Quantum Fisher Information of Three-Level Atom under the Influence of the Stark Effect and Intrinsic Dechorence
Abstract
:1. Introduction
2. Hamiltonian Model
3. Numerical Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Englert, B.-G.; Metwally, N. Kinematics of qubit pairs. In Mathematics of Quantum Computation; Brylinski, R., Chen, G., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2002; pp. 25–75. [Google Scholar]
- Phoenix, S.J.D.; Knight, P.L. Fluctuations and entropy in models of quantum optical resonance. Ann. Phys. 1988, 186, 381–407. [Google Scholar] [CrossRef]
- Phoenix, S.J.D.; Knight, P.L. Establishment of an entangled atom-field state in the Jaynes–Cummings model. Phys. Rev. A 1991, 44, 6023–6029. [Google Scholar] [CrossRef]
- Vedral, V.; Plenio, M.B.; Rippin, M.A.; Knight, P.L. Quantifying entanglement. Phys. Rev. Lett. 1997, 78, 2275–2279. [Google Scholar] [CrossRef] [Green Version]
- Metwally, N. Quantum dense coding and dynamics of information over Bloch channels. J. Phys. A 2011, 44, 055305. [Google Scholar] [CrossRef] [Green Version]
- Obada, A.S.; Ahmed, M.M.A.; Faramawy, F.K.; Khalil, E.M. Entropy and entanglement of the nonlinear Jaynes–Cummings model. Chin. J. Phys. 2004, 42, 79–91. [Google Scholar]
- Hines, A.P.; Dawson, C.M.; McKenzie, R.H.; Milburn, G.J. Entanglement and bifurcations in Jahn–Teller models. Phys. Rev. A 2004, 70, 022303. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Subramaniam, A.R.; Gruzberg, I.A.; Chakravarty, S. Entanglement entropy and multifractality at localization transitions. Phys. Rev. B 2008, 77, 014208. [Google Scholar] [CrossRef] [Green Version]
- Abdelghany, R.A.; Mohamed, A.B.; Tammam, M.; Kuo, W.; Eleuch, H. Tripartite entropic uncertainty relation under phase decoherence. Sci. Rep. 2021, 11, 11830. [Google Scholar] [CrossRef] [PubMed]
- Dattoli, G.; Gallardo, J.; Torre, A. Binomialstatesofthe quantized radiation field: Comment. J. Opt. Soc. Am. B 1987, 4, 185–187. [Google Scholar] [CrossRef]
- Verma, A.; Sharma, N.K.; Pathak, A. Higher order antibunching in intermediate states. Phys. Lett. A 2008, 372, 5542–5551. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, G.S.; Tara, K. Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 1991, 43, 492–497. [Google Scholar] [CrossRef]
- Tavassoly, M.K.; Hekmatara, H. Entanglement and other nonclassical properties of two two-level atoms interacting with a two-mode binomial field: Constant and intensity-dependent coupling regimes. Commun. Theor. Phys. 2015, 64, 439–446. [Google Scholar] [CrossRef]
- Torres-Arenas, A.J.; Dong, Q.; Sun, G.H.; Qiang, W.C.; Dong, S.H. Entanglement measures of W-state in noninertial frames. Phys. Lett. B 2019, 789, 93–105. [Google Scholar] [CrossRef]
- Qiang, W.C.; Dong, Q.; Mercado Sanchez, M.A.; Sun, G.H.; Dong, S.H. Entanglement property of the Werner state in accelerated frames. Quantum Inf. Process. 2019, 18, 314. [Google Scholar] [CrossRef]
- Dong, Q.; Sanchez, M.M.; Sun, G.H.; Toutounji, M.; Dong, S.H. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration. Chin. Phys. Lett. 2019, 36, 100301. [Google Scholar] [CrossRef]
- Fisher, R.A. Theory of Statistical Estimation. Proc. Camb. Philos. Soc. 1929, 22, 700, reprinted in Collected Papers of R.A. Fisher; Bennett, J.H., Ed.; Univ. of Adelaide Press: Adelaide, South Australia, 1972; pp. 15–40.. [Google Scholar] [CrossRef] [Green Version]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum-Enhanced Measurements: Beating the Standard Quantum Limit. Science 2004, 306, 1330–1336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowling, J. Quantum Optical Metrology-The Lowdown On High-N00N States. Contemp. Phys. 2008, 49, 125–143. [Google Scholar] [CrossRef]
