Suppression of the Multiplicity Fluctuations in Particle Correlations
Abstract
:1. Introduction
2. The Peripheral Tube Model
3. A Normalization Scheme to Suppress the Multiplicity Fluctuations
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romatschke, P. New developments in relativistic viscous hydrodynamics. Int. J. Mod. Phys. 2010, 19, 1–53. [Google Scholar] [CrossRef]
- Gale, C.; Jeon, S.; Schenke, B. Hydrodynamic modeling of heavy-ion collisions. Int. J. Mod. Phys. 2013, 28, 1340011. [Google Scholar] [CrossRef]
- Heinz, U.W.; Snellings, R. Collective flow and viscosity in relativistic heavy-ion collisions. Annu. Rev. Nucl. Part. Sci. 2013, 63, 123. [Google Scholar] [CrossRef]
- Hama, Y.; Kodama, T.; Socolowski, O., Jr. Topics on hydrodynamic model of nucleus-nucleus collisions. Braz. J. Phys. 2005, 35, 24–51. [Google Scholar] [CrossRef]
- Hama, Y.; Kodama, T.; Qian, W.L. Two-particle correlations at high-energy nuclear collisions, peripheral-tube model revisited. J. Phys. G Nucl. Part. Phys. 2021, 48, 015104. [Google Scholar] [CrossRef]
- Hirano, T.; Huovinen, P.; Murase, K.; Nara, Y. Integrated dynamical approach to relativistic heavy ion collisions. Prog. Part. Nucl. Phys. 2013, 70, 108. [Google Scholar] [CrossRef]
- Kodama, T.; Stöcker, H.; Xu, N. 40 years of collective flow in relativistic heavy ion collisions—The barometer for primordial hot and dense QCD matter. J. Phys. Nucl. Part. Phys. 2014, 41, 120301. [Google Scholar] [CrossRef]
- De Souza, R.D.; Koide, T.; Kodama, T. Hydrodynamic approaches in relativistic heavy ion reactions. Prog. Part. Nucl. Phys. 2016, 86, 35. [Google Scholar] [CrossRef]
- Florkowski, W.; Heller, M.P.; Spaliński, M. New theories of relativistic hydrodynamics in the LHC era. Rept. Prog. Phys. 2018, 81, 046001. [Google Scholar] [CrossRef] [PubMed]
- Danielewicz, P.; Odyniec, G. Transverse momentum analysis of collective motion in relativistic nuclear collisions. Phys. Lett. B 1985, 157, 146. [Google Scholar] [CrossRef]
- Ollitrault, J.-Y. Anisotropy as a signature of transverse collective flow. Phys. Rev. D 1992, 46, 229. [Google Scholar] [CrossRef]
- Alver, B.; Roland, G. Collision-geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 2010, 81, 054905, Erratum in Phys. Rev. C 2010, 82, 039903. [Google Scholar] [CrossRef]
- Teaney, D.; Yan, L. Triangularity and dipole asymmetry in relativistic heavy ion collisions. Phys. Rev. C 2011, 83, 064904. [Google Scholar] [CrossRef]
- Qian, W.L.; Andrade, R.; Socolowski, O., Jr.; Grassi, F.; Kodama, T.; Hama, Y. Distribution of hyperons in 200A GeV Au-Au in smoothed particle hydrodynamics. Braz. J. Phys. 2007, 37, 767–769. [Google Scholar] [CrossRef]
- Qian, W.L.; Andrade, R.; Grassi, F.; Socolowski, O., Jr.; Kodama, T.; Hama, Y. Effect of chemical freeze out on identified particle spectra at 200 AGeV Au-Au collisions at RHIC using SPheRIO. Int. J. Mod. Phys. 2007, 16, 1877. [Google Scholar] [CrossRef]
- Hama, Y.; Andrade, R.P.G.; Grassi, F.; Qian, W.L.; Kodama, T. Fluctuation of the initial conditions and its consequences on some observables. Acta Phys. Polon. B 2009, 40, 931. [Google Scholar]
