Computation of Atomic Astrophysical Opacities †
Abstract
:1. Introduction
2. OP and OPAL Projects
2.1. Numerical Methods
2.2. Equation of State
2.3. Revised Opacities
2.4. Big-Data Science
3. Solar Abundance Problem
3.1. Standard Solar Model
3.2. Seismic Solar Model
3.3. Multidisciplinary Approach
4. Atomic Opacities, Recent Developments
4.1. Fe Opacity
4.2. Ni and Cr Opacities
5. Line, Resonance, and Edge Profiles
5.1. Spectator-Electron Processes
5.1.1. PEC Resonances
5.1.2. K Lines
5.1.3. Ionization Edges
- Target A—, with
- Target B—Target A plus with
- Target C—Target B plus with .
5.2. Pressure Broadening
6. Concluding Remarks
Acknowledgments
Conflicts of Interest
References
- Pismis, P.; Torres-Peimbert, S. Introduction. Rev. Mex. Astron. Astr. 1992, 23, 5. [Google Scholar]
- Simon, N.R. A plea for reexamining heavy element opacities in stars. Astrophys. J. 1982, 260, L87–L90. [Google Scholar] [CrossRef]
- Cox, A.N.; Tabor, J.E. Radiative opacity tables for 40 stellar mixtures. Astrophys. J. Suppl. Ser. 1976, 31, 271–312. [Google Scholar] [CrossRef]
- Badnell, N.R.; Bautista, M.A.; Butler, K.; Delahaye, F.; Mendoza, C.; Palmeri, P.; Zeippen, C.J.; Seaton, M.J. Updated opacities from the Opacity Project. Mon. Not. R. Astron. Soc. 2005, 360, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Asplund, M.; Grevesse, N.; Sauval, A.J. The Solar Chemical Composition. In Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis; Barnes, T.G., III, Bash, F.N., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2005; Volume 336, p. 25. [Google Scholar]
- Bahcall, J.N.; Basu, S.; Pinsonneault, M.; Serenelli, A.M. Helioseismological Implications of Recent Solar Abundance Determinations. Astrophys. J. 2005, 618, 1049–1056. [Google Scholar] [CrossRef]
- Bahcall, J.N.; Serenelli, A.M.; Basu, S. New Solar Opacities, Abundances, Helioseismology, and Neutrino Fluxes. Astrophys. J. 2005, 621, L85–L88. [Google Scholar] [CrossRef]
- Caffau, E.; Ludwig, H.G.; Steffen, M.; Freytag, B.; Bonifacio, P. Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere. Solar Phys. 2011, 268, 255–269. [Google Scholar] [CrossRef]
- Jin, F.; Zeng, J.; Huang, T.; Ding, Y.; Zheng, Z.; Yuan, J. Radiative Opacity of Iron Studied Using a Detailed Level Accounting Model. Astrophys. J. 2009, 693, 597–609. [Google Scholar] [CrossRef]
- Gilles, D.; Turck-Chièze, S.; Loisel, G.; Piau, L.; Ducret, J.E.; Poirier, M.; Blenski, T.; Thais, F.; Blancard, C.; Cossé, P.; et al. Comparison of Fe and Ni opacity calculations for a better understanding of pulsating stellar envelopes. High Energy Density Phys. 2011, 7, 312–319. [Google Scholar] [CrossRef]
- Nahar, S.N.; Pradhan, A.K.; Chen, G.X.; Eissner, W. Highly excited core resonances in photoionization of Fe xvii: Implications for plasma opacities. Phys. Rev. A 2011, 83, 053417. [Google Scholar] [CrossRef]