- Jones, J.A.; Karlen, S.D.; Fitzsimons, J.; Ardavan, A.; Benjamin, S.C.; Briggs, G.A.D.; Morton, J.J.L. Magnetic Field Sensing Beyond the Standard Quantum Limit Using 10-SpinNOON States. Science 2009, 324, 1166–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, S.; Jones, J.A.; Karlen, S.D.; Ardavan, A.; Morton, J.J.L. Magnetic field sensors using 13-spin cat states. Phys. Rev. A 2010, 82, 022330. [Google Scholar] [CrossRef] [Green Version]
- Higgins, B.L.; Berry, D.W.; Bartlett, S.D.; Wiseman, H.M.; Pryde, G.J. Entanglement-free Heisenberg-limited phase estimation. Nature 2007, 450, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorner, U.; Smith, B.J.; Lundeen, J.S.; Wasilewski, W.; Banaszek, K.; Walmsley, I.A. Quantum phase estimation with lossy interferometers. Phys. Rev. A 2009, 80, 013825. [Google Scholar]
- Cramer, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1946. [Google Scholar]
- Dorner, U.; Demkowicz-Dobrzanski, R.; Smith, B.J.; Lundeen, J.S.; Wasilewski, W.; Banaszek, K.; Walmsley, I.A. Optimal Quantum Phase Estimation. Phys. Rev. Lett. 2009, 102, 040403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Khalek, S. Dynamics of Fisher information in Kerr medium. Int. J. Quantum Inf. 2009, 7, 1541–1548. [Google Scholar] [CrossRef]
- Joo, J.; Munro, W.J.; Spiller, T.P. Quantum Metrology with Entangled Coherent States. Phys. Rev. Lett. 2011, 107, 083601. [Google Scholar] [CrossRef]
- Rissanen, J.J. Fisher information and stochastic complexity. IEEE Trans. Inf. Theory 1996, 42, 40–47. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Caves, C.M. Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 1994, 72, 3439. [Google Scholar] [CrossRef]
- Alipour, S.; Mehboudi, M.; Rezakhani, A.T. Quantum metrology in open systems: Dissipative cramér-rao bound. Phys. Rev. Lett. 2014, 112, 120405. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, M.; Yang, P.; Gong, M.; Cao, Q.; Zhang, S.; Cai, J. Saturating the quantum Cramér-Rao bound and measuring the related quantum Fisher information in a nitrogen-vacancy center in diamond. arXiv 2020, arXiv:2003.08373. [Google Scholar]
- Liu, J.; Yuan, H.; Lu, X.M.; Wang, X. Quantum Fisher information matrix and multiparameter estimation. J. Phys. A Math. Theor. 2019, 53, 023001. [Google Scholar] [CrossRef]
- Helstron, C.W. Quantum Detection and Estimation Theory; Academic Press: New York, NY, USA, 1967. [Google Scholar]
- Roy, S.M.; Braunstein, S.L. Exponentially enhanced quantum metrology. Phys. Rev. Lett. 2008, 100, 220501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boixo, S.; Datta, A.; Davis, M.J.; Flammia, S.T.; Shaji, A.; Caves, C.M. Quantum metrology: Dynamics versus entanglement. Phys. Rev. Lett. 2008, 101, 040403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Huang, Y.X.; Wang, X.; Sun, C.P. Quantum Fisher information of the Greenberger-Horne-Zeilinger state in decoherence channels. Phys. Rev. A 2011, 84, 022302. [Google Scholar] [CrossRef] [Green Version]
- Monras, A.; Paris, M.G. Optimal quantum estimation of loss in bosonic channels. Phys. Rev. Lett. 2007, 98, 160401. [Google Scholar] [CrossRef] [Green Version]
- Luo, S. Wigner-yanase skew information vs. quantum Fisher information. Proc. Am. Math. Soc. 2004, 132, 885–890. [Google Scholar] [CrossRef]