- Andrade, R.P.G.; Grassi, F.; Hama, Y.; Qian, W.L. A Closer look at the influence of tubular initial conditions on two-particle correlations. J. Phys. G 2010, 37, 094043. [Google Scholar] [CrossRef]
- Andrade, R.P.; Grassi, F.; Hama, Y.; Qian, W.L. Temporal evolution of tubular initial conditions and their influence on two-particle correlations in relativistic nuclear collisions. Phys. Lett. B 2012, 712, 226. [Google Scholar] [CrossRef]
- Andrade, R.P.; Grassi, F.; Hama, Y.; Qian, W.L. Hydrodynamics: Fluctuating initial conditions and two-particle correlations. Nucl. Phys. A 2011, 854, 81–88. [Google Scholar] [CrossRef]
- Castilho, W.M.; Qian, W.L.; Gardim, F.G.; Hama, Y.; Kodama, T. Hydrodynamic approach to the centrality dependence of di-hadron correlations. Phys. Rev. C 2017, 95, 064908. [Google Scholar] [CrossRef]
- Castilho, W.M.; Qian, W.L.; Hama, Y.; Kodama, T. Event-plane dependent di-hadron correlations with harmonic vn subtraction in a hydrodynamic model. Phys. Lett. B 2018, 777, 369. [Google Scholar] [CrossRef]
- Wen, D.; Lin, K.; Qian, W.L.; Wang, B.; Hama, Y.; Kodama, T. On nonlinearity in hydrodynamic response to the initial geometry in relativistic heavy-ion collisions. Eur. Phys. J. A 2020, 56, 222. [Google Scholar] [CrossRef]
- Voloshin, S.; Zhang, Y. Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions. Z. Phys. C Part. Fields 1996, 70, 665. [Google Scholar] [CrossRef]
- Teaney, D.; Lauret, J.; Shuryak, E.V. Flow at the SPS and RHIC as a quark-gluon plasma signature. Phys. Rev. Lett. 2001, 86, 4783. [Google Scholar] [CrossRef] [PubMed]
- Voloshin, S.A.; Poskanzer, A.M. The physics of the centrality dependence of elliptic flow. Phys. Lett. B 2000, 474, 27–32. [Google Scholar] [CrossRef]
- Poskanzer, A.M.; Voloshin, S.A. Voloshin, Methods for analyzing anisotropic flow in relativistic nuclear collisions. Phys. Rev. C 1998, 58, 1671. [Google Scholar] [CrossRef]
- Borghini, N.; Dinh, P.M.; Ollitrault, J.Y. New method for measuring azimuthal distributions in nucleus-nucleus collisions. Phys. Rev. C 2001, 63, 054906. [Google Scholar] [CrossRef]
- Bilandzic, A.; Snellings, R.; Voloshin, S. Flow analysis with cumulants: Direct calculations. Phys. Rev. C 2011, 83, 044913. [Google Scholar] [CrossRef]
- Jia, J.; Zhou, M.; Trzupek, A. Revealing long-range multiparticle collectivity in small collision systems via subevent cumulants. Phys. Rev. C 2017, 96, 034906. [Google Scholar] [CrossRef]
- Bhalerao, R.S.; Borghini, N.; Ollitrault, J.Y. Analysis of anisotropic flow with Lee–Yang zeroes. Nucl. Phys. A 2003, 727, 373–426. [Google Scholar] [CrossRef]
- Bhalerao, R.S.; Borghini, N.; Ollitrault, J.Y. Genuine collective flow from Lee–Yang zeroes. Phys. Lett. B 2004, 580, 157–162. [Google Scholar] [CrossRef]
- Bastid, N.; Andronic, A.; Barret, V.; Basrak, Z.; Benabderrahmane, M.L.; Čaplar, R.; Cordier, E.; Crochet, P.; Dupieux, P.; Dzelalija, Z.; et al. First analysis of anisotropic flow with Lee—Yang zeros. Phys. Rev. C 2005, 72, 011901. [Google Scholar] [CrossRef]
- Bilandzic, A.; Christensen, C.H.; Gulbrandsen, K.; Hansen, A.; Zhou, Y. Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations. Phys. Rev. C 2014, 89, 064904. [Google Scholar] [CrossRef]
