Study of the Inflationary Spectrum in the Presence of Quantum Gravity Corrections
Abstract
:1. Introduction
2. Reference Frame Fixing and Reparametrization
2.1. Kuchar–Torre Gaussian Frame Proposal
2.2. WKB Matter Dynamics with the Gaussian Frame Implementation
3. Calculation of the Inflationary Spectrum
3.1. Perturbations of the Model
3.2. The Inflaton Field
3.3. Perturbation Spectrum in the de Sitter Phase
4. Towards the General Case
4.1. On the Role of the Matter Backreaction
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Lewis–Riesenfeld Invariant Method
References
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef] [Green Version]
- Cianfrani, F.; Lecian, O.M.; Lulli, M.; Montani, G. Canonical Quantum Gravity; World Scientific: Singapore, 2014. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum Theory of Gravity. I. The Canonical Theory. Phys. Rev. 1967, 160, 1113–1148. [Google Scholar] [CrossRef] [Green Version]
- DeWitt, B.S. Quantum Theory of Gravity. II. The Manifestly Covariant Theory. Phys. Rev. 1967, 162, 1195–1239. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum Theory of Gravity. III. Applications of the Covariant Theory. Phys. Rev. 1967, 162, 1239–1256. [Google Scholar] [CrossRef]
- Kucharř, K.V. Canonical Methods of Quantization. In Proceedings of the Oxford Conference on Quantum Gravity, Oxford, UK, 15–19 April 1980; pp. 329–376. [Google Scholar]
- Isham, C.J. Canonical Quantum Gravity and the Problem of Time. In Integrable Systems, Quantum Groups, and Quantum Field Theories; Springer: Dordrecht, The Netherlands, 1993; pp. 157–287. [Google Scholar] [CrossRef]
- Wald, R.M. Proposal for solving the “problem of time” in canonical quantum gravity. Phys. Rev. D 1993, 48, R2377–R2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rovelli, C. Time in quantum gravity: An hypothesis. Phys. Rev. D 1991, 43, 442–456. [Google Scholar] [CrossRef]
- Kuchař, K.V. Time and interpretations of Quantum Gravity. Int. J. Mod. Phys. D 2011, 20, 3–86. [Google Scholar] [CrossRef]
- Ashtekar, A. New Variables for Class. Quantum Gravity. Phys. Rev. Lett. 1986, 57, 2244–2247. [Google Scholar] [CrossRef]
- Rovelli, C. Quantum Gravity; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Rovelli, C.; Smolin, L. Spin networks and quantum gravity. Phys. Rev. D 1995, 52, 5743–5759. [Google Scholar] [CrossRef] [Green Version]
- Nicolai, H.; Peeters, K.; Zamaklar, M. Loop quantum gravity: An outside view. Class. Quantum Gravity 2005, 22, R193. [Google Scholar] [CrossRef] [Green Version]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar] [CrossRef]
- Wald, R.M. Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics; Chicago Lectures in Physics; University of Chicago Press: Chicago, IL, USA, 1995. [Google Scholar]
- Wald, R.M. Quantum Field Theory in Curved Spacetime. arXiv 1995, arXiv:gr-qc/9707062. [Google Scholar]
- Crispino, L.C.B.; Higuchi, A.; Matsas, G.E.A. The Unruh effect and its applications. Rev. Mod. Phys. 2008, 80, 787–838. [Google Scholar] [CrossRef] [Green Version]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220, Erratum in Commun. Math. Phys. 1976, 46, 206. [Google Scholar] [CrossRef]
- Vilenkin, A. Interpretation of the wave function of the Universe. Phys. Rev. D 1989, 39, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, C.; Singh, T.P. Quantum gravitational corrections to the functional Schrödinger equation. Phys. Rev. D 1991, 44, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Barvinsky, A. Unitarity approach to quantum cosmology. Phys. Rep. 1993, 230, 237–367. [Google Scholar] [CrossRef]