- Turck-Chièze, S.; Loisel, G.; Gilles, D.; Piau, L.; Blancard, C.; Blenski, T.; Busquet, M.; Caillaud, T.; Cossé, P.; Delahaye, F.; et al. Radiative properties of stellar plasmas and open challenges. Astrophys. Space Sci. 2011, 336, 103–109. [Google Scholar] [CrossRef]
- Blancard, C.; Cossé, P.; Faussurier, G. Solar Mixture Opacity Calculations Using Detailed Configuration and Level Accounting Treatments. Astrophys. J. 2012, 745, 10. [Google Scholar] [CrossRef]
- Gilles, D.; Turck-Chièze, S.; Busquet, M.; Thais, F.; Loisel, G.; Piau, L.; Ducret, J.E.; Blenski, T.; Poirier, M.; Blancard, C.; et al. Interaction of Configuration in Spectral Opacity Calculations for Stellar Physics; Stehlé, C., Joblin, C., d’Hendecourt, L., Eds.; EAS Publications Series; EDP Sciences: Les Ulis, France, 2012; Volume 58, pp. 51–55. [Google Scholar]
- Busquet, M.; Klapisch, M.; Gilles, D. Influence of the number of atomic levels on the spectral opacity of low temperature nickel and iron in the spectral range 50–300 eV. Eur. Phys. J. Web Conf. 2013, 59, 14004. [Google Scholar] [CrossRef]
- Delahaye, F.; Palmeri, P.; Quinet, P.; Zeippen, C.J. IPOPv2: Photoionization of Ni XIV—A test case. Alecian, G., Lebreton, Y.; Richard, O., Vauclair, G., Eds.; EAS Publications Series; EDP Sciences: Les Ulis, France, 2013; Volume 63, pp. 321–330. [Google Scholar]
- Gilles, D.; Turck-Chièze, S.; Busquet, M.; Thais, F.; Loisel, G.; Piau, L.; Ducret, J.E.; Blenski, T.; Blancard, C.; Cossé, P.; et al. Iron and Nickel spectral opacity calculations in conditions relevant for pulsating stellar envelopes and experiments. Eur. Phys. J. Web Conf. 2013, 59, 14003. [Google Scholar] [CrossRef]
- Turck-Chièze, S.; Gilles, D.; Gilleron, F.; Pain, J.C. The stellar opacities. In Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics SF2A-2013, Montpellier, France, 4–7 June 2013; Cambresy, L., Martins, F., Nuss, E., Palacios, A., Eds.; pp. 105–110. [Google Scholar]
- Turck-Chièze, S.; Gilles, D.; Le Pennec, M.; Blenski, T.; Thais, F.; Bastiani-Ceccotti, S.; Blancard, C.; Busquet, M.; Caillaud, T.; Colgan, J.; et al. Radiative properties of stellar envelopes: Comparison of asteroseismic results to opacity calculations and measurements for iron and nickel. High Energy Density Phys. 2013, 9, 473–479. [Google Scholar] [CrossRef]
- Turck-Chièze, S.; Gilles, D. News from the opacity consortium OPAC. Eur. Phys. J. Web Conf. 2013, 43, 01003. [Google Scholar] [CrossRef]
- Fontes, C.J.; Fryer, C.L.; Hungerford, A.L.; Hakel, P.; Colgan, J.; Kilcrease, D.P.; Sherrill, M.E. Relativistic opacities for astrophysical applications. High Energy Density Phys. 2015, 16, 53–59. [Google Scholar] [CrossRef]
- Iglesias, C.A. Iron-group opacities for B stars. Mon. Not. R. Astron. Soc. 2015, 450, 2–9. [Google Scholar] [CrossRef]
- Mondet, G.; Blancard, C.; Cossé, P.; Faussurier, G. Opacity Calculations for Solar Mixtures. Astrophys. J. Suppl. Ser. 2015, 220, 2. [Google Scholar] [CrossRef]
- Pain, J.C.; Gilleron, F. Accounting for highly excited states in detailed opacity calculations. High Energy Density Phys. 2015, 15, 30–42. [Google Scholar] [CrossRef]