- Bhalerao, R.S.; Ollitrault, J.Y.; Pal, S. Event-plane correlators. Phys. Rev. C 2013, 88, 024909. [Google Scholar] [CrossRef]
- Di Francesco, P.; Guilbaud, M.; Luzum, M.; Ollitrault, J.Y. Systematic procedure for analyzing cumulants at any order. Phys. Rev. C 2017, 95, 044911. [Google Scholar] [CrossRef]
- Mordasini, C.; Bilandzic, A.; Karakoç, D.; Taghavi, S.F. Higher order symmetric cumulants. Phys. Rev. C 2020, 102, 024907. [Google Scholar] [CrossRef]
- Ye, C.; Qian, W.L.; Yue, R.H.; Hama, Y.; Kodama, T. MLE as a flow estimator. Phys. Rev. C 2023, 108, 024901. [Google Scholar] [CrossRef]
- Kolb, P.F.; Sollfrank, J.; Heinz, U. Anisotropic transverse flow and the quark-hadron phase transition. Phys. Rev. C 2000, 62, 054909. [Google Scholar] [CrossRef]
- Song, H.; Bass, S.A.; Heinz, U.; Hirano, T.; Shen, C. 200 A GeV Au+ Au collisions serve a nearly perfect quark-gluon liquid. Phys. Rev. Lett. 2011, 106, 192301, Erratum in Phys. Rev. Lett. 2012, 109, 139904. [Google Scholar] [CrossRef]
- Hirano, T.; Tsuda, K. Collective flow and two-pion correlations from a relativistic hydrodynamic model with early chemical freeze-out. Phys. Rev. C 2002, 66, 054905. [Google Scholar] [CrossRef]
- Hirano, T.; Heinz, U.; Kharzeev, D.; Lacey, R.; Nara, Y. Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions. Phys. Lett. B 2006, 636, 299–304. [Google Scholar] [CrossRef]
- Alver, B.H.; Gombeaud, C.; Luzum, M.; Ollitrault, J.Y. Triangular flow in hydrodynamics and transport theory. Phys. Rev. C 2010, 82, 034913. [Google Scholar] [CrossRef]
- Qin, G.Y.; Petersen, H.; Bass, S.A.; Müller, B. Translation of collision geometry fluctuations into momentum anisotropies in relativistic heavy-ion collisions. Phys. Rev. C 2010, 82, 064903. [Google Scholar] [CrossRef]
- Schenke, B.; Jeon, S.; Gale, C. Elliptic and triangular flow in event-by-event D = 3 + 1 viscous hydrodynamics. Phys. Rev. Lett. 2011, 106, 042301. [Google Scholar] [CrossRef]
- Xu, J.; Ko, C.M. Effects of triangular flow on di-hadron azimuthal correlations in relativistic heavy ion collisions. Phys. Rev. C 2011, 83, 021903. [Google Scholar] [CrossRef]
- Petersen, H.; Qin, G.Y.; Bass, S.A.; Müller, B. Triangular flow in event-by-event ideal hydrodynamics in Au+ Au collisions at s NN = 200 A GeV. Phys. Rev. C 2010, 82, 041901. [Google Scholar] [CrossRef]
- Luzum, M.; Gombeaud, C.; Ollitrault, J.Y. v 4 from ideal and viscous hydrodynamic simulations of nuclear collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC). Phys. Rev. C 2010, 81, 054910. [Google Scholar] [CrossRef]
- Teaney, D.; Yan, L. Nonlinearities in the harmonic spectrum of heavy ion collisions with ideal and viscous hydrodynamics. Phys. Rev. C 2012, 86, 044908. [Google Scholar] [CrossRef]
- Niemi, H.; Denicol, G.; Holopainen, H.; Huovinen, P. Event-by-event distributions of azimuthal asymmetries in ultrarelativistic heavy-ion collisions. Phys. Rev. C 2012, 87, 054901. [Google Scholar] [CrossRef]
- Gale, C.; Jeon, S.; Schenke, B.; Tribedy, P.; Venugopalan, R. Event-by-event anisotropic flow in heavy-ion collisions from combined Yang-Mills and viscous fluid dynamics. Phys. Rev. Lett. 2013, 110, 012302. [Google Scholar] [CrossRef] [PubMed]
