Stark Widths of Yb III and Lu IV Spectral Lines
Abstract
:1. Introduction
2. The Modified Semiempirical Method
3. Results and Discussion
Funding
Conflicts of Interest
References
- Rauch, T.; Ziegler, M.; Werner, K.; Kruk, J.W.; Oliveira, C.M.; Putte, D.V.; Mignani, R.P.; Kerber, F. High-resolution FUSE and HST ultraviolet spectroscopy of the white dwarf central star of Sh 2-216. Astrophysics 2007, 470, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, K.; Masseron, T.; Jofré, P.; Gilmore, G.; Elsworth, Y.; Hekker, S. An accurate and self-consistent chemical abundance catalogue for the APOGEE/Kepler sample. Astron. Astrophys. 2016, 594, A43. [Google Scholar] [CrossRef]
- Afsar, M.; Sneden, C.; Wood, M.P.; Lawler, J.E.; Bozkurt, Z.; Topcu, G.B.; Mace, G.N.; Kim, H.; Jaffe, D.T. Chemical Compositions of Evolved Stars from Near-infrared IGRINS High-resolution Spectra. I. Abundances in Three Red Horizontal Branch Stars. Astrophys. J. 2018, 865, 44. [Google Scholar] [CrossRef]
- Siqueira, M.C.; Spite, M.; Barbuy, B.; Spite, F.; Caffau, E.; Hill, V.; Wanajo, S.; Primas, F.; Plez, B.; Cayrel, R.; et al. First stars. XVI. HST/STIS abundances of heavy elements in the uranium-rich metal-poor star CS 31082-0012013. Astron. Astrophys. 2013, 550, 122. [Google Scholar] [CrossRef]
- Roederer, I.U.; Lawler, J.E.; Sobeck, J.S.; Beers, T.C.; Cowan, J.J.; Frebel, A.; Ivans, I.I.; Schatz, H.; Sneden, C.; Thompson, I.B. New Hubble Space Telescope Observations of Heavy Elements in Four Metal-Poor Stars. Astrophys. J. Suppl. 2012, 203, 27. [Google Scholar] [CrossRef]
- Cowley, C.R.; Ryabchikova, T.; Kupka, F.; Bord, D.J.; Mathys, G.; Bidelman, W.P. Abundances in Przybylski’s star. Mon. Not. R. Astron. Soc. 2000, 317, 299–309. [Google Scholar] [CrossRef]
- Majlinger, Z.; Simić, Z.; Dimitrijević, M.S. On the Stark Broadening of Lu III Spectral Lines. J. Astrophys. Astron. 2015, 36, 671–679. [Google Scholar] [CrossRef]
- Dimitrijević, M.S.; Konjević, N. Stark widths of doubly- and triply-ionized atom lines. J. Quant. Spectrosc. Radiat. Transf. 1980, 24, 451–459. [Google Scholar] [CrossRef]
- Dimitrijević, M.S.; Kršljanin, V. Electron-impact shifts of ion lines—Modified semiempirical approach. Astron. Astrophys. 1986, 165, 269–274. [Google Scholar]
- Dimitrijević, M.S.; Popović, L.Č. Modified Semiempirical Method. J. Appl. Spectrosc. 2001, 68, 893–901. [Google Scholar] [CrossRef]
- Griem, H.R. Semiempirical Formulas for the Electron-Impact Widths and Shifts of Isolated Ion Lines in Plasmas. Phys. Rev. 1968, 165, 258–266. [Google Scholar] [CrossRef]
- Griem, H.R. Spectral Line Broadening by Plasmas; Academic Press, Inc.: New York, NY, USA, 1974. [Google Scholar]
- Bates, D.R.; Damgaard, A. The Calculation of the Absolute Strengths of Spectral Lines. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1949, 242, 101–122. [Google Scholar] [CrossRef]
- Oertel, G.K.; Shomo, L.P. Tables for the Calculation of Radial Multipole Matrix Elements by the Coulomb Approximation. Astrophys. J. Suppl. 1968, 16, 175–218. [Google Scholar] [CrossRef]
- Van Regemorter, H.; Hoang Binh, D.; Prud’homme, M. Radial transition integrals involving low or high effective quantum numbers in the Coulomb approximation. J. Phys. B 1979, 12, 1053–1061. [Google Scholar] [CrossRef]
- Martin, W.C.; Zalubas, R.; Hagan, L. Atomic Energy Levels—The Rare-Earth Elements; Nat. Stand. Ref. Data Ser., NSRDS-NBS; Nat. Bur. Stand.: Washington, DC, USA, 1978; Volume 60, pp. 1–422. [Google Scholar]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (ver. 5.5.6); National Institute of Standards and Technology: Gaithersburg, MD, USA. Available online: https://physics.nist.gov/asd (accessed on 1 December 2018).
- Sahal-Bréchot, S.; Dimitrijević, M.S.; Moreau, N. STARK-B Database, Observatory of Paris, LERMA and Astronomical Observatory of Belgrade. 2017. Available online: http://stark-b.obspm.fr (accessed on 11 August 2017).