- Le Pennec, M.; Turck-Chièze, S.; Salmon, S.; Blancard, C.; Cossé, P.; Faussurier, G.; Mondet, G. First New Solar Models with OPAS Opacity Tables. Astrophys. J. 2015, 813, L42. [Google Scholar] [CrossRef]
- Krief, M.; Feigel, A.; Gazit, D. Solar Opacity Calculations Using the Super-transition-array Method. Astrophys. J. 2016, 821, 45. [Google Scholar] [CrossRef]
- Krief, M.; Feigel, A.; Gazit, D. Line Broadening and the Solar Opacity Problem. Astrophys. J. 2016, 824, 98. [Google Scholar] [CrossRef]
- Nahar, S.N.; Pradhan, A.K. Large Enhancement in High-Energy Photoionization of Fe XVII and Missing Continuum Plasma Opacity. Phys. Rev. Lett. 2016, 116, 235003. [Google Scholar] [CrossRef] [PubMed]
- Blancard, C.; Colgan, J.; Cossé, P.; Faussurier, G.; Fontes, C.J.; Gilleron, F.; Golovkin, I.; Hansen, S.B.; Iglesias, C.A.; Kilcrease, D.P.; et al. Comment on “Large Enhancement in High-Energy Photoionization of Fe XVII and Missing Continuum Plasma Opacity”. Phys. Rev. Lett. 2016, 117, 249501. [Google Scholar] [CrossRef] [PubMed]
- Nahar, S.N.; Pradhan, A.K. Nahar and Pradhan Reply:. Phys. Rev. Lett. 2016, 117, 249502. [Google Scholar] [CrossRef] [PubMed]
- Turck-Chièze, S.; Le Pennec, M.; Ducret, J.E.; Colgan, J.; Kilcrease, D.P.; Fontes, C.J.; Magee, N.; Gilleron, F.; Pain, J.C. Detailed Opacity Comparison for an Improved Stellar Modeling of the Envelopes of Massive Stars. Astrophys. J. 2016, 823, 78. [Google Scholar] [CrossRef]
- Colgan, J.; Kilcrease, D.P.; Magee, N.H.; Sherrill, M.E.; Abdallah, J., Jr.; Hakel, P.; Fontes, C.J.; Guzik, J.A.; Mussack, K.A. A New Generation of Los Alamos Opacity Tables. Astrophys. J. 2016, 817, 116. [Google Scholar] [CrossRef]
- Bailey, J.E.; Nagayama, T.; Loisel, G.P.; Rochau, G.A.; Blancard, C.; Colgan, J.; Cosse, P.; Faussurier, G.; Fontes, C.J.; Gilleron, F.; et al. A higher-than-predicted measurement of iron opacity at solar interior temperatures. Nature 2015, 517, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Daszyńska-Daszkiewicz, J.; Walczak, P. Complex asteroseismology of the β Cep/slowly pulsating B-type pulsator ν Eridani: Constraints on opacities. Mon. Not. R. Astron. Soc. 2010, 403, 496–504. [Google Scholar] [CrossRef]
- Berrington, K.A.; Burke, P.G.; Butler, K.; Seaton, M.J.; Storey, P.J.; Taylor, K.T.; Yan, Y. Atomic data for opacity calculations. II. Computational methods. J. Phys. B At. Mol. Phys. 1987, 20, 6379–6397. [Google Scholar] [CrossRef]
- Eissner, W.; Jones, M.; Nussbaumer, H. Techniques for the calculation of atomic structures and radiative data including relativistic corrections. Comput. Phys. Commun. 1974, 8, 270–306. [Google Scholar] [CrossRef]
- Hibbert, A. CIV3—A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths. Comput. Phys. Commun. 1975, 9, 141–172. [Google Scholar] [CrossRef]
- Burke, P.G.; Hibbert, A.; Robb, W.D. Electron scattering by complex atoms. J. Phys. B At. Mol. Phys. 1971, 4, 153–161. [Google Scholar] [CrossRef]