- Bzdak, A.; Skokov, V. Average transverse momentum of hadrons in proton–nucleus collisions in the wounded nucleon model. Phys. Lett. B 2013, 726, 408–411. [Google Scholar] [CrossRef]
- Bzdak, A.; Schenke, B.; Tribedy, P.; Venugopalan, R. Initial-state geometry and the role of hydrodynamics in proton-proton, proton-nucleus, and deuteron-nucleus collisions. Phys. Rev. C 2013, 87, 064906. [Google Scholar] [CrossRef]
- Qin, G.Y.; Müller, B. Elliptic and triangular flow anisotropy in deuteron-gold collisions at √sNN = 200 GeV at RHIC and in proton-lead collisions at √sNN = 5.02 TeV at the LHC. Phys. Rev. C 2014, 89, 044902. [Google Scholar] [CrossRef]
- Schenke, B.; Venugopalan, R. Eccentric Protons? Sensitivity of Flow to System Size and Shape in p + p, p + Pb, and Pb + Pb Collisions. Phys. Rev. Lett. 2014, 113, 102301. [Google Scholar] [CrossRef]
- Yan, L.; Ollitrault, J.Y. Universal fluctuation-driven eccentricities in proton-proton, proton-nucleus, and nucleus-nucleus collisions. Phys. Rev. Lett. 2014, 112, 082301. [Google Scholar] [CrossRef]
- Fu, J. Centrality dependence of mapping the hydrodynamic response to the initial geometry in heavy-ion collisions. Phys. Rev. C 2015, 92, 024904. [Google Scholar] [CrossRef]
- Qian, W.L.; Andrade, R.; Gardim, F.; Grassi, F.; Hama, Y. Origin of trigger-angle dependence of di-hadron correlations. Phys. Rev. C 2013, 87, 014904. [Google Scholar] [CrossRef]
- Qian, W.L.; Mota, P.; Andrade, R.; Gardim, F.; Grassi, F.; Hama, Y.; Kodama, T. Decomposition of fluctuating initial conditions and flow harmonics. J. Phys. G Nucl. Part. Phys. 2013, 41, 015103. [Google Scholar] [CrossRef]
- Yan, L.; Ollitrault, J.Y. v4, v5, v6, v7: Nonlinear hydrodynamic response versus LHC data. Phys. Lett. B 2015, 744, 82–87. [Google Scholar] [CrossRef]
- Yan, L.; Pal, S.; Ollitrault, J.Y. Nonlinear hydrodynamic response confronts LHC data. Nucl. Phys. A 2016, 956, 340. [Google Scholar] [CrossRef]
- Qian, W.L.; Lin, K.; Ye, C.; Li, J.; Pan, Y.; Yue, R.H. On statistical fluctuations in collective flows. Universe 2023, 9, 67. [Google Scholar] [CrossRef]
- Adams, J. et al. [STAR Collaboration]. Distributions of Charged Hadrons Associated with High Transverse Momentum Particles in pp and Au + Au Collisions at √sNN = 200 GeV. Phys. Rev. Lett. 2005, 95, 152301. [Google Scholar] [CrossRef]
- Abelev, B. et al. [STAR Collaboration]. Long range rapidity correlations and jet production in high energy nuclear collisions. Phys. Rev. C 2009, 80, 064912. [Google Scholar] [CrossRef]
- Abelev, B. et al. [STAR Collaboration]. Indications of conical emission of charged hadrons at the BNL relativistic heavy ion collider. Phys. Rev. Lett. 2009, 102, 052302. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration]. Transverse momentum and centrality dependence of dihadron correlations in Au + Au collisions at √sNN = 200 GeV: Jet quenching and the response of partonic matter. Phys. Rev. C 2008, 77, 011901. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration]. Dihadron azimuthal correlations in Au + Au collisions at √sNN = 200 GeV. Phys. Rev. C 2008, 78, 014901. [Google Scholar] [CrossRef]
