# Nonlinear Dynamics in Isotropic and Anisotropic Magneto-Optical Traps

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Model and Time-Dependent Variational Method

## 3. Results

#### 3.1. Anisotropic MOT

#### 3.2. Isotropic MOT

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Labeyrie, G.; Michaud, F.; Kaiser, R. Self-Sustained Oscillations in a Large Magneto-Optical Trap. Phys. Rev. Lett.
**2006**, 96, 023003. [Google Scholar] [CrossRef] [PubMed] - Di Stefano, A.; Fauquembergue, M.; Verkerk, P.; Hennequin, D. Giant Oscillations in a Magneto-Optical Trap. Phys. Rev. A
**2003**, 67, 033404. [Google Scholar] [CrossRef] - Townsend, C.G.; Edwards, N.H.; Cooper, C.J.; Zetie, K.P.; Foot, C.J.; Steane, A.M.; Szriftgiser, P.; Perrin, H.; Dalibard, J. Phase-Space Density in the Magneto-Optical Trap. Phys. Rev. A
**1995**, 52, 1423. [Google Scholar] [CrossRef] [PubMed] - Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science
**1995**, 269, 198. [Google Scholar] [CrossRef] [PubMed] - Guidoni, L.; Verkerk, P. Optical Lattices: Cold Atoms Ordered by Light. J. Opt. B Quantum Semiclass. Opt.
**1999**, 1, R23. [Google Scholar] [CrossRef] - Bloch, I. Ultracold Quantum Gases in Optical Lattices. Nat. Phys.
**2005**, 1, 23. [Google Scholar] [CrossRef] - Stellmer, S.; Pasquiou, B.; Grimm, R.; Schreck, F. Laser Cooling to Quantum Degeneracy. Phys. Rev. Lett.
**2013**, 110, 263003. [Google Scholar] [CrossRef] [PubMed] - Labeyrie, G.; Tesio, E.; Gomes, P.M.; Oppo, G.L.; Firth, W.J.; Robb, G.R.M.; Arnold, A.S.; Kaiser, R.; Ackemann, T. Optomechanical Self-Structuring in a Cold Atomic Gas. Nat. Photonics
**2014**, 8, 321. [Google Scholar] [CrossRef] - Manfredi, G.; Hervieux, P.-A. Adiabatic Cooling of Trapped Non-Neutral Plasmas. Phys. Rev. Lett.
**2012**, 109, 255005. [Google Scholar] [CrossRef] [PubMed] - Cox, J.P. Theory of Stellar Pulsation; Princeton University Press: Princeton, NJ, USA, 1980. [Google Scholar]
- Terças, H.; Mendonça, J.T.; Kaiser, R. Driven Collective Instabilities in Magneto-Optical Traps: A Fluid-Dynamical Approach. Europhys. Lett.
**2010**, 89, 53001. [Google Scholar] [CrossRef] - Terças, H.; Kaiser, R.; Mendonça, J.T.; Loureiro, J. Collective Oscillations in Ultracold Atomic Gas. Phys. Rev. A
**2008**, 78, 013408. [Google Scholar] - Terças, H.; Mendonça, J.T. Polytropic Equilibrium and Normal Modes in Cold Atomic Traps. Phys. Rev. A
**2013**, 88, 023412. [Google Scholar] [CrossRef] - Soares, L.G.F.; Haas, F. Nonlinear Oscillations of Ultra-Cold Atomic Clouds in a Magneto-Optical Trap. Phys. Scr.
**2019**, 94, 125214. [Google Scholar] [CrossRef] - Soares, L.G.F.; Haas, F. Dynamics and Stability of Axially Symmetric Atomic Clouds in Magneto-Optical Trap. Acta Phys. Pol. A
**2021**, 139, 6. [Google Scholar] [CrossRef] - Sesko, D.W.; Walker, T.G.; Wieman, C.E. Behavior of Neutral Atoms in a Spontaneous Force Trap. J. Opt. Soc. Am. B
**1991**, 8, 946. [Google Scholar] [CrossRef] - Walker, T.; Sesko, D.; Wieman, C. Collective Behavior of Optically Trapped Neutral Atoms. Phys. Rev. Lett.
**1990**, 64, 408. [Google Scholar] [CrossRef] - Steane, A.M.; Chowdhury, M.; Foot, C.J. Radiation force in the magneto-optical trap. J. Opt. Soc. Am. B
**1992**, 9, 2142. [Google Scholar] [CrossRef] - De Oliveira, R.S.; Raposo, E.P.; Vianna, S.S. Numerical Study of Magneto-Optical Traps through a Hierarchical Tree Method. Phys. Rev. A
**2004**, 70, 023402. [Google Scholar] [CrossRef] - Fioretti, A.; Molisch, A.F.; Müller, J.H.; Verkerk, P.; Allegrini, M. Observation of Radiation Trapping in a Dense Cs Magneto-Optical Trap. Opt. Commun.