- Berrington, K.A.; Eissner, W.B.; Norrington, P.H. RMATRX1: Belfast atomic R-matrix codes. Comput. Phys. Commun. 1995, 92, 290–420. [Google Scholar] [CrossRef]
- Seaton, M.J. Outer-region contributions to radiative transition probabilities. J. Phys. B At. Mol. Phys. 1986, 19, 2601–2610. [Google Scholar] [CrossRef]
- Rogers, F.J.; Wilson, B.G.; Iglesias, C.A. Parametric potential method for generating atomic data. Phys. Rev. A 1988, 38, 5007–5020. [Google Scholar] [CrossRef]
- Iglesias, C.A.; Rogers, F.J.; Wilson, B.G. Calculation of Detailed Atomic Data Using Parametric Potentials. Rev. Mex. Astron. Astr. 1992, 23, 133–140. [Google Scholar]
- Hummer, D.G.; Mihalas, D. The equation of state for stellar envelopes. I—An occupation probability formalism for the truncation of internal partition functions. Astrophys. J. 1988, 331, 794–814. [Google Scholar] [CrossRef]
- Mihalas, D. The Opacity Project—Equation of State. Rev. Mex. Astron. Astr. 1992, 23, 127–132. [Google Scholar]
- Rogers, F.J.; Iglesias, C.A. Equation of State of Partially-Ionized Plasmas in the Physical Picture. Rev. Mex. Astron. Astr. 1992, 23, 133–140. [Google Scholar]
- Iglesias, C.A.; Rogers, F.J.; Wilson, B.G. Reexamination of the metal contribution to astrophysical opacity. Astrophys. J. 1987, 322, L45–L48. [Google Scholar] [CrossRef]
- Lynas-Gray, A.E.; Seaton, M.J.; Storey, P.J. Atomic data for opacity calculations: XXII. Computations for 2472790 multiplet gf-values in Fe VIII to Fe XIII. J. Phys. B At. Mol. Phys. 1995, 28, 2817–2827. [Google Scholar] [CrossRef]
- Da Silva, L.B.; MacGowan, B.J.; Kania, D.R.; Hammel, B.A.; Back, C.A.; Hsieh, E.; Doyas, R.; Iglesias, C.A.; Rogers, F.J.; Lee, R.W. Absorption measurements demonstrating the importance of Delta n = 0 transitions in the opacity of iron. Phys. Rev. Lett. 1992, 69, 438–441. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, C.A.; Rogers, F.J. Discrepancies between OPAL and OP opacities at high densities and temperatures. Astrophys. J. 1995, 443, 460–463. [Google Scholar] [CrossRef]
- Badnell, N.R.; Seaton, M.J. On the importance of inner-shell transitions for opacity calculations. J. Phys. B At. Mol. Phys. 2003, 36, 4367–4385. [Google Scholar] [CrossRef]
- Seaton, M.J.; Badnell, N.R. A comparison of Rosseland-mean opacities from OP and OPAL. Mon. Not. R. Astron. Soc. 2004, 354, 457–465. [Google Scholar] [CrossRef] [Green Version]
- Kanbur, S.M.; Simon, N.R. Comparative pulsation calculations with OP and OPAL opacities. Astrophys. J. 1994, 420, 880–883. [Google Scholar] [CrossRef]
- Hey, T.; Tansley, S.; Tolle, K. (Eds.) The Fourth Paradigm: Data-Intensive Scientific Discovery; Microsoft Research: Redmond, WA, USA, 2009. [Google Scholar]
- Cunto, W.; Mendoza, C. The Opacity Project—The Topbase Atomic Database. Rev. Mex. Astron. Astr. 1992, 23, 107–118. [Google Scholar]
- Cunto, W.; Mendoza, C.; Ochsenbein, F.; Zeippen, C.J. Topbase at the CDS. Astron. Astrophys. 1993, 275, L5–L8. [Google Scholar]