- Alver, B. et al. [PHOBOS Collaboration]. High Transverse Momentum Triggered Correlations over a Large Pseudorapidity Acceptance in Au + Au Collisions at √sNN = 200 GeV. Phys. Rev. Lett. 2010, 104, 062301. [Google Scholar] [CrossRef]
- Alver, B. et al. [PHOBOS Collaboration]. System size dependence of cluster properties from two-particle angular correlations in Cu + Cu and Au+Au collisions at √sNN = 200 GeV. Phys. Rev. C. 2010, 81, 024904. [Google Scholar] [CrossRef]
- Aamodt, K. et al. [ALICE Collaboration]. Higher harmonic anisotropic flow measurements of charged particles in Pb-Pb collisions at √sNN = 2.76 TeV. Phys. Rev. Lett. 2011, 107, 032301. [Google Scholar] [CrossRef]
- Wyslouch, B. et al. [the CMS Collaboration]. Overview of experimental results in Pb-Pb collisions at 2.76 TeV by the CMS Collaboration. J. Phys. G 2011, 38, 12400. [Google Scholar]
- Aad, G. et al. [ATLAS Collaboration]. Measurement of the azimuthal anisotropy for charged particle production in √sNN = 2.76 TeV lead-lead collisions with the ATLAS detector. Phys. Rev. C 2012, 86, 014907. [Google Scholar]
- Adler, C. et al. [STAR Collaboration]. Disappearance of Back-To-Back High-p T Hadron Correlations in Central Au + Au Collisions at √sNN = 200 GeV. Phys. Rev. Lett. 2003, 90, 082302. [Google Scholar] [CrossRef]
- Adams, J. et al. [STAR Collaboration]. Direct Observation of Dijets in Central Au + Au Collisions at √sNN = 200 GeV. Phys. Rev. Lett. 2006, 97, 162301. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.; Tavares, B.M.; Qian, W.L.; Andrade, R.; Grassi, F.; Hama, Y.; Kodama, T.; Xu, N. Topology Studies of Hydrodynamics Using Two-Particle Correlation Analysis. Phys. Rev. Lett. 2009, 103, 242301. [Google Scholar] [CrossRef] [PubMed]
- Hama, Y.; Andrade, R.P.G.; Grassi, F.; Qian, W.L. Fluctuating initial conditions in hydrodynamics for two-particle correlations. arXiv 2010, arXiv:1012.1342. [Google Scholar]
- Khachatryan, V. et al. [CMS]. Evidence for collective multiparticle correlations in p-Pb collisions. Phys. Rev. Lett. 2015, 115, 012301. [Google Scholar] [CrossRef] [PubMed]
- Khachatryan, V. et al. [CMS]. Observation of long-range, near-side angular correlations in proton-proton collisions at the LHC. J. High Energy Phys. 2010, 9, 091. [Google Scholar]
- Chatrchyan, S. et al. [CMS]. Multiplicity and transverse momentum dependence of two-and four-particle correlations in pPb and PbPb collisions. Phys. Lett. B 2013, 724, 213. [Google Scholar]
- Chatrchyan, S. et al. [CMS]. Observation of long-range near-side angular correlations in proton-lead collisions at the LHC. Phys. Lett. B 2013, 718, 795. [Google Scholar]
- Aad, G. et al. [ATLAS]. Observation of Associated Near-side and Away-side Long-range Correlations in √sNN= 5.02 TeV Proton-lead Collisions with the ATLAS Detector. Phys. Rev. Lett. 2013, 110, 182302. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS]. Observation of long-range elliptic anisotropies in √s = 13 and 2.76 TeV pp collisions with the ATLAS detector. Phys. Rev. Lett. 2015, 116, 172301. [Google Scholar]