**1998**, 149, 415. [Google Scholar] [CrossRef] - Arnold, A.S.; Manson, P.J. Atomic Density and Temperature Distributions in Magneto-Optical Traps. J. Opt. Soc. Am. B
**2000**, 17, 497. [Google Scholar] [CrossRef] - Gajda, M.; Mostowski, J. Three-Dimensional Theory of the Magneto-Optical Trap: Doppler Cooling in the Low-Intensity Limit. Phys. Rev. A
**1994**, 49, 4864. [Google Scholar] [CrossRef] [PubMed] - Haas, F. Variational Method for the Three-Dimensional Many-Electron Dynamics of Semiconductor Quantum Wells. AIP Conf. Proc.
**2012**, 1421, 100. [Google Scholar] - Hurst, J.; Lévêque-Simon, K.; Hervieux, P.A.; Manfredi, G.; Haas, F. High-Harmonic Generation in a Quantum Electron Gas Trapped in a Nonparabolic and Anisotropic Well. Phys. Rev. A
**2016**, 93, 205402. [Google Scholar] [CrossRef] - Manfredi, G.; Hervieux, P.A.; Haas, F. Nonlinear Dynamics of Electron–Positron Clusters. New J. Phys.
**2012**, 14, 075012. [Google Scholar] [CrossRef] - Haas, F.; Eliasson, B. Time-Dependent Variational Approach for Bose–Einstein Condensates with Nonlocal Interaction. J. Phys. B
**2018**, 51, 175302. [Google Scholar] [CrossRef] - Adhikari, S.K. Finite-Well Potential in the 3D Nonlinear Schrödinger Equation: Application to Bose-Einstein Condensation. Eur. Phys. J. D
**2007**, 42, 279. [Google Scholar] [CrossRef] - Ghosh, T.K. Vortex Formation in a Slowly Rotating Bose-Einstein Condensate Confined in a Harmonic-plus-Gaussian Laser Trap. Eur. Phys. J. D
**2004**, 31, 101. [Google Scholar] [CrossRef] - Salasnich, L. Time-Dependent Variational Approach to Bose–Einstein Condensation. Int. J. Mod. Phys. B
**2000**, 14, 1. [Google Scholar] [CrossRef] - Salasnich, L. Generalized Nonpolynomial Schrödinger Equations for Matter Waves under Anisotropic Transverse Confinement. J. Phys. A
**2009**, 42, 335205. [Google Scholar] [CrossRef] - Perez-Garcia, V.M.; Michinel, H.; Cirac, J.I.; Lewenstein, M.; Zoller, P. Dynamics of Bose-Einstein Condensates: Variational Solutions of the Gross-Pitaevskii Equations. Phys. Rev. A
**1997**, 56, 1424. [Google Scholar] [CrossRef] - Perez-Garcia, V.M.; Michinel, H.; Cirac, J.I.; Lewenstein, M.; Zoller, P. Low Energy Excitations of a Bose-Einstein Condensate: A Time-Dependent Variational Analysis. Phys. Rev. Lett.
**1996**, 77, 5320. [Google Scholar] [CrossRef] [PubMed] - Anwara, M.; Faisal, M.; Ahmed, M. An Experimental Investigation of the Trap-Dynamics of a Cesium Magneto-Optical Trap at High Laser Intensities. Eur. Phys. J. D
**2013**, 67, 270. [Google Scholar] [CrossRef] - Gattobigio, G.L.; Michaud, F.; Labeyrie, G.; Pohl, T.; Kaiser, R. Long Range Interactions between Neutral Atoms. AIP Conf. Proc.
**2006**, 862, 211. [Google Scholar] - Chanelière, T.; He, L.; Kaiser, R.; Wilkowski, D. Three Dimensional Cooling and Trapping with a Narrow Line. Eur. Phys. J. D
**2006**, 46, 507. [Google Scholar] [CrossRef] - Gaudesius, M.; Zhang, Y.-C.; Pohl, T.; Kaiser, R.; Labeyrie, G. Three-Dimensional Simulations of Spatiotemporal Instabilities in a Magneto-Optical Trap. Phys. Rev. A
**2022**, 105, 013112. [Google Scholar] [CrossRef] - Gaudesius, M.; Kaiser, R.; Labeyrie, G.; Zhang, Y.-C.; Pohl, T. Instability Threshold in a Large Balanced Magneto-Optical Trap. Phys. Rev. A
**2020**, 101, 053626. [Google Scholar] [CrossRef] - Boudot, R.; McGilligan, J.P.; Moore, K.R.; Maurice, V.; Martinez, G.D.; Hansen, A.; de Clercq, E.; Kitching, J. Enhanced Observation Time of Magneto-Optical Traps using Micro-Machined Non-Evaporable Getter Pumps. Sci. Rep.
**2020**, 10, 16590. [Google Scholar] [CrossRef] - Pérez-Ríos, J.; Sanz, A.S. How does a Magnetic Trap Work? Am. J. Phys.
**2013**, 81, 836. [Google Scholar] [CrossRef] - Devlin, J.A.; Tarbutt, M.R. Laser Cooling and Magneto-Optical Trapping of Molecules Analyzed using Optical Bloch Equations and the Fokker-Planck-Kramers Equation. Phys. Rev. A
**2018**, 98, 063415. [Google Scholar] [CrossRef]