- Mendoza, C.; Seaton, M.J.; Buerger, P.; Bellorín, A.; Meléndez, M.; González, J.; Rodríguez, L.S.; Delahaye, F.; Palacios, E.; Pradhan, A.K.; Zeippen, C.J. OPserver: Interactive online computations of opacities and radiative accelerations. Mon. Not. R. Astron. Soc. 2007, 378, 1031–1035. [Google Scholar] [CrossRef]
- Christensen-Dalsgaard, J.; di Mauro, M.P.; Houdek, G.; Pijpers, F. On the opacity change required to compensate for the revised solar composition. Astron. Astrophys. 2009, 494, 205–208. [Google Scholar] [CrossRef]
- Basu, S.; Antia, H.M. Constraining Solar Abundances Using Helioseismology. Astrophys. J. 2004, 606, L85–L88. [Google Scholar] [CrossRef]
- Grevesse, N.; Sauval, A.J. Standard Solar Composition. Space Sci. Rev. 1998, 85, 161–174. [Google Scholar] [CrossRef]
- Turck-Chièze, S. The Standard Solar Model and beyond. J. Phys. Conf. Ser. 2016, 665, 012078. [Google Scholar] [CrossRef]
- Von Steiger, R.; Zurbuchen, T.H. Solar Metallicity Derived from in situ Solar Wind Composition. Astrophys. J. 2016, 816, 13. [Google Scholar] [CrossRef]
- Serenelli, A.; Scott, P.; Villante, F.L.; Vincent, A.C.; Asplund, M.; Basu, S.; Grevesse, N.; Peña-Garay, C. Implications of solar wind measurements for solar models and composition. Mon. Not. R. Astron. Soc. 2016, 463, 2–9. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Freese, K.; Zurbuchen, T.H. Solar Models in Light of New High Metallicity Measurements from Solar Wind Data. Astrophys. J. 2017, 839, 55. [Google Scholar] [CrossRef]
- Vagnozzi, S. New solar metallicity measurements. arXiv, 2017; arXiv:1703.10834. [Google Scholar]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The Chemical Composition of the Sun. Annu. Rev. Astron. Astr. 2009, 47, 481–522. [Google Scholar] [CrossRef]
- Serenelli, A.M.; Basu, S.; Ferguson, J.W.; Asplund, M. New Solar Composition: The Problem with Solar Models Revisited. Astrophys. J. 2009, 705, L123–L127. [Google Scholar] [CrossRef]
- Serenelli, A. Alive and well: A short review about standard solar models. Eur. Phys. J. A 2016, 52, 78. [Google Scholar] [CrossRef]
- Adelberger, E.G.; García, A.; Robertson, R.G.H.; Snover, K.A.; Balantekin, A.B.; Heeger, K.; Ramsey-Musolf, M.J.; Bemmerer, D.; Junghans, A.; Bertulani, C.A.; et al. Solar fusion cross sections. II. The pp chain and CNO cycles. Rev. Mod. Phys. 2011, 83, 195–246. [Google Scholar] [CrossRef]
- Vorontsov, S.V.; Baturin, V.A.; Ayukov, S.V.; Gryaznov, V.K. Helioseismic calibration of the equation of state and chemical composition in the solar convective envelope. Mon. Not. R. Astron. Soc. 2013, 430, 1636–1652. [Google Scholar] [CrossRef]
- Chaplin, W.J.; Miglio, A. Asteroseismology of Solar-Type and Red-Giant Stars. Annu. Rev. Astron. Astr. 2013, 51, 353–392. [Google Scholar] [CrossRef]
- Walczak, P.; Daszyńska-Daszkiewicz, J. Complex asteroseismology of the hybrid B-type pulsator γ Pegasi: A test of stellar opacities. Astron. Nachr. 2010, 331, 1057–1060. [Google Scholar] [CrossRef]