- Abelev, B. et al. [ALICE]. Long-range angular correlations on the near and away side in p-Pb collisions at √sNN = 5.02 TeV. Phys. Lett. B 2013, 719, 29. [Google Scholar] [CrossRef]
- Abelev, B. et al. [ALICE]. Multiplicity dependence of jet-like two-particle correlations in p-Pb collisions at √sNN = 5.02 TeV. Phys. Lett. B 2015, 741, 38. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE]. Long- and short-range correlations and their event-scale dependence in high-multiplicity pp collisions at √s = 13 TeV. J. High Energy Phys. 2021, 5, 290. [Google Scholar]
- Dusling, K.; Venugopalan, R. Evidence for BFKL and saturation dynamics from dihadron spectra at the LHC. Phys. Rev. D 2013, 87, 051502. [Google Scholar] [CrossRef]
- Arbuzov, B.A.; Boos, E.E.; Savrin, V.I. CMS ridge effect at LHC as a manifestation of bremstralung of gluons due to the quark-anti-quark string formation. Eur. Phys. J. C 2011, 71, 1730. [Google Scholar] [CrossRef]
- Bierlich, C.; Gustafson, G.; Lönnblad, L. A shoving model for collectivity in hadronic collisions. arXiv 2016, arXiv:1612.05132. [Google Scholar]
- Bierlich, C.; Gustafson, G.; Lönnblad, L. Collectivity without plasma in hadronic collisions. Phys. Lett. B 2018, 779, 58. [Google Scholar] [CrossRef]
- Weller, R.D.; Romatschke, P. One fluid to rule them all: Viscous hydrodynamic description of event-by-event central p + p, p + Pb and Pb + Pb collisions at √s = 5.02 TeV. Phys. Lett. B 2017, 774, 351. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, Y.; Xu, H.; Deng, W.; Song, H. Hydrodynamic collectivity in proton–proton collisions at 13 TeV. Phys. Lett. B 2018, 780, 495. [Google Scholar] [CrossRef]
- Mäntysaari, H.; Schenke, B.; Shen, C.; Tribedy, P. Imprints of fluctuating proton shapes on flow in proton-lead collisions at the LHC. Phys. Lett. B 2017, 772, 681. [Google Scholar] [CrossRef]
- Greif, M.; Greiner, C.; Schenke, B.; Schlichting, S.; Xu, Z. Importance of initial and final state effects for azimuthal correlations in p+ Pb collisions. Phys. Rev. D 2017, 96, 091504. [Google Scholar] [CrossRef]
- Sjostrand, T.; Mrenna, S.; Skands, P.Z. A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 2008, 178, 852. [Google Scholar] [CrossRef]
- Feng, A. et al. [STAR Collaboration]. Reaction plane dependent away-side modification and near-side ridge in collisions. J. Phys. G 2008, 35, 104082. [Google Scholar] [CrossRef]
- Agakishiev, H. et al. [STAR]. Event-plane dependent dihadron correlations with harmonic vn subtraction in Au + Au Collisions at √sNN = 200 GeV. Phys. Rev. C 2014, 89, 041901. [Google Scholar] [CrossRef]
- Agakishiev, H. et al. [STAR]. Measurements of dihadron correlations relative to the event plane in Au + Au collisions at GeV. Chin. Phys. C 2021, 45, 044002. [Google Scholar] [CrossRef]
- Salgado, C.A.; Wiedemann, U.A. Medium modification of jet shapes and jet multiplicities. Phys. Rev. Lett. 2004, 93, 042301. [Google Scholar] [CrossRef]
- Vitev, I.; Wicks, S.; Zhang, B.-W. A theory of jet shapes and cross sections: From hadrons to nuclei. J. High Energy Phys. 2008, 11, 093. [Google Scholar] [CrossRef]
- Elayavalli, R.K.; Zapp, K.C. Medium response in JEWEL and its impact on jet shape observables in heavy ion collisions. J. High Energy Phys. 2017, 7, 141. [Google Scholar] [CrossRef]
