Elastic Photon Scattering on Hydrogenic Atoms near Resonances
Abstract
1. Introduction
2. Materials and Methods
2.1. Statement of the Problem
2.2. General Theory of Transition Matrix Amplitude
2.3. Exact Calculations
2.4. Relativistic Resonant Electric-Dipole Approximation
2.5. Nonrelativistic Resonant Electric Dipole Approximation
3. Results and Discussion
3.1. Ion Rest Frame
3.2. Laboratory Reference Frame
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Demtröder, W. Laser Spectroscopy: Basic Concepts and Instrumentation; Springer: Heidelberg, Germany, 2003. [Google Scholar]
- Indelicato, P. QED tests with highly charged ions. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 232001. [Google Scholar] [CrossRef]
- Franz, W. Rayleighsche Streuung harter Strahlung an schweren Atomen. Z. Phys. 1936, 98, 314. [Google Scholar] [CrossRef]
- Brown, G.E.; Peierls, R.E.; Woodward, J.B. The coherent scattering of γ-rays by K electrons in heavy atoms—I. Method. Proc. R. Soc. Lond. A 1954, 227, 51. [Google Scholar]
- Johnson, W.R.; Feiock, F.D. Rayleigh Scattering and the Electromagnetic Susceptibility of Atoms. Phys. Rev. 1968, 168, 22. [Google Scholar] [CrossRef]
- Kane, P.P.; Kissel, L.; Pratt, R.H.; Roy, S.C. Elastic scattering of γ-rays and X-rays by atoms. Phys. Rep. 1986, 140, 75. [Google Scholar] [CrossRef]
- Pratt, R.H.; Bergstrom, P.M., Jr.; Kissel, L. New relativistic S-matrix results for scattering —Beyond the usual anomalous factors/beyond impulse approximation. In Resonant Anomalous X-ray Scattering: Theory and Applications; Materlik, G., Sparks, C.J., Fischer, K., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 9–33. [Google Scholar]
- Kissel, L.; Zhou, B.; Roy, S.C.; Sen Gupta, S.K.; Pratt, R.H. The validity of form-factor, modified-form-factor and anomalous-scattering-factor approximations in elastic scattering calculations. Acta Cryst. 1995, A51, 271. [Google Scholar] [CrossRef]
- Carney, J.P.J.; Pratt, R.H.; Manakov, N.L.; Meremianin, A.V. Dependence of photon-atom scattering on energy resolution and target angular momentum. Phys. Rev. A 2000, 61, 042704. [Google Scholar] [CrossRef]
- Surzhykov, A.; Yerokhin, V.A.; Stöhlker, T.; Fritzsche, S. Rayleigh X-ray scattering from many-electron atoms and ions. J. Phys. B At. Mol. Opt. Phys. 2015, 48, 189501. [Google Scholar] [CrossRef]
- Volotka, A.V.; Yerokhin, V.A.; Surzhykov, A.; Stöhlker, T.; Fritzsche, S. Many-electron effects on X-ray Rayleigh scattering by highly charged He-like ions. Phys. Rev. A 2016, 93, 023418. [Google Scholar] [CrossRef]
- Jung, M.; Dunford, R.W.; Gemmell, D.S.; Kanter, E.P.; Krässig, B.; LeBrun, T.W.; Southworth, S.H.; Young, L.; Carney, J.P.J.; LaJohn, L.; et al. Manifestations of Nonlocal Exchange, Correlation, and Dynamic Effects in X-ray Scattering. Phys. Rev. Lett. 1998, 81, 8. [Google Scholar] [CrossRef]
- Young, L.; Dunford, R.W.; Kanter, E.P.; Krässig, B.; Southworth, S.H.; Bonham, R.A.; Lykos, P.; Morong, C.; Timm, A.; Carney, J.P.J.; et al. Corrections to the usual X-ray scattering factors in rare gases: Experiment and theory. Phys. Rev. A 2001, 63, 052718. [Google Scholar] [CrossRef]
- Blumenhagen, K.-H.; Fritzsche, S.; Gassner, T.; Gumberidze, A.; Märtin, R.; Schell, N.; Seipt, D.; Spillmann, U.; Surzhykov, A.; Trotsenko, S.; et al. Polarization transfer in Rayleigh scattering of hard X-rays. New J.Phys. 2016, 18, 103034. [Google Scholar] [CrossRef]