**Figure 1.**Numerical solution of (19) and (20) normalized to ${\alpha}_{0}$. Parameters are indicated in the text. Blue curve: ${\alpha}_{\perp}$; red curve: ${\alpha}_{z}$; green line: equilibrium solution ${\alpha}_{\perp eq}/{\alpha}_{0}=0.47$; black line: ${\alpha}_{zeq}/{\alpha}_{0}=0.33$. Initial conditions: ${\alpha}_{\perp 0}={\alpha}_{z0}={\alpha}_{0}$ and ${\dot{\alpha}}_{\perp 0}={\dot{\alpha}}_{z0}=0$.

**Figure 2.**Numerical solution of (26) normalized to ${\alpha}_{0}$ with ${\omega}_{r}=240\phantom{\rule{0.166667em}{0ex}}\mathrm{rad}/\mathrm{s}$ and $\nu =65\phantom{\rule{0.166667em}{0ex}}{\mathrm{s}}^{-1}$. Blue curve: ${\alpha}_{r}$; orange line: equilibrium solution ${\alpha}_{req}/{\alpha}_{0}=0.44$. Initial conditions: ${\alpha}_{r0}={\alpha}_{0}$ and ${\dot{\alpha}}_{r0}=0$, using the same parameters as in Figure 1.

**Figure 3.**Numerical simulation of the anisotropy parameter $\chi $ given by Equation (31) using the simulations of Equations (19) and (20). Blue curve: numerical simulation for $\chi $. The horizontal line shows the equilibrium state ${\chi}_{eq}={\alpha}_{\perp eq}/{\alpha}_{zeq}=1.42$, using the same parameters as in Figure 1.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Haas, F.; Soares, L.G.F. Nonlinear Dynamics in Isotropic and Anisotropic Magneto-Optical Traps. *Atoms* **2022**, *10*, 83.
https://doi.org/10.3390/atoms10030083

**AMA Style**

Haas F, Soares LGF. Nonlinear Dynamics in Isotropic and Anisotropic Magneto-Optical Traps. *Atoms*. 2022; 10(3):83.
https://doi.org/10.3390/atoms10030083

**Chicago/Turabian Style**

Haas, Fernando, and Luiz Gustavo Ferreira Soares. 2022. "Nonlinear Dynamics in Isotropic and Anisotropic Magneto-Optical Traps" *Atoms* 10, no. 3: 83.
https://doi.org/10.3390/atoms10030083