- Luo, S. Quantum Fisher information and uncertainty relations. Lett. Math. Phys. 2000, 53, 243–251. [Google Scholar] [CrossRef]
- Taddei, M.M.; Escher, B.M.; Davidovich, L.; de Matos Filho, R.L. Quantum Speed Limit for Physical Processes. Phys. Rev. Lett. 2013, 110, 050402. [Google Scholar] [CrossRef]
- Sun, Z.; Ma, J.; Lu, X.-M.; Wang, X. Fisher information in a quantum-critical environment. Phys. Rev. A 2010, 82, 022306. [Google Scholar] [CrossRef] [Green Version]
- Chapeau-Blondeau, F. Entanglement-assisted quantum parameter estimation from a noisy qubit pair: A Fisher information analysis. Phys. Lett. A 2017, 381, 1369–1378. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Khalek, S.; Khalil, E.M.; Ali, S.I. Entanglement of a two-level atom papered in a finite Trio Coherent state. Laser Phys. 2008, 18, 135–143. [Google Scholar] [CrossRef]
- Abdel-Khalek, S.; Obada, A.S.F. New features of Wehrl entropy and Wehrl PD of a single-Cooper pair box placed inside a dissipative cavity. Ann. Phys. 2010, 325, 2542–2549. [Google Scholar] [CrossRef]
- Obada, A.-S.F.; Abdel-Khalek, S. Entanglement evaluation with atomic Fisher information. Physica A 2010, 389, 891–898. [Google Scholar] [CrossRef]
- Obada, A.-S.F.; Abdel-Khalek, S.; Plastino, A. Information quantifiers’s description of weak field vs. strong field dynamics for a trapped ion in a laser field. Physica A 2011, 390, 525–533. [Google Scholar] [CrossRef]
- Abdel-Khalek, S.; Berrada, K.; Obada, A.S.F. An investigation of quantum Fisher information of a single qubit system. Eur. Phys. J. D 2012, 66, 69. [Google Scholar] [CrossRef]
- Berrada, K.; Abdel-Khalek, S.; Obada, A.S.F. Quantum Fisher information for a qubit system placed inside a dissipative cavity. Phys. Lett. A 2012, 376, 1412–1416. [Google Scholar] [CrossRef]
- Li, X.-S.; Lin, D.L.; Gong, C.-D. Nonresonant interaction of a three-level atom with cavity fields. I. General formalism and level occupation probabilities. Phys. Rev. A 1987, 36, 5209–5219. [Google Scholar] [CrossRef]
- Abdel-Wahab, N.H. The general formalism for a three-level atom interacting with a two-mode cavity field. Phys. Scr. 2007, 76, 233. [Google Scholar] [CrossRef]
- Abdel-Wahab, N.H. A three-level atom interacting with a single mode cavity field: Different configurations. Phys. Scr. 2007, 76, 244. [Google Scholar] [CrossRef]
- Obada, A.-S.F.; Eied, A.A.; Abd Al-Kader, G.M. Entanglement of a general formalism-type three-level atom interacting with a non-correlated two-mode cavity field in the presence of nonlinearities. J. Phys. B 2008, 41, 195503. [Google Scholar] [CrossRef]
- Teng, J.-H.; Wang, H.-F.; Qi, L.N.; Zhang, S. Influence of Kerr medium on entanglement of Cascade-type three-level atoms and a bimodal cavity field. Int. J. Theor. Phys. 2009, 48, 2818–2825. [Google Scholar] [CrossRef]
- Mortezapoura, A.; Mahmoudib, M.; Khajehpourc, M.R.H. Atom–photon, two-mode entanglement and two-mode squeezing in the presence of cross-Kerr nonlinearity. Opt. Quantum. Electron. 2015, 47, 2311–2329. [Google Scholar] [CrossRef] [Green Version]
- Metwally, N.; Eleuch, H.; Obada, A.-S. Sudden death and rebirth of entanglement for different dimensional systems driven by a classical random external field. Laser Phys. Lett. 2016, 13, 105206. [Google Scholar] [CrossRef] [Green Version]
- Faghihia, M.J.; Tavassolya, M.K.; Hatamid, M. Dynamicsof entanglement of a three-level atom in motion interacting with two coupled modes including parametric down conversion. Physica A 2014, 407, 100–109. [Google Scholar] [CrossRef] [Green Version]
