Generalizations of the R-Matrix Method to the Treatment of the Interaction of Short-Pulse Electromagnetic Radiation with Atoms
Abstract
:1. Introduction
2. Solving the TDSE via the R-Matrix Method
3. Example Results
4. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
Abbreviations
TDSE | Time-Dependent Schrödinger Equation |
BSR | B-Spline R-Matrix |
RMT | R-Matrix with Time Dependence |
TDBSR | Time-Dependent B-Spline R-matrix |
SIL | Short Iterative Lanczos |
XUV | Extreme Ultraviolet |
References
- Lane, A.M.; Robson, D. Comprehensive Formalism for Nuclear Reaction Problems. I. Derivation of Existing Reaction Theories. Phys. Rev. 1966, 151, 774–787. [Google Scholar] [CrossRef]
- Lane, A.M. The application of Wigner’s R-matrix theory to atomic physics. J. Phys. B At. Mol. Phys. 1986, 19, 253–257. [Google Scholar] [CrossRef]
- Burke, P.G.; Hibbert, A.; Robb, W.D. Electron scattering by complex atoms. J. Phys. B At. Mol. Phys. 1971, 4, 153–161. [Google Scholar] [CrossRef]
- Berrington, K.A.; Burke, P.G.; Robb, W.D. The scattering of electrons by atomic nitrogen. J. Phys. B At. Mol. Phys. 1975, 8, 2500–2511. [Google Scholar] [CrossRef]
- Burke, P.G.; Robb, W.D. The R-Matrix Theory of Atomic Processes. Adv. At. Molec. Phys. 1976, 11, 143–214. [Google Scholar] [CrossRef]
- Burke, P.G. R-Matrix Theory of Atomic Collisions; Springer Series on Atomic, Optical, and Plasma Physics 61; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Schneider, B. R-matrix theory for electron-atom and electron-molecule collisions using analytic basis set expansions. Chem. Phys. Lett. 1975, 31, 237–241. [Google Scholar] [CrossRef]
- Schneider, B.I. R-matrix theory for electron-molecule collisions using analytic basis set expansions. II. Electron-H2 scattering in the static-exchange model. Phys. Rev. A 1975, 11, 1957. [Google Scholar] [CrossRef]
- Burke, P.G.; Mackey, I.; Shimamura, I. R-matrix theory of electron-molecule scattering. J. Phys. B At. Mol. Phys. 1977, 10, 2497–2512. [Google Scholar] [CrossRef] [Green Version]
- Mašín, Z.; Benda, J.; Gorfinkiel, J.D.; Harvey, A.G.; Tennyson, J. UKRmol+: A suite for modelling electronic processes in molecules interacting with electrons, positrons and photons using the R-matrix method. Comput. Phys. Commun. 2020, 249, 107092. [Google Scholar] [CrossRef] [Green Version]
- Zatsarinny, O. BSR: B-spline atomic R-matrix codes. Comput. Phys. Commun. 2006, 174, 273–356. [Google Scholar] [CrossRef]
- Zatsarinny, O.; Bartschat, K. The B-spline R-matrix method for atomic processes: Application to atomic structure, electron collisions and photoionization. J. Phys. B At. Mol. Opt. Phys. 2013, 46, 112001. [Google Scholar] [CrossRef]
- Froese Fischer, C.; Idrees, M. Spline algorithms for continuum functions. Comput. Phys. 1989, 3, 53–58. [Google Scholar] [CrossRef]
- Berrington, K.A.; Eissner, W.; Norrington, P.H. RMATRIX-I: Belfast Atomic R-Matrix Codes. Comput. Phys. Commun. 1995, 92, 290. [Google Scholar] [CrossRef]
- Wragg, J.; Ballance, C.; van der Hart, H. Breit–Pauli R-Matrix approach for the time-dependent investigation of ultrafast processes. Comput. Phys. Commun. 2020, 254, 107274. [Google Scholar] [CrossRef]
- Morgan, L.A.; Tennyson, J.; Gillan, C.J. The UK molecular R-matrix codes. Comput. Phys. Commun. 1998, 114, 120–128. [Google Scholar] [CrossRef]
- Meltzer, T.; Tennyson, J.; Mašín, Z.; Zammit, M.C.; Scarlett, L.H.; Fursa, D.V.; Bray, I. Benchmark calculations of electron impact electronic excitation of the hydrogen molecule. J. Phys. B At. Mol. Opt. Phys. 2020, 53, 145204. [Google Scholar] [CrossRef] [Green Version]