- Jeffery, C.S.; Saio, H. Fe-bump instability: the excitation of pulsations in subdwarf B and other low-mass stars. Mon. Not. R. Astron. Soc. 2006, 371, 659–672. [Google Scholar] [CrossRef]
- Jeffery, C.S.; Saio, H. Gravity-mode pulsations in subdwarf B stars: a critical test of stellar opacity. Mon. Not. R. Astron. Soc. 2006, 372, L48–L52. [Google Scholar] [CrossRef]
- Guzik, J.A.; Fontes, C.J.; Walczak, P.; Wood, S.R.; Mussack, K.; Farag, E. Sound speed and oscillation frequencies for solar models evolved with Los Alamos ATOMIC opacities. arXiv, 2016; arXiv:1605.04452. [Google Scholar]
- Walczak, P.; Fontes, C.J.; Colgan, J.; Kilcrease, D.P.; Guzik, J.A. Wider pulsation instability regions for β Cephei and SPB stars calculated using new Los Alamos opacities. Astron. Astrophys. 2015, 580, L9. [Google Scholar] [CrossRef]
- Daszyńska-Daszkiewicz, J.; Pamyatnykh, A.A.; Walczak, P.; Colgan, J.; Fontes, C.J.; Kilcrease, D.P. Interpretation of the BRITE oscillation data of the hybrid pulsator ν Eridani: A call for the modification of stellar opacities. Mon. Not. R. Astron. Soc. 2017, 466, 2284–2293. [Google Scholar] [CrossRef]
- Delahaye, F.; Zwölf, C.M.; Zeippen, C.J.; Mendoza, C. IPOPv2 online service for the generation of opacity tables. J. Quant. Spectrosc. Radiat. Transf. 2016, 171, 66–72. [Google Scholar] [CrossRef]
- Bauche, J.; Bauche-Arnoult, C.; Klapisch, M. Unresolved transition arrays. Phys. Scr. 1988, 37, 659–663. [Google Scholar] [CrossRef]
- Iglesias, C.A.; Sonnad, V. Partially resolved transition array model for atomic spectra. High Energy Density Phys. 2012, 8, 154–160. [Google Scholar] [CrossRef]
- Iglesias, C.A. Partially resolved transition array model in intermediate coupling. High Energy Density Phys. 2012, 8, 260–265. [Google Scholar] [CrossRef]
- Iglesias, C.A. Statistical line-by-line model for atomic spectra in intermediate coupling. High Energy Density Phys. 2012, 8, 253–259. [Google Scholar] [CrossRef]
- Hazak, G.; Kurzweil, Y. A Configurationally-Resolved-Super-Transition-Arrays method for calculation of the spectral absorption coefficient in hot plasmas. High Energy Density Phys. 2012, 8, 290–297. [Google Scholar] [CrossRef]
- Wilson, B.G.; Iglesias, C.A.; Chen, M.H. Partially resolved super transition array method. High Energy Density Phys. 2015, 14, 67–73. [Google Scholar] [CrossRef]
- Kurzweil, Y.; Hazak, G. Summation of the spectra of all partially resolved transition arrays in a supertransition array. Phys. Rev. E 2016, 94, 053210. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, T.; Bailey, J.E.; Mancini, R.C.; Iglesias, C.A.; Hansen, S.B.; Blancard, C.; Chung, H.K.; Colgan, J.; Cosse, P.; Faussurier, G.; et al. Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy. High Energy Density Phys. 2016, 20, 17–22. [Google Scholar] [CrossRef]
- Iglesias, C.A.; Rogers, F.J. Opacities for the solar radiative interior. Astrophys. J. 1991, 371, 408–417. [Google Scholar] [CrossRef]