- Brewer, J.; Sadofyev, A.; van der Schee, W. Jet shape modifications in holographic dijet systems. Phys. Lett. B 2021, 820, 136492. [Google Scholar]
- Chang, N.-B.; Tachibana, Y.; Qin, G.-Y. Nuclear modification of jet shape for inclusive jets and y-jets at the LHC energies. Phys. Lett. B 2020, 801, 135181. [Google Scholar]
- Luo, A.; Mao, Y.-X.; Qin, G.-Y.; Wang, E.-K.; Zhang, H.-Z. Jet shape and redistribution of the lost energy from jets in Pb+ Pb collisions at the LHC in a multiphase transport model. Eur. Phys. J. C 2022, 82, 156. [Google Scholar]
- Chatrchyan, S. et al. [CMS]. Modification of jet shapes in PbPb collisions at √sNN = 2.76 TeV. Phys. Lett. B 2014, 730, 243. [Google Scholar]
- Sirunyan, A.M. et al. [CMS]. Jet shapes of isolated photon-tagged jets in PbPb and pp collisions at √sNN = 5.02 TeV. Phys. Rev. Lett. 2019, 122, 152001. [Google Scholar]
- Oh, S. et al. [STAR Collaboration]. Jet shapes and fragmentation functions in Au + Au collisions at √sNN = 200 GeV in STAR. Nucl. Phys. A 2021, 1005, 121808. [Google Scholar] [CrossRef]
- Mazer, J. et al. [STAR Collaboration]. Evolution of jet shapes and fragmentation functions in Au+ Au collisions at √sNN = 200 GeV with the STAR experiment at RHIC. Hard Probes 2020, 2021, 174. [Google Scholar]
- Zardoshti, N. Measuring the N-Subjettiness Jet Shape in pp and Pb-Pb Collisions with the ALICE Experiment. Ph.D. Thesis, Birmingham University, Birmingham, UK, 2019. [Google Scholar]
- Andrade, R.; Grassi, F.; Hama, Y.; Kodama, T.; Socolowski, O., Jr. Examining the necessity to include event-by-event fluctuations in experimental evaluations of elliptical flow. Phys. Rev. Lett. 2006, 97, 202302. [Google Scholar]
- Andrade, R.P.G.; Grassi, F.; Hama, Y.; Kodama, T.; Qian, W.L. Importance of granular structure in the initial conditions for the elliptic flow. Phys. Rev. Lett. 2008, 101, 112301. [Google Scholar] [CrossRef]
- Gardim, F.G.; Grassi, F.; Hama, Y.; Luzum, M.; Ollitrault, J.Y. Directed flow at midrapidity in event-by-event hydrodynamics. Phys. Rev. C 2011, 83, 064901. [Google Scholar] [CrossRef]
- Gardim, F.G.; Grassi, F.; Luzum, M.; Ollitrault, J.Y. Anisotropic flow in event-by-event ideal hydrodynamic simulations of √sNN = 200 GeV Au + Au collisions. Phys. Rev. Lett. 2012, 109, 202302. [Google Scholar] [CrossRef] [PubMed]
- Hama, Y.; Andrade, R.P.G.; Grassi, F.; Qian, W.L.; Osada, T.; Aguiar, C.E.; Kodama, T. NeXSPheRIO results on elliptic-flow fluctuations at RHIC. Phys. Atom. Nucl. 2008, 71, 1558. [Google Scholar] [CrossRef]
- Socolowski, O.; Grassi, F.; Hama, Y.; Kodama, T. Fluctuations of the initial conditions and the continuous emission in the hydrodynamical description of two-pion interferometry. Phys. Rev. Lett. 2004, 93, 182301. [Google Scholar] [CrossRef] [PubMed]
- Hama, Y.; Andrade, R.P.G.; Grassi, F.; Qian, W.L. Trying to understand the ridge effect in hydrodynamic model. Nonlin. Phenom. Complex Syst. 2009, 12, 466. [Google Scholar]
- Wen, D.; Castilho, W.M.; Lin, K.; Qian, W.L.; Hama, Y.; Kodama, T. On the peripheral tube description of the two-particle correlations in nuclear collisions. J. Phys. G 2019, 46, 035103. [Google Scholar] [CrossRef]