- Sfeir, M.Y.; Wang, F.; Huang, L.; Chuang, C.-C.; Hone, J.; O’Brien, S.P.; Heinz, T.F.; Brus, L.E. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 2004, 306, 1540. [Google Scholar] [CrossRef]
- Kampel, N.S.; Griesmaier, A.; Hornbak Steenstrup, M.P.; Kaminski, F.; Polzik, E.S.; Müller, J.H. Effect of Light Assisted Collisions on Matter Wave Coherence in Superradiant Bose-Einstein Condensates. Phys. Rev. Lett. 2012, 108, 090401. [Google Scholar] [CrossRef]
- Kulik, L.V.; Ovchinnikov, K.; Zhuravlev, A.S.; Bisti, V.E.; Kukushkin, I.V.; Schmult, S.; Dietsche, W. Resonant Rayleigh scattering as a probe of spin polarization in a two-dimensional electron system. Phys. Rev. B 2012, 85, 113403. [Google Scholar] [CrossRef]
- Wu, W.; Yue, J.; Li, D.; Lin, X.; Zhu, F.; Yin, X.; Zhu, J.; Dai, X.; Liu, P.; Wei, Y.; et al. Interface dipole enhancement effect and enhanced Rayleigh scattering. Nano Res. 2015, 8, 303. [Google Scholar] [CrossRef]
- Maeda, K.; Terada, Y.; Kasen, D.; Röpke, F.K.; Bamba, A.; Diehl, R.; Nomoto, K.; Kromer, M.; Seitenzahl, I.R.; Yamaguchi, H.; et al. Prospect of Studying Hard X- and Gamma-Rays from Type Ia Supernovae. Astrophys. J. 2012, 760, 54. [Google Scholar] [CrossRef]
- The, L.-S.; Burrows, A. Expectations for the Hard X-ray Continuum and Gamma-Ray Line Fluxes from the Type Ia Supernova SN 2014J in M82. Astrophys. J. 2014, 786, 141. [Google Scholar] [CrossRef]
- Zhang, X.-D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y.-M.; Liu, P.-X.; Liang, X.-J. Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 2012, 33, 6408. [Google Scholar] [CrossRef]
- Krasny, M.W. The Gamma Factory proposal for CERN. arXiv 2015, arXiv:1511.07794. [Google Scholar]
- Płaczek, W.; Abramov, A.; Alden, S.E.; Alemany Fernandez, R.; Antsiferov, P.S.; Apyan, A.; Bartosik, H.; Bessonov, E.G.; Biancacci, N.; Bieroń, J.; et al. Gamma Factory at CERN— Novel Research Tools Made of Light. Acta Phys. Pol. B 2019, 50, 1191. [Google Scholar] [CrossRef]
- Budker, D.; Crespo López-Urrutia, J.R.; Derevianko, A.; Flambaum, V.V.; Krasny, M.W.; Petrenko, A.; Pustelny, S.; Surzhykov, A.; Yerokhin, V.A.; Zolotorev, M. Atomic physics studies at the Gamma Factory at CERN. arXiv 2020, arXiv:2003.03855. [Google Scholar]
- Kröger, F.M.; Weber, G.; Shevelko, V.P.; Hirlander, S.; Alemany-Fernandez, R.; Cornelis, K.; Goddard, B.; Velotti, F.M.; Krasny, M.W.; Stöhlker, T. Charge State Tailoring of Highly Relativistic Heavy ion Beams—Comparison of Theory and Experiment; Helmholtz Institute Jena Annual Report; Helmholtz-Institut: Jena, Germany, 2018; p. 62. [Google Scholar]
- Blum, K. Density Matrix Theory and Applications; Springer: Heidelberg, Germany, 2012. [Google Scholar]
- Akhiezer, A.I.; Berestetskii, V.B. Quantum Electrodynamics; Wiley: New York, USA, 1965. [Google Scholar]
- Wu, Z.W.; Volotka, A.V.; Surzhykov, A.; Dong, C.Z.; Fritzsche, S. Level sequence and splitting identification of closely spaced energy levels by angle-resolved analysis of fluorescence light. Phys. Rev. A 2016, 93, 063413. [Google Scholar] [CrossRef]
- Wu, Z.W.; Volotka, A.V.; Surzhykov, A.; Fritzsche, S. Angle-resolved X-ray spectroscopic scheme to determine overlapping hyperfine splittings in highly charged heliumlike ions. Phys. Rev. A 2017, 96, 012503. [Google Scholar] [CrossRef]
- Shabaev, V.M. Two-time Green’s function method in quantum electrodynamics of high-Z few-electron atoms. Phys. Rep. 2002, 356, 119. [Google Scholar] [CrossRef]