- Bray, I.; Fursa, D.; Kadyrov, A.; Stelbovics, A.; Kheifets, A.; Mukhamedzhanov, A. Electron- and photon-impact atomic ionisation. Phys. Rep. 2012, 520, 135–174. [Google Scholar] [CrossRef]
- Bartschat, K.; Hudson, E.T.; Scott, M.P.; Burke, P.G.; Burke, V.M. Electron-atom scattering at low and intermediate energies using a pseudo-state/ R-matrix basis. J. Phys. B At. Mol. Phys. 1996, 29, 115. [Google Scholar] [CrossRef]
- Ren, X.; Pflüger, T.; Ullrich, J.; Zatsarinny, O.; Bartschat, K.; Madison, D.H.; Dorn, A. Erratum: Low-energy electron-impact ionization of argon: Three-dimensional cross section [Phys. Rev. A 85, 032702 (2012)]. Phys. Rev. A 2015, 92, 019901. [Google Scholar] [CrossRef]
- Zatsarinny, O.; Bartschat, K. B-spline Breit-Pauli R-matrix calculations for electron collisions with neon atoms. J. Phys. B At. Mol. Opt. Phys. 2004, 37, 2173–2189. [Google Scholar] [CrossRef]
- Bartschat, K.; Kushner, M.J. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology. Proc. Nat. Acad. Sci. USA 2016, 113, 7026–7034. [Google Scholar] [CrossRef] [Green Version]
- Bartschat, K. Electron collisions—Experiment, theory, and applications. J. Phys. B At. Mol. Opt. Phys. 2018, 51, 132001. [Google Scholar] [CrossRef]
- Guan, X.; Zatsarinny, O.; Bartschat, K.; Schneider, B.I.; Feist, J.; Noble, C.J. General approach to few-cycle intense laser interactions with complex atoms. Phys. Rev. A 2007, 76, 053411. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Noble, C.J.; Zatsarinny, O.; Bartschat, K.; Schneider, B.I. Time-dependent R-matrix calculations for multiphoton ionization of argon atoms in strong laser pulses. Phys. Rev. A 2008, 78, 053402. [Google Scholar] [CrossRef]
- Park, T.J.; Light, J.C. Unitary quantum time evolution by iterative Lanczos reduction. J. Chem. Phys. 1986, 85, 5870–5876. [Google Scholar] [CrossRef]
- Guan, X.; Bartschat, K.; Schneider, B.I. Dynamics of two-photon double ionization of helium in short intense xuv laser pulses. Phys. Rev. A 2008, 77, 043421. [Google Scholar] [CrossRef]
- Feist, J.; Nagele, S.; Pazourek, R.; Persson, E.; Schneider, B.I.; Collins, L.A.; Burgdörfer, J. Nonsequential two-photon double ionization of helium. Phys. Rev. A 2008, 77, 043420. [Google Scholar] [CrossRef] [Green Version]
- Feist, J.; Zatsarinny, O.; Nagele, S.; Pazourek, R.; Burgdörfer, J.; Guan, X.; Bartschat, K.; Schneider, B.I. Time delays for attosecond streaking in photoionization of neon. Phys. Rev. A 2014, 89, 033417. [Google Scholar] [CrossRef] [Green Version]
- Burke, P.G.; Burke, V.M. Time-dependent R-matrix theory of multiphoton processes. J. Phys. B At. Mol. Opt. Phys. 1997, 30, L383–L391. [Google Scholar] [CrossRef]
- Nikolopoulos, L.A.A.; Parker, J.S.; Taylor, K.T. Combined R-matrix eigenstate basis set and finite-difference propagation method for the time-dependent Schrödinger equation: The one-electron case. Phys. Rev. A 2008, 78, 063420. [Google Scholar] [CrossRef] [Green Version]
- Lysaght, M.A.; van der Hart, H.W.; Burke, P.G. Time-dependent R-matrix theory for ultrafast atomic processes. Phys. Rev. A 2009, 79, 053411. [Google Scholar] [CrossRef] [Green Version]
- Parker, J.S.; Doherty, B.J.S.; Taylor, K.T.; Schultz, K.D.; Blaga, C.I.; DiMauro, L.F. High-Energy Cutoff in the Spectrum of Strong-Field Nonsequential Double Ionization. Phys. Rev. Lett. 2006, 96, 133001. [Google Scholar] [CrossRef] [Green Version]
- Moore, L.; Lysaght, M.; Nikolopoulos, L.; Parker, J.; van der Hart, H.; Taylor, K. The RMT method for many-electron atomic systems in intense short-pulse laser light. J. Mod. Opt. 2011, 58, 1132–1140. [Google Scholar] [CrossRef]