- Ismail, M.K.; El-Shahat, T.M. Thedampedinteraction between a single-mode cavity field with Caldirola–Kanai Hamiltonian and a three-level atom. Chin. J. Phys. 2019, 59, 273–280. [Google Scholar] [CrossRef]
- El-Wahab, N.A.; Rady, A.A.; Osman, A.N.A.; Salah, A. Influence of the gravitational field on the statistics of a three-level atom interacting with a one-mode cavity field. J. Russ. Laser Res. 2015, 36, 423–429. [Google Scholar] [CrossRef]
- Abdel-Aty, M.; Obada, A.-S.F. Engineering entanglement of a general three-level system interacting with a correlated two-mode nonlinear coherent state. Eur. Phys. J. D 2003, 23, 155–165. [Google Scholar] [CrossRef]
- Abdel-Wahab, N.H.; Salah, A. On the interaction between a time-dependent field and a two-level atom. Mod. Phys. Lett. A 2019, 34, 1950081. [Google Scholar] [CrossRef]
- Milburn, G.J. Intrinsic decoherence in quantum mechanics. Phys. Rev. A 1991, 44, 5401. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, C.W. Quantum Noise; Springer: Berlin, Germany, 1991. [Google Scholar]
- Ghirardi, G.C.; Rimini, A.; Weber, T. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 1986, 34, 470. [Google Scholar] [CrossRef]
- Diosi, L. Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 1989, 40, 1165. [Google Scholar] [CrossRef]
- Ellis, J.; Mohanty, S.; Nanopoulos, D.V. Wormholes violate quantum mechanics in SQUIDs. Phys. Lett. B 1990, 235, 305. [Google Scholar] [CrossRef] [Green Version]
- Anwar, S.J.; Ramzan, M.; Khan, M.K. Dynamics of entanglement and quantum Fisher information for N-level atomic system under intrinsic decoherence. Quantum Inf. Process. 2017, 16, 142. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, G.F. Intrinsic decoherence in Jaynes-Cummings model with Heisenberg exchange interaction. Eur. Phys. J. D 2017, 71, 288. [Google Scholar] [CrossRef]
- Liao, Y.Y.; Jian, S.R.; Lee, J.R. Effect of intrinsic decoherence on entanglement of three polar molecules with two-dimensional rotation. Eur. Phys. J. D 2019, 73, 47. [Google Scholar] [CrossRef]
- Obada, A.S.F.; Mohamed, A.B.A. Quantum correlations of two non-interacting ion’s internal electronic states with intrinsic decoherence. Opt. Commun. 2013, 309, 236–241. [Google Scholar] [CrossRef]
- Mohamed, A.-B. Non-local correlation and quantum discord in two atoms in the non-degenerate model. Ann. Phys. 2012, 327, 3130–3137. [Google Scholar] [CrossRef]
- Mohamed, A.B.A.; Eleuch, H. Optical tomography dynamics induced by qubit-resonator interaction under intrinsic decoherence. Sci. Rep. 2022, 12, 17162. [Google Scholar] [CrossRef]
- Mohamed, A.A.; Hessian, H.A.; Al-Duais, F.S.; Eleuch, H. Quantum coherence induced by a flux qubit coupled by a resonator coherent field through a two-photon interaction. Phys. Scr. 2021, 96, 125120. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A.; Hessian, H.A. Non-classicality in an open two-mode parametric amplifier cavity containing a qutrit system. Phys. Scr. 2021, 96, 055102. [Google Scholar] [CrossRef]
- Alliluev, S.P.; Malkin, I.A. Calculations of the Stark effect in hydrogen atoms by using the dynamical symmetry O(2, 2) × 278 O(2). Zh. Eksp. Teor. Fiz. 1974, 66, 1283–1294. [Google Scholar]
- Al Naim, A.F.; Khan, J.Y.; Khalil, E.M.; Addel-Khalek, S. Effects of Kerr medium and Stark shift parameter on Wehrl entropy and the field purity for two-photon Jaynes-Cumminges model under dispersive approximation. J. Russ. Laser. Res. 2019, 40, 20–29. [Google Scholar] [CrossRef]