- Vilenkin, A. Approaches to quantum cosmology. Phys. Rev. D 1994, 50, 2581–2594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohkuwa, Y. Time in the semi-classical approximation to quantum cosmology. Nuovo C. B Ser. 1995, 110B, 53–60. [Google Scholar] [CrossRef]
- Bertoni, C.; Finelli, F.; Venturi, G. The Born-Oppenheimer approach to the matter-gravity system and unitarity. Class. Quantum Gravity 1996, 13, 2375–2383. [Google Scholar] [CrossRef]
- Brizuela, D.; Kiefer, C.; Krämer, M. Quantum-gravitational effects on gauge-invariant scalar and tensor perturbations during inflation: The de Sitter case. Phys. Rev. D 2016, 93, 104035. [Google Scholar] [CrossRef] [Green Version]
- Brizuela, D.; Kiefer, C.; Krämer, M. Quantum-gravitational effects on gauge-invariant scalar and tensor perturbations during inflation: The slow-roll approximation. Phys. Rev. D 2016, 94, 123527. [Google Scholar] [CrossRef] [Green Version]
- Kamenshchik, A.Y.; Tronconi, A.; Venturi, G. The Born–Oppenheimer method, quantum gravity and matter. Class. Quantum Gravity 2017, 35, 015012. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, C.; Wichmann, D. Semiclassical approximation of the Wheeler–DeWitt equation: Arbitrary orders and the question of unitarity. Gen. Relativ. Gravit. 2018, 50, 66. [Google Scholar] [CrossRef] [Green Version]
- Kamenshchik, A.Y.; Tronconi, A.; Venturi, G. Quantum cosmology and the inflationary spectra from a nonminimally coupled inflaton. Phys. Rev. D 2020, 101, 023534. [Google Scholar] [CrossRef] [Green Version]
- Rotondo, M. The Functional Schrödinger Equation in the Semiclassical Limit of Quantum Gravity with a Gaussian Clock Field. Universe 2020, 6, 176. [Google Scholar] [CrossRef]
- Gielen, S. Frozen formalism and canonical quantization in group field theory. Phys. Rev. D 2021, 104, 106011. [Google Scholar] [CrossRef]
- Di Gioia, F.; Maniccia, G.; Montani, G.; Niedda, J. Nonunitarity problem in quantum gravity corrections to quantum field theory with Born-Oppenheimer approximation. Phys. Rev. D 2021, 103, 103511. [Google Scholar] [CrossRef]
- Maniccia, G.; Montani, G. WKB approach to the gravity-matter dynamics: A cosmological implementation. In The Sixteenth Marcel Grossmann Meeting; World Scientific: Singapore, 2023; pp. 4146–4158. [Google Scholar] [CrossRef]
- Maniccia, G.; Montani, G. Quantum gravity corrections to the matter dynamics in the presence of a reference fluid. Phys. Rev. D 2022, 105, 086014. [Google Scholar] [CrossRef]
- Maniccia, G.; De Angelis, M.; Montani, G. WKB Approaches to Restore Time in Quantum Cosmology: Predictions and Shortcomings. Universe 2022, 8, 556. [Google Scholar] [CrossRef]
- Lapchinsky, V.G.; Rubakov, V.A. Canonical Quantization of Gravity and Quantum Field Theory in Curved Space-time. Acta Phys. Polon. B 1979, 10, 1041–1048. [Google Scholar]
- Agostini, L.; Cianfrani, F.; Montani, G. Probabilistic interpretation of the wave function for the Bianchi I model. Phys. Rev. D 2017, 95, 126010. [Google Scholar] [CrossRef] [Green Version]
- Banks, T. TCP, quantum gravity, the cosmological constant and all that. Nucl. Phys. B 1985, 249, 332–360. [Google Scholar] [CrossRef]