- Bar-Shalom, A.; Klapisch, M.; Oreg, J. HULLAC, an integrated computer package for atomic processes in plasmas. J. Quant. Spectrosc. Radiat. Transf. 2001, 71, 169–188. [Google Scholar] [CrossRef]
- Bailey, J.E.; Rochau, G.A.; Iglesias, C.A.; Abdallah, J., Jr.; Macfarlane, J.J.; Golovkin, I.; Wang, P.; Mancini, R.C.; Lake, P.W.; Moore, T.C.; et al. Iron-Plasma Transmission Measurements at Temperatures Above 150 eV. Phys. Rev. Lett. 2007, 99, 265002. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, C.A. Enigmatic photon absorption in plasmas near solar interior conditions. High Energy Density Phys. 2015, 15, 4–7. [Google Scholar] [CrossRef]
- Iglesias, C.A.; Hansen, S.B. Fe XVII Opacity at Solar Interior Conditions. Astrophys. J. 2017, 835, 284. [Google Scholar] [CrossRef]
- Iglesias, C.A. Excited spectator electron effects on spectral line shapes. High Energy Density Phys. 2010, 6, 318–331. [Google Scholar] [CrossRef]
- Yan, Y.; Seaton, M.J. Atomic data for opacity calculations. IV. Photoionisation cross sections for C II. J. Phys. B At. Mol. Phys. 1987, 20, 6409–6429. [Google Scholar] [CrossRef]
- Butler, K.; Mendoza, C.; Zeippen, C.J. Atomic data for opacity calculations. XIX. The magnesium isoelectronic sequence. J. Phys. B At. Mol. Phys. 1993, 26, 4409–4423. [Google Scholar] [CrossRef]
- Butler, K.; Mendoza, C.; Zeippen, C.J. Oscillator strengths and photoionisation cross sections for positive ions in the sodium isoelectronic sequence. J. Phys. B At. Mol. Phys. 1984, 17, 2039–2048. [Google Scholar] [CrossRef]
- Palmeri, P.; Mendoza, C.; Kallman, T.R.; Bautista, M.A. On the Structure of the Iron K Edge. Astrophys. J. 2002, 577, L119–L122. [Google Scholar] [CrossRef]
- Gorczyca, T.W.; Robicheaux, F. Auger decay of the photoexcited 2p−1 nL Rydberg series in argon. Phys. Rev. A 1999, 60, 1216–1225. [Google Scholar] [CrossRef]
- Colgan, J.; Kilcrease, D.P.; Magee, N.H.; Armstrong, G.S.J.; Abdallah, J.; Sherrill, M.E.; Fontes, C.J.; Zhang, H.L.; Hakel, P. Light element opacities from ATOMIC. High Energy Density Phys. 2013, 9, 369–374. [Google Scholar] [CrossRef]
- Seaton, M.J. Atomic data for opacity calculations. XIII—Line profiles for transitions in hydrogenic ions. J. Phys. B At. Mol. Phys. 1990, 23, 3255–3296. [Google Scholar] [CrossRef]
- Seaton, M.J.; Yan, Y.; Mihalas, D.; Pradhan, A.K. Opacities for Stellar Envelopes. Mon. Not. R. Astron. Soc. 1994, 266, 805–828. [Google Scholar] [CrossRef]
- Seaton, M.J. Wing formulae for plasma-broadened spectral lines of hydrogenic ions. J. Phys. B At. Mol. Phys. 1995, 28, 565–577. [Google Scholar] [CrossRef]
- Qing, B.; Zhao, Y.; Wei, M.X.; Li, H.; Xiong, G.; Lv, M.; Hu, Z.M.; Zhang, J.Y.; Yang, J.M. Time-Resolved Transmission Measurements of Warm Dense Iron Plasma. Chin. Phys. Lett. 2016, 33, 035203. [Google Scholar] [CrossRef]
- Ross, P.W.; Heeter, R.F.; Ahmed, M.F.; Dodd, E.; Huffman, E.J.; Liedahl, D.A.; King, J.A.; Opachich, Y.P.; Schneider, M.B.; Perry, T.S. Design of the opacity spectrometer for opacity measurements at the National Ignition Facility. Rev. Sci. Instrum. 2016, 87, 11D623. [Google Scholar] [CrossRef] [PubMed]