- Clarke, D.D.A.; Armstrong, G.S.J.; Brown, A.C.; van der Hart, H.W. R-matrix-with-time-dependence theory for ultrafast atomic processes in arbitrary light fields. Phys. Rev. A 2018, 98, 053442. [Google Scholar] [CrossRef] [Green Version]
- Benda, J.; Gorfinkiel, J.D.; Mašín, Z.; Armstrong, G.S.J.; Brown, A.C.; Clarke, D.D.A.; van der Hart, H.W.; Wragg, J. Perturbative and nonperturbative photoionization of H2 and H2O using the molecular R-matrix-with-time method. Phys. Rev. A 2020, 102, 052826. [Google Scholar] [CrossRef]
- Wragg, J.; Clarke, D.D.A.; Armstrong, G.S.J.; Brown, A.C.; Ballance, C.P.; van der Hart, H.W. Resolving Ultrafast Spin-Orbit Dynamics in Heavy Many-Electron Atoms. Phys. Rev. Lett. 2019, 123, 163001. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.C.; Armstrong, G.S.; Benda, J.; Clarke, D.D.; Wragg, J.; Hamilton, K.R.; Mašín, Z.; Gorfinkiel, J.D.; van der Hart, H.W. RMT: R-matrix with time-dependence. Solving the semi-relativistic, time-dependent Schrödinger equation for general, multielectron atoms and molecules in intense, ultrashort, arbitrarily polarized laser pulses. Comput. Phys. Commun. 2020, 250, 107062. [Google Scholar] [CrossRef] [Green Version]
- Github Repository for the B-Spline Atomic R-Matrix (BSR) Code. Available online: https://github.com/zatsaroi/BSR3 (accessed on 24 January 2022).
- Gitlab Repository for the R-Matrix with Time-Dependence (RMT) Code. Available online: https://gitlab.com/Uk-amor/RMT/rmt (accessed on 24 January 2022).
- AMOS Gateway: A Portal for Research and Education in Atomic, Molecular, and Optical Science. Available online: https://amosgateway.org/ (accessed on 20 January 2022).
- Saad, Y. Analysis of Some Krylov Subspace Approximations to the Matrix Exponential Operator. SIAM J. Num. Anal. 1992, 29, 209–228. [Google Scholar] [CrossRef]
- Ndong, M.; Tal-Ezer, H.; Kosloff, R.; Koch, C.P. A Chebychev propagator with iterative time ordering for explicitly time-dependent Hamiltonians. J. Chem. Phys. 2010, 132, 064105. [Google Scholar] [CrossRef] [Green Version]
- McKenna, C.; van der Hart, H.W. Multiphoton ionization cross sections of neon and argon. J. Phys. B At. Mol. Opt. Phys. 2003, 37, 457–470. [Google Scholar] [CrossRef]
- Burke, P.G.; Taylor, K.T. R-matrix theory of photoionization. Application to neon and argon. J. Phys. B At. Mol. Phys. 1975, 8, 2620. [Google Scholar] [CrossRef]
- Bartschat, K.; Fischer, C.F.; Grum-Grzhimailo, A.N. Oleg Zatsarinny (1953–2021): Memories by His Colleagues. Atoms 2021, 9, 109. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, B.I.; Hamilton, K.R.; Bartschat, K. Generalizations of the R-Matrix Method to the Treatment of the Interaction of Short-Pulse Electromagnetic Radiation with Atoms. Atoms 2022, 10, 26. https://doi.org/10.3390/atoms10010026
Schneider BI, Hamilton KR, Bartschat K. Generalizations of the R-Matrix Method to the Treatment of the Interaction of Short-Pulse Electromagnetic Radiation with Atoms. Atoms. 2022; 10(1):26. https://doi.org/10.3390/atoms10010026
Chicago/Turabian StyleSchneider, Barry I., Kathryn R. Hamilton, and Klaus Bartschat. 2022. "Generalizations of the R-Matrix Method to the Treatment of the Interaction of Short-Pulse Electromagnetic Radiation with Atoms" Atoms 10, no. 1: 26. https://doi.org/10.3390/atoms10010026
APA StyleSchneider, B. I., Hamilton, K. R., & Bartschat, K. (2022). Generalizations of the R-Matrix Method to the Treatment of the Interaction of Short-Pulse Electromagnetic Radiation with Atoms. Atoms, 10(1), 26. https://doi.org/10.3390/atoms10010026