Loop Quantum Black Hole
Abstract
:1. Introduction
2. Classical Theory
2.1. Preliminaries
2.2. The Classical Dynamics
3. Quantum Theory
3.1. scheme
3.2. scheme
3.3. Generalised Scheme
3.4. Quantum Oppenheimer–Snyder Collapsing Model
4. Physical Applications
5. Discussion and Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Rovelli, C. Quantum Gravity; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ashtekar, A.; Lewandowski, J. Background independent quantum gravity: A status report. Class. Quantum Gravity 2004, 21, R53. [Google Scholar] [CrossRef]
- Han, M.; Ma, Y.; Huang, W. Fundamental structure of loop quantum gravity. Int. J. Mod. Phys. D 2007, 16, 1397. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C.; Smolin, L. Discreteness of area and volume in quantum gravity. Nucl. Phys. B 1995, 442, 593. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Lewandowski, J. Quantum theory of geometry: I. Area operators. Class. Quantum Gravity 1997, 14, A55. [Google Scholar] [CrossRef]
- Ashtekar, A.; Lewandowski, J. Quantum theory of geometry II: Volume operators. Adv. Theor. Math. Phys. 1997, 1, 388. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Ma, Y. New volume and inverse volume operators for loop quantum gravity. Phys. Rev. D 2016, 94, 044003. [Google Scholar] [CrossRef] [Green Version]
- Thiemann, T. A length operator for canonical quantum gravity. J. Math. Phys. 1998, 39, 3372. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Soo, C.; Yang, J. New length operator for loop quantum gravity. Phys. Rev. D 2010, 81, 124026. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Baez, J.; Corichi, A.; Krasnov, K. Quantum Geometry and Black Hole Entropy. Phys. Rev. Lett. 1998, 80, 904. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Li, H.; Ma, Y.; Zhang, C. Entropy of black holes with arbitrary shapes in loop quantum gravity. Sci. China Phys. Mech. Astron. 2021, 64, 120411. [Google Scholar] [CrossRef]
- Perez, A. Black Holes in Loop Quantum Gravity. Rep. Prog. Phys. 2017, 80, 126901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Ma, Y. Extension of Loop Quantum Gravity to f(R) Theories. Phys. Rev. Lett. 2011, 106, 171301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Ma, Y. Loop quantum f(R) theories. Phys. Rev. D 2011, 84, 064040. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ma, Y. Loop quantum Brans-Dicke theory. J. Phys. Conf. Ser. 2012, 360, 012055. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ma, Y. Nonperturbative loop quantization of scalar-tensor theories of gravity. Phys. Rev. D 2011, 84, 104045. [Google Scholar] [CrossRef] [Green Version]
- Bodendorfer, N.; Thiemann, T.; Thurn, A. New variables for classical and quantum gravity in all dimensions: I. Hamiltonian Analysis. Class. Quantum Gravity 2013, 30, 045001. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yang, J.; Ma, Y. Canonical loop quantization of the lowest-order projectable Horava gravity. Phys. Rev. D 2020, 102, 124060. [Google Scholar] [CrossRef]
- Ashtekar, A.; Bojowald, M.; Lewandowski, J. Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 2003, 7, 233. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, C.; Zhang, X. Alternative k= −1 loop quantum cosmology. Phys. Rev. D 2023, 107, 046012. [Google Scholar] [CrossRef]
