properties of the materials in different positions of the high-pressure hydrogen storage cylinder, which will show different hydrogen embrittlement resistance in the high-pressure hydrogen environment. In order to fully study the safety of hydrogen storage in large-volume seamless steel cylinders, this chapter associates the influence of the forming process with the deterioration of a high-pressure hydrogen cylinder (≥100 MPa). The anti-hydrogen embrittlement of SA-372 grade J steel at different locations of the formed cylinders was studied experimentally in three cylinders. The hydrogen embrittlement experiments were carried out according to method A of ISO 11114-4:2005. The relationship between tensile strength, microstructure, and hydrogen embrittlement is analyzed, which provides comprehensive and reliable data for the safety of hydrogen storage and transmission. Full article
(This article belongs to the Special Issue Concepts for Improvement of Hydrogen Storage Hydride Materials)
Show Figures

Figure 1

19 pages, 328 KiB  
Article
Reducing a Class of Two-Dimensional Integrals to One-Dimension with an Application to Gaussian Transforms
by Jack C. Straton
Atoms 2020, 8(3), 53; https://doi.org/10.3390/atoms8030053 - 2 Sep 2020
Viewed by 2154
Abstract
Quantum theory is awash in multidimensional integrals that contain exponentials in the integration variables, their inverses, and inverse polynomials of those variables. The present paper introduces a means to reduce pairs of such integrals to one dimension when the integrand contains powers multiplied [...] Read more.
Quantum theory is awash in multidimensional integrals that contain exponentials in the integration variables, their inverses, and inverse polynomials of those variables. The present paper introduces a means to reduce pairs of such integrals to one dimension when the integrand contains powers multiplied by an arbitrary function of xy/(x+y) multiplying various combinations of exponentials. In some cases these exponentials arise directly from transition-amplitudes involving products of plane waves, hydrogenic wave functions, and Yukawa and/or Coulomb potentials. In other cases these exponentials arise from Gaussian transforms of such functions. Full article
10 pages, 1934 KiB  
Article
Nature’s Pick-Up Tool, the Stark Effect Induced Gailitis Resonances and Applications
by Chi-Yu Hu and David Caballero
Atoms 2020, 8(3), 32; https://doi.org/10.3390/atoms8030032 - 2 Jul 2020
Cited by 1 | Viewed by 2415
Abstract
A simple universal physical mechanism hidden for more than half a century is unexpectedly discovered from a calculation of low excitation antihydrogen. For ease of reference, this mechanism is named Gailitis resonance. We demonstrate, in great detail, that Gailitis resonances are capable of [...] Read more.
A simple universal physical mechanism hidden for more than half a century is unexpectedly discovered from a calculation of low excitation antihydrogen. For ease of reference, this mechanism is named Gailitis resonance. We demonstrate, in great detail, that Gailitis resonances are capable of explaining p+7Li low energy nuclear fusion, d-d fusion on a Pd lattice and the initial transient fusion peak in muon catalyzed fusion. Hopefully, these examples will help to identify Gailitis resonances in other systems. Full article
(This article belongs to the Special Issue Interactions of Positrons with Matter and Radiation)
Show Figures

Figure 1

13 pages, 549 KiB  
Article
Analytical Results for the Three-Body Radiative Attachment Rate Coefficient, with Application to the Positive Antihydrogen Ion H+
by Jack C. Straton
Atoms 2020, 8(2), 13; https://doi.org/10.3390/atoms8020013 - 20 Apr 2020
Cited by 1 | Viewed by 2442
Abstract
To overcome the numerical difficulties inherent in the Maxwell–Boltzmann integral of the velocity-weighted cross section that gives the radiative attachment rate coefficient α R A for producing the negative hydrogen ion H or its antimatter equivalent, the positive antihydrogen ion [...] Read more.
To overcome the numerical difficulties inherent in the Maxwell–Boltzmann integral of the velocity-weighted cross section that gives the radiative attachment rate coefficient α R A for producing the negative hydrogen ion H or its antimatter equivalent, the positive antihydrogen ion H ¯ + , we found the analytic form for this integral. This procedure is useful for temperatures below 700 K, the region for which the production of H ¯ + has potential use as an intermediate stage in the cooling of antihydrogen to ultra-cold (sub-mK) temperatures for spectroscopic studies and probing the gravitational interaction of the anti-atom. Our results, utilizing a 50-term explicitly correlated exponential wave function, confirm our prior numerical results. Full article
(This article belongs to the Special Issue Interactions of Positrons with Matter and Radiation)
15 pages, 2726 KiB  
Article
Studying Antimatter Gravity with Muonium
by Aldo Antognini, Daniel M. Kaplan, Klaus Kirch, Andreas Knecht, Derrick C. Mancini, James D. Phillips, Thomas J. Phillips, Robert D. Reasenberg, Thomas J. Roberts and Anna Soter
Atoms 2018, 6(2), 17; https://doi.org/10.3390/atoms6020017 - 9 Apr 2018
Cited by 20 | Viewed by 5847
Abstract
The gravitational acceleration of antimatter, g ¯ , has yet to be directly measured; an unexpected outcome of its measurement could change our understanding of gravity, the universe, and the possibility of a fifth force. Three avenues are apparent for such a measurement: [...] Read more.
The gravitational acceleration of antimatter, g ¯ , has yet to be directly measured; an unexpected outcome of its measurement could change our understanding of gravity, the universe, and the possibility of a fifth force. Three avenues are apparent for such a measurement: antihydrogen, positronium, and muonium, the last requiring a precision atom interferometer and novel muonium beam under development. The interferometer and its few-picometer alignment and calibration systems appear feasible. With 100 nm grating pitch, measurements of g ¯ to 10%, 1%, or better can be envisioned. These could constitute the first gravitational measurements of leptonic matter, of 2nd-generation matter, and possibly, of antimatter. Full article
(This article belongs to the Special Issue Measuring Gravity in the Lab)
Show Figures

Figure 1

Back to TopTop