- Hilal, E.M.A.; Khalil, E.M. Quantum statistical aspects of interactions between the radiation field and two entangled two-level atoms in the presence of Stark shift terms. J. Russ. Laser. Res. 2018, 39, 207–215. [Google Scholar] [CrossRef]
- Anwar, S.J.; Ramzan, M.; Usman, M.; Khan, M.K. Entanglement dynamics of three and four level atomic system under Stark effect and Kerr-like medium. Quantum Rep. 2019, 1, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Anwar, S.J.; Ramzan, M.; Khan, M.K. Effect of Stark-and Kerr-like medium on the entanglement dynamics of two three-level atomic system. Quantum Inf. Process. 2019, 18, 192. [Google Scholar] [CrossRef]
- Anwar, S.J.; Ramzan, M.; Usman, M.; Khan, M.K. Stark and Kerr effects on the dynamics of moving N-level atomic system. J. Quantum Inf. 2019, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Aty, M.; Furuichi, S.; Obada, A.F. Entanglement degree of a nonlinear multiphoton Jaynes-Cummings model. J. Opt. B Quantum Semiclass. Opt. 2002, 4, 37. [Google Scholar] [CrossRef]
- Baghshahi, H.R.; Tavassoly, M.K.; Behjat, A. Entropy squeezing and atomic inversion in the k-photon Jaynes Cummings model in the presence of the Stark shift and a Kerr medium: A full nonlinear approach. Chin. Phys. B 2014, 23, 074203. [Google Scholar] [CrossRef] [Green Version]
- Golkar, S.; Tavassoly, M. Dynamics and maintenance of bipartite entanglement via the Stark shift effect inside dissipative reservoirs. Laser Phys. Lett. 2018, 15, 035205. [Google Scholar] [CrossRef]
- Obada, A.F.; Abdel-Khalek, S.; Khalil, E.M.; Ali, S.I. Effects of Stark shift and decoherence terms on the dynamics of phase-space entropy of the multiphoton Jaynes Cummings model. Phys. Scr. 2012, 86, 055009. [Google Scholar] [CrossRef]
- Abdel-Khalek, S. Quantum Fisher information for moving three-level atom. Quantum Inf. Process. 2013, 12, 3761–3769. [Google Scholar] [CrossRef]
- Enaki, N.A.; Ciobanu, N.J. Quantum trapping conditions for three-level atom flying through bimodal cavity field. Mod. Opt. 2008, 55, 589–598. [Google Scholar] [CrossRef]
- Guo, J.L.; Song, H.S. Entanglement between two Tavis–Cummings atoms with phase decoherence. J. Mod. Opt. 2009, 56, 496–501. [Google Scholar] [CrossRef]
- Lu, X.; Wang, X.; Sun, C.P. Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 2010, 82, 042103. [Google Scholar] [CrossRef] [Green Version]
- Barndorff-Nielsen, O.E.; Gill, R.D.; Jupp, P.E. On quantum statistical inference. J. R. Stat. Soc. B 2003, 65, 775–816. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, S.J.; Ramzan, M.; Khan, M.K. Quantum Fisher Information of Three-Level Atom under the Influence of the Stark Effect and Intrinsic Dechorence. Atoms 2023, 11, 42. https://doi.org/10.3390/atoms11030042
Anwar SJ, Ramzan M, Khan MK. Quantum Fisher Information of Three-Level Atom under the Influence of the Stark Effect and Intrinsic Dechorence. Atoms. 2023; 11(3):42. https://doi.org/10.3390/atoms11030042
Chicago/Turabian StyleAnwar, S. Jamal, M. Ramzan, and M. Khalid Khan. 2023. "Quantum Fisher Information of Three-Level Atom under the Influence of the Stark Effect and Intrinsic Dechorence" Atoms 11, no. 3: 42. https://doi.org/10.3390/atoms11030042
APA StyleAnwar, S. J., Ramzan, M., & Khan, M. K. (2023). Quantum Fisher Information of Three-Level Atom under the Influence of the Stark Effect and Intrinsic Dechorence. Atoms, 11(3), 42. https://doi.org/10.3390/atoms11030042