- Ashtekar, A.; Bojowald, M. Quantum geometry and the Schwarzschild singularity. Class. Quantum Gravity 2006, 23, 391. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M. Loop quantum cosmology. Living Rev. Rel. 2005, 8, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum nature of the Big Bang: Improved dynamics. Phys. Rev. D 2006, 74, 084003. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Singh, P. Loop quantum cosmology: A status report. Class. Quantum Gravity 2011, 28, 213001. [Google Scholar] [CrossRef] [Green Version]
- Böhmer, C.G.; Vandersloot, K. Loop quantum dynamics of the schwarzschild interior. Phys. Rev. D 2007, 76, 104030. [Google Scholar] [CrossRef] [Green Version]
- Chiou, D.-W. Phenomenological loop quantum geometry of the schwarzschild black hole. Phys. Rev. D 2008, 78, 064040. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Olmedo, J.; Singh, P. Quantum transfiguration of kruskal black holes. Phys. Rev. Lett. 2018, 121, 241301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewandowski, J.; Ma, Y.; Yang, J.; Zhang, C. Quantum Oppenheimer-Snyder and Swiss Cheese models. Phys. Rev. Lett. 2023, 130, 101501. [Google Scholar] [CrossRef]
- Modesto, L. Loop quantum black hole. Class. Quantum Gravity 2006, 23, 5587. [Google Scholar] [CrossRef] [Green Version]
- Campiglia, M.; Gambini, R.; Pullin, J. Loop quantization of spherically symmetric midi-superspaces. Class. Quantum Gravity 2007, 24, 3649. [Google Scholar] [CrossRef]
- Ashtekar, A.; Olmedo, J.; Singh, P. Quantum extension of the kruskal spacetime. Phys. Rev. 2018, 98, 126003. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.G.; Santacruz, R.; Wilson-Ewing, E. Effective loop quantum gravity framework for vacuum spherically symmetric spacetimes. Phys. Rev. D 2020, 102, 106024. [Google Scholar] [CrossRef]
- Corichi, A.; Singh, P. Loop Quantization of the Schwarzschild Interior Revisited. Class. Quantum Gravity 2016, 33, 055006. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Zhang, X. Quantum geometry and effective dynamics of Janis-Newman-Winicour singularities. Phys. Rev. D 2020, 101, 086002. [Google Scholar] [CrossRef] [Green Version]
- Gambini, R.; Olmedo, J.; Pullin, J. Quantum Black Holes in Loop Quantum Gravity. Class. Quantum Gravity 2014, 31, 095009. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Mele, F.M.; Munch, J. Mass and Horizon Dirac Observables in Effective Models of Quantum Black-to-White Hole Transition. Class. Quantum Gravity 2021, 38, 095002. [Google Scholar] [CrossRef]
- Gan, W.; Santos, N.O.; Shu, F.; Wang, A. Properties of the Spherically Symmetric Polymer Black Holes. Phys. Rev. D 2020, 102, 124030. [Google Scholar] [CrossRef]
- Modesto, L. Semiclassical Loop Quantum Black Hole. Int. J. Theor. Phys. 2010, 49, 1649. [Google Scholar] [CrossRef] [Green Version]
- Alesci, E.; Bahrami, S.; Pranzetti, D. Quantum Gravity Predictions for Black Hole Interior Geometry. Phys. Lett. 2019, 797, 134908. [Google Scholar] [CrossRef]
- Olmedo, J.; Saini, S.; Singh, P. From Black Holes to White Holes: A Quantum Gravitational, Symmetric Bounce. Class. Quantum Gravity 2017, 34, 225011. [Google Scholar] [CrossRef]
- Li, B.; Singh, P. Does the Loop Quantum μ0 Scheme Permit Black Hole Formation? Universe 2021, 11, 406. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Mele, F.M.; Munch, J. Effective Quantum Extended Spacetime of Polymer Schwarzschild Black Hole. Class. Quantum Gravity 2019, 36, 195015. [Google Scholar] [CrossRef] [Green Version]
- Brahma, S.; Chen, C.; Yeom, D. Testing Loop Quantum Gravity from Observational Consequences of Nonsingular Rotating Black Holes. Phys. Rev. Lett. 2021, 126, 181301. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Z.; Zhang, X. Solar system constraints of a polymer black hole in loop quantum gravity. Phys. Rev. D 2022, 105, 084068. [Google Scholar] [CrossRef]