- Andreev, O.Y.; Labzowsky, L.N.; Plunien, G.; Solovyev, D.A. QED theory of the spectral line profile and its applications to atoms and ions. Phys. Rep. 2008, 455, 135. [Google Scholar] [CrossRef]
- Rose, M.E. Elementary Theory of Angular Momentum; Wiley: New York, USA, 1957. [Google Scholar]
- Varshalovich, D.; Moskalev, A.; Khersonskii, V. Quantum Theory of Angular Momentum; World Scientific Publishing: Singapore, 1988. [Google Scholar]
- De Boor, C. A Practical Guide to Splines; Bloch, A., Epstein, C.L., Goriely, A., Greengard, L., Eds.; Springer: New York, NY, USA, 1978. [Google Scholar]
- Sapirstein, J. The use of basis splines in theoretical atomic physics. J. Phys. B At. Mol. Opt. Phys. 1996, 29, 5213. [Google Scholar] [CrossRef]
- Bachau, H.; Cormier, E.; Decleva, P.; Hansen, J.E.; Martin, F. Applications of B-splines in atomic and molecular physics. Rep. Prog. Phys. 2001, 64, 1815. [Google Scholar] [CrossRef]
- Froese, F.C. B-Splines in Variational Atomic Structure Calculations; Arimondo, E., Berman, P.R., Lin, C.C., Eds.; Academic Press: New York, NY, USA, 2008; pp. 235–291. [Google Scholar]
- Safari, L.; Amaro, P.; Fritzche, S.; Santos, J.P.; Fratini, F. Relativistic total cross-section and angular distribution for Rayleigh scattering by atomic hydrogen. Phys. Rev. A 2012, 85, 043406. [Google Scholar] [CrossRef]
- Chen, M.H.; Scofield, J.H. Relativistic effects on angular distribution and polarization of dielectronic satellite lines of hydrogenlike ions. Phys. Rev. A 1995, 52, 2057. [Google Scholar] [CrossRef]
- Surzhykov, A.; Fritzsche, S.; Gumberidze, A.; Stöhlker, T. Lyman-α1 Decay in Hydrogenlike Ions: Interference between the E1 and M2 Transition Amplitudes. Phys. Rev. Lett. 2002, 88, 153001. [Google Scholar] [CrossRef]
- Surzhykov, A.; Fritzsche, S.; Stöhlker, T. Polarization of the Lyman–α1 Line Following the Radiative Recombination of Bare, High-Z Ions. Hyperfine Interact. 2003, 146, 35. [Google Scholar] [CrossRef]
- Bessonov, E.G. Light sources based on relativistic ion beams. Nucl. Instrum. Meth. B 2013, 309, 92. [Google Scholar] [CrossRef][Green Version]
- Surzhykov, A.; Yerokhin, V.A.; Jahrsetz, T.; Amaro, P.; Stöhlker, T.; Fritzsche, S. Polarization correlations in the elastic Rayleigh scattering of photons by hydrogenlike ions. Phys. Rev. A 2013, 88, 062515. [Google Scholar] [CrossRef]
- Manakov, N.L.; Meremianin, A.V.; Maquet, A.; Carney, J.P.J. Photon-polarization effects and their angular dependence in relativistic two-photon bound-bound transitions. J. Phys. B At. Mol. Opt. Phys. 2000, 33, 4425. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samoilenko, D.; Volotka, A.V.; Fritzsche, S. Elastic Photon Scattering on Hydrogenic Atoms near Resonances. Atoms 2020, 8, 12. https://doi.org/10.3390/atoms8020012
Samoilenko D, Volotka AV, Fritzsche S. Elastic Photon Scattering on Hydrogenic Atoms near Resonances. Atoms. 2020; 8(2):12. https://doi.org/10.3390/atoms8020012
Chicago/Turabian StyleSamoilenko, Dmitrii, Andrey V. Volotka, and Stephan Fritzsche. 2020. "Elastic Photon Scattering on Hydrogenic Atoms near Resonances" Atoms 8, no. 2: 12. https://doi.org/10.3390/atoms8020012
APA StyleSamoilenko, D., Volotka, A. V., & Fritzsche, S. (2020). Elastic Photon Scattering on Hydrogenic Atoms near Resonances. Atoms, 8(2), 12. https://doi.org/10.3390/atoms8020012