- Rozsnyai, B.F. Photoabsorption in hot plasmas based on the ion-sphere and ion-correlation models. Phys. Rev. A 1991, 43, 3035–3042. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.N.; Fang, T.K. Atomic photoionization in a changing plasma environment. Phys. Rev. A 2013, 88, 023406. [Google Scholar] [CrossRef]
- Belkhiri, M.; Fontes, C.J.; Poirier, M. Influence of the plasma environment on atomic structure using an ion-sphere model. Phys. Rev. A 2015, 92, 032501. [Google Scholar] [CrossRef]
- Das, M.; Sahoo, B.K.; Pal, S. Plasma screening effects on the electronic structure of multiply charged Al ions using Debye and ion-sphere models. Phys. Rev. A 2016, 93, 052513. [Google Scholar] [CrossRef]
- Krief, M.; Kurzweil, Y.; Feigel, A.; Gazit, D. The effect of ionic correlations on radiative properties in the solar interior and terrestrial experiments. Astrophys. J. 2018, 856, 135. [Google Scholar] [CrossRef]
- Deprince, J.; Fritzsche, S.; Kallman, T.; Palmeri, P.; Quinet, P. Plasma Effects On Atomic Data For The K-Vacancy States Of Highly Charged Iron Ions. arXiv, 2017; arXiv:1701.05757. [Google Scholar]
1. | |
2. | |
3. | |
4. | |
5. | |
6. | |
7. | |
8. | A. K. Pradhan, private communication (2017). |
9. | A. K. Pradhan, private communication (2016). |
Model | Rcz/Rsun | Ysur |
---|---|---|
BS05(GS98,OPAL) | 0.715 | 0.244 |
BS05(GS98,OP) | 0.714 | 0.243 |
BS05(AGS05,OPAL) | 0.729 | 0.230 |
BS05(AGS05,OP) | 0.728 | 0.229 |
Helioseismology | 0.713(1) | 0.249(3) |
i | GS98 | AGS05 | AGSS09 | CLSFB11 | SZ16 |
---|---|---|---|---|---|
C | 8.52 | 8.39(5) | 8.43(5) | 8.50(6) | 8.65(8) |
N | 7.92 | 7.78(6) | 7.83(5) | 7.86(12) | 7.97(8) |
O | 8.83 | 8.66(5) | 8.69(5) | 8.76(7) | 8.82(11) |
Ne | 8.08 | 7.84(6) | 7.93(10) | 7.79(8) | |
Mg | 7.58 | 7.53(9) | 7.60(4) | 7.85(8) | |
Si | 7.56 | 7.51(4) | 7.51(3) | 7.82(8) | |
S | 7.20 | 7.14(5) | 7.12(3) | 7.16(5) | 7.56(8) |
Fe | 7.50 | 7.45(5) | 7.50(4) | 7.52(6) | 7.73(8) |
Z/X | 0.0229 | 0.0165 | 0.0181 | 0.0209 | 0.0265 |
Method | RMO (cm2 g−1) | Ionization Fraction (O(8−n)+) | ||||
---|---|---|---|---|---|---|
n = 0 | n = 1 | n = 2 | n = 3 | n = 4 | ||
OP | 423 | 0.415 | 0.471 | 1.09 × 10−1 | 5.05 × 10−3 | 1.52 × 10−4 |
STAR | 357 | 0.423 | 0.447 | 1.16 × 10−1 | 1.30 × 10−2 | 8.09 × 10−4 |
OPLIB | 374 | 0.446 | 0.451 | 9.59 × 10−2 | 6.23 × 10−3 | 1.68 × 10−4 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza, C. Computation of Atomic Astrophysical Opacities. Atoms 2018, 6, 28. https://doi.org/10.3390/atoms6020028
Mendoza C. Computation of Atomic Astrophysical Opacities. Atoms. 2018; 6(2):28. https://doi.org/10.3390/atoms6020028
Chicago/Turabian StyleMendoza, Claudio. 2018. "Computation of Atomic Astrophysical Opacities" Atoms 6, no. 2: 28. https://doi.org/10.3390/atoms6020028
APA StyleMendoza, C. (2018). Computation of Atomic Astrophysical Opacities. Atoms, 6(2), 28. https://doi.org/10.3390/atoms6020028