- Sahal-Bréchot, S.; Dimitrijević, M.S.; Moreau, N.; Ben Nessib, N. The STARK-B database VAMDC node: A repository for spectral line broadening and shifts due to collisions with charged particles. Phys. Scr. 2015, 50, 054008. [Google Scholar] [CrossRef]
- Dubernet, M.L.; Boudon, V.; Culhane, J.L.; Dimitrijevic, M.S.; Fazliev, A.Z.; Joblin, C.; Kupka, F.; Leto, G.; Le Sidaner, P.; Loboda, P.A.; et al. Virtual atomic and molecular data centre. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2151–2159. [Google Scholar] [CrossRef] [Green Version]
- Dubernet, M.L.; Antony, B.K.; Ba, Y.A.; Babikov, Y.L.; Bartschat, K.; Boudon, V.; Braams, B.J.; Chung, H.-K.; Daniel, F.; Delahaye, F.; et al. The virtual atomic and molecular data centre (VAMDC) consortium. J. Phys. B 2016, 49, 074003. [Google Scholar] [CrossRef] [Green Version]
Transition | T [K] | W [Å] | W [10 s] |
---|---|---|---|
YbIII 4fF)6s(7/2,1/2)o − 4fF)6p(7/2,1/2) | 5000 | 0.221 | 0.586 |
10,000 | 0.156 | 0.414 | |
= 2664.3 Å | 20,000 | 0.110 | 0.292 |
3kT/2E = 0.278 | 40,000 | 0.0780 | 0.207 |
80,000 | 0.0556 | 0.148 | |
160,000 | 0.0446 | 0.118 | |
YbIII 4fF)6s(7/2,1/2)o − 4fF)6p(7/2,3/2) | 5000 | 0.166 | 0.600 |
10,000 | 0.118 | 0.424 | |
= 2285.0 Å | 20,000 | 0.0831 | 0.300 |
3kT/2E = 0.278 | 40,000 | 0.0588 | 0.212 |
80,000 | 0.0416 | 0.150 | |
160,000 | 0.0332 | 0.120 | |
YbIII 4fF)6s(5/2,1/2)o − 4fF)6p(5/2,1/2) | 5000 | 0.221 | 0.591 |
10,000 | 0.157 | 0.418 | |
= 2657.0 Å | 20,000 | 0.111 | 0.296 |
3kT/2E = 0.277 | 40,000 | 0.0783 | 0.209 |
80,000 | 0.0558 | 0.149 | |
160,000 | 0.0447 | 0.119 | |
YbIII 4fF)6s(5/2,1/2)o − 4fF)6p(5/2,3/2) | 5000 | 0.169 | 0.607 |
10,000 | 0.119 | 0.430 | |
= 2288.9 Å | 20,000 | 0.0845 | 0.304 |
3kT/2E = 0.277 | 40,000 | 0.0597 | 0.215 |
80,000 | 0.0423 | 0.152 | |
160,000 | 0.0338 | 0.121 | |
LuIV 4fF)6s(7/2,1/2)o − 4fF)6p(7/2,1/2) | 5000 | 0.0742 | 0.316 |
10,000 | 0.0525 | 0.223 | |
= 2104.4 Å | 20,000 | 0.0371 | 0.158 |
3kT/2E = 0.219 | 40,000 | 0.0262 | 0.112 |
80,000 | 0.0186 | 0.0789 | |
160,000 | 0.0140 | 0.0594 | |
LuIV 4fF)6s(7/2,1/2)o − 4fF)6p(7/2,3/2) | 5000 | 0.0574 | 0.350 |
10,000 | 0.0406 | 0.248 | |
= 1757.6 Å | 20,000 | 0.0287 | 0.175 |
3kT/2E = 0.219 | 40,000 | 0.0203 | 0.124 |
80,000 | 0.0144 | 0.0876 | |
160,000 | 0.0106 | 0.0649 | |
LuIV 4fF)6s(5/2,1/2)o − 4fF)6p(5/2,1/2) | 5000 | 0.0735 | 0.316 |
10,000 | 0.0520 | 0.223 | |
= 2093.0 Å | 20,000 | 0.0368 | 0.158 |
3kT/2E = 0.218 | 40,000 | 0.0260 | 0.112 |
80,000 | 0.0184 | 0.0790 | |
160,000 | 0.0138 | 0.0594 | |
LuIV 4fF)6s(5/2,1/2)o − 4fF)6p(5/2,3/2) | 5000 | 0.0573 | 0.350 |
10,000 | 0.0405 | 0.247 | |
= 1757.2 Å | 20,000 | 0.0287 | 0.175 |
3kT/2E = 0.218 | 40,000 | 0.0203 | 0.124 |
80,000 | 0.0143 | 0.0874 | |
160,000 | 0.0106 | 0.0648 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrijević, M.S. Stark Widths of Yb III and Lu IV Spectral Lines. Atoms 2019, 7, 10. https://doi.org/10.3390/atoms7010010
Dimitrijević MS. Stark Widths of Yb III and Lu IV Spectral Lines. Atoms. 2019; 7(1):10. https://doi.org/10.3390/atoms7010010
Chicago/Turabian StyleDimitrijević, Milan S. 2019. "Stark Widths of Yb III and Lu IV Spectral Lines" Atoms 7, no. 1: 10. https://doi.org/10.3390/atoms7010010
APA StyleDimitrijević, M. S. (2019). Stark Widths of Yb III and Lu IV Spectral Lines. Atoms, 7(1), 10. https://doi.org/10.3390/atoms7010010