- Mota, P.; Kodama, T.; Koide, T.; Takahashi, J. Multi-flux tube initial condition and event-by-event hydrodynamics. Nucl. Phys. A 2011, 862, 188–191. [Google Scholar] [CrossRef]
- Luzum, M. Collective flow and long-range correlations in relativistic heavy ion collisions. Phys. Lett. B 2011, 696, 499–504. [Google Scholar] [CrossRef]
- Drescher, H.J.; Liu, F.M.; Ostapchenko, S.; Pierog, T.; Werner, K. Initial condition for quark-gluon plasma evolution. Phys. Rev. C 2002, 65, 054902. [Google Scholar] [CrossRef]
- Werner, K.; Liu, F.M.; Pierog, T. Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 2006, 74, 044902. [Google Scholar] [CrossRef]
- Ajitanand, N.N.; Alexander, J.M.; Chung, P.; Holzmann, W.G.; Issah, M.; Lacey, R.A.; Shevel, A.; Taranenko, A.; Danielewicz, P. Decomposition of harmonic and jet contributions to particle-pair correlations at ultrarelativistic energies. Phys. Rev. C 2005, 72, 011902. [Google Scholar] [CrossRef]
- Adler, S.S. et al. [PHENIX Collaboration]. Modifications to Di-Jet Hadron Pair Correlations in Au + Au Collisions at √sNN = 200 GeV. Phys. Rev. Lett. 2005, 97, 052301. [Google Scholar]
- Drescher, H.J.; Hladik, M.; Ostapchenko, S.; Pierog, T.; Werner, K. Parton-based gribov–regge theory. Phys. Rept. 2001, 350, 93–289. [Google Scholar] [CrossRef]
- Werner, K.; Karpenko, I.; Pierog, T. “Ridge” in Proton-Proton Scattering at 7 TeV. Phys. Rev. Lett. 2011, 106, 122004. [Google Scholar] [CrossRef]
- Bhalerao, R.S.; Luzum, M.; Ollitrault, J.Y. Determining initial-state fluctuations from flow measurements in heavy-ion collisions. Phys. Rev. C 2011, 84, 034910. [Google Scholar] [CrossRef]
- Borghini, N.; Dinh, P.M.; Ollitrault, J.Y. Flow analysis from multiparticle azimuthal correlations. Phys. Rev. C 2001, 64, 054901. [Google Scholar] [CrossRef]
- Ma, H.H.; Wen, D.; Lin, K.; Qian, W.L.; Wang, B.; Hama, Y.; Kodama, T. Hydrodynamic results on multiplicity fluctuations in heavy-ion collisions. Phys. Rev. C 2020, 101, 024904. [Google Scholar] [CrossRef]
- Ma, H.H.; Lin, K.; Qian, W.L.; Wang, B. Centrality dependence of multiplicity fluctuations from a hydrodynamical approach. Adv. High Energy Phys. 2020, 2020, 6504290. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, C.; Ma, H.-H.; Wen, D.; Mota, P.; Qian, W.-L.; Yue, R.-H. Suppression of the Multiplicity Fluctuations in Particle Correlations. Universe 2023, 9, 413. https://doi.org/10.3390/universe9090413
Ye C, Ma H-H, Wen D, Mota P, Qian W-L, Yue R-H. Suppression of the Multiplicity Fluctuations in Particle Correlations. Universe. 2023; 9(9):413. https://doi.org/10.3390/universe9090413
Chicago/Turabian StyleYe, Chong, Hong-Hao Ma, Dan Wen, Philipe Mota, Wei-Liang Qian, and Rui-Hong Yue. 2023. "Suppression of the Multiplicity Fluctuations in Particle Correlations" Universe 9, no. 9: 413. https://doi.org/10.3390/universe9090413
APA StyleYe, C., Ma, H.-H., Wen, D., Mota, P., Qian, W.-L., & Yue, R.-H. (2023). Suppression of the Multiplicity Fluctuations in Particle Correlations. Universe, 9(9), 413. https://doi.org/10.3390/universe9090413