- Navascués, B.E.; García-Quismondo, A.; Marugán, G.A.M. Mena Marugan, Hamiltonian formulation and loop quantization of a recent extension of the Kruskal spacetime. Phys. Rev. D 2022, 106, 043531. [Google Scholar] [CrossRef]
- Navascues, B.E.; Garcia-Quismondo, A.; Marugan, G.A.M. Space of solutions of the Ashtekar-Olmedo-Singh effective black hole model. Phys. Rev. D 2022, 106, 063516. [Google Scholar] [CrossRef]
- Ashtekar, A.; Olmedo, J. Properties of a recent quantum extension of the Kruskal geometry. Int. J. Mod. Phys. D 2020, 29, 2050076. [Google Scholar] [CrossRef]
- Bodendorfer, N.; Mele, F.M.; Munch, J. A note on the Hamiltonian as a polymerisation parameter. Class. Quantum Gravity 2019, 36, 187001. [Google Scholar] [CrossRef] [Green Version]
- Giesel, K.; Han, M.; Li, B.; Liu, H.; Singh, P. Spherical symmetric gravitational collapse of a dust cloud: Polymerized dynamics in reduced phase space. Phys. Rev. D 2023, 107, 044047. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, T.; Wu, Q.; Jusufi, K.; Jamil, M.; Azreg-Ainou, M.; Wang, A. Shadow and quasinormal modes of a rotating loop quantum black hole. Phys. Rev. D 2020, 101, 084001. [Google Scholar] [CrossRef] [Green Version]
- del-Corral, D.; Olmedo, J. Breaking of isospectrality of quasinormal modes in nonrotating loop quantum gravity black holes. Phys. Rev. D 2022, 105, 064053. [Google Scholar] [CrossRef]
- Bouhmadi-Lopez, M.; Brahma, S.; Chen, C.; Chen, P.; Yeom, D. A Consistent Model of Non-Singular Schwarzschild Black Hole in Loop Quantum Gravity and Its Quasinormal Modes. J. Cosmol. Astropart. Phys. 2020, 2020, 066. [Google Scholar] [CrossRef]
- Fu, Q.; Zhang, X. Gravitational Lensing by a Black Hole in Effective Loop Quantum Gravity. Phys. Rev. D 2022, 105, 064020. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, A. Observational tests of the self-dual spacetime in loop quantum gravity. Phys. Rev. D 2020, 102, 124042. [Google Scholar] [CrossRef]
- Gambini, R.; Olmedo, J.; Pullin, J. Hawking radiation from a spherical loop quantum gravity black hole. Class. Quantum Gravity 2014, 31, 115003. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M.; Brahma, S.; Reyes, J.D. Covariance in models of loop quantum gravity: Spherical symmetry. Phys. Rev. D 2015, 92, 045043. [Google Scholar] [CrossRef] [Green Version]
- Gambini, R.; Olmedo, J.; Pullin, J. Towards a quantum notion of covariance in spherically symmetric loop quantum gravity. Phys. Rev. D 2022, 105, 026017. [Google Scholar] [CrossRef]
- Gambini, R.; Olmedo, J.; Pullin, J. Reply to “Comment on ‘Towards a quantum notion of covariance in spherically symmetric loop quantum gravity”. Phys. Rev. D 2022, 105, 108902. [Google Scholar] [CrossRef]
- Bojowald, M. Comment on “Towards a quantum notion of covariance in spherically symmetric loop quantum gravity”. Phys. Rev. D 2022, 105, 108901. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X. Loop Quantum Black Hole. Universe 2023, 9, 313. https://doi.org/10.3390/universe9070313
Zhang X. Loop Quantum Black Hole. Universe. 2023; 9(7):313. https://doi.org/10.3390/universe9070313
Chicago/Turabian StyleZhang, Xiangdong. 2023. "Loop Quantum Black Hole" Universe 9, no. 7: 313. https://doi.org/10.3390/universe9070313
APA StyleZhang, X. (2023). Loop Quantum Black Hole. Universe, 9(7), 313. https://doi.org/10.3390/universe9070313