- Vilenkin, A. Quantum cosmology and eternal inflation. In Proceedings of the Workshop on Conference on the Future of Theoretical Physics and Cosmology in Honor of Steven Hawking’s 60th Birthday, Cambridge, UK, 7–10 January 2002; pp. 649–666. [Google Scholar] [CrossRef]
- Battisti, M.V.; Belvedere, R.; Montani, G. Semiclassical suppression of weak anisotropies of a generic Universe. EPL Europhys. Lett. 2009, 86, 69001. [Google Scholar] [CrossRef]
- Kiefer, C. Conceptual Problems in Quantum Gravity and Quantum Cosmology. ISRN Math. Phys. 2013, 2013, 509316. [Google Scholar] [CrossRef] [Green Version]
- Moriconi, R.; Montani, G. Behavior of the Universe anisotropy in a big-bounce cosmology. Phys. Rev. D 2017, 95, 123533. [Google Scholar] [CrossRef] [Green Version]
- Montani, G.; Marchi, A.; Moriconi, R. Bianchi I model as a prototype for a cyclical Universe. Phys. Lett. B 2018, 777, 191–200. [Google Scholar] [CrossRef]
- Damour, T.; Vilenkin, A. Quantum instability of an oscillating universe. Phys. Rev. D 2019, 100, 083525. [Google Scholar] [CrossRef] [Green Version]
- Kiefer, C.; Kwidzinski, N.; Piontek, D. Singularity avoidance in Bianchi I quantum cosmology. Eur. Phys. J. C 2019, 79, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Chiovoloni, R.; Montani, G.; Cascioli, V. Quantum dynamics of the corner of the Bianchi IX model in the WKB approximation. Phys. Rev. D 2020, 102, 083519. [Google Scholar] [CrossRef]
- De Angelis, M.; Montani, G. Dynamics of quantum anisotropies in a Taub universe in the WKB approximation. Phys. Rev. D 2020, 101, 103532. [Google Scholar] [CrossRef]
- Robles-Pérez, S.J. Quantum Cosmology with Third Quantisation. Universe 2021, 7, 404. [Google Scholar] [CrossRef]
- Kiefer, C.; Peter, P. Time in Quantum Cosmology. Universe 2022, 8, 36. [Google Scholar] [CrossRef]
- Sahlmann, H.; Thiemann, T. Towards the QFT on curved spacetime limit of QGR: I. A general scheme. Class. Quantum Gravity 2006, 23, 867. [Google Scholar] [CrossRef]
- Sahlmann, H.; Thiemann, T. Towards the QFT on curved spacetime limit of QGR: II. A concrete implementation. Class. Quantum Gravity 2006, 23, 909. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Kaminski, W.; Lewandowski, J. Quantum field theory on a cosmological, quantum space-time. Phys. Rev. D 2009, 79, 064030. [Google Scholar] [CrossRef] [Green Version]
- Dapor, A.; Lewandowski, J.; Tavakoli, Y. Lorentz symmetry in QFT on quantum Bianchi I space-time. Phys. Rev. D 2012, 86, 064013. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M.; Halnon, T. Time in quantum cosmology. Phys. Rev. D 2018, 98, 066001. [Google Scholar] [CrossRef] [Green Version]
- Chataignier, L.; Krämer, M. Unitarity of quantum-gravitational corrections to primordial fluctuations in the Born-Oppenheimer approach. Phys. Rev. D 2021, 103, 066005. [Google Scholar] [CrossRef]
- Gielen, S.; Menéndez-Pidal, L. Unitarity, clock dependence and quantum recollapse in quantum cosmology. Class. Quantum Gravity 2022, 39, 075011. [Google Scholar] [CrossRef]
- Montani, G. Canonical quantization of gravity without “frozen formalism”. Nucl. Phys. B 2002, 634, 370–392. [Google Scholar] [CrossRef] [Green Version]
- Kuchař, K.V.; Torre, C.G. Gaussian reference fluid and interpretation of quantum geometrodynamics. Phys. Rev. D 1991, 43, 419–441. [Google Scholar] [CrossRef] [Green Version]
- Mercuri, S.; Montani, G. Revised Canonical Quantum Gravity via the Frame Fixing. Int. J. Mod. Phys. D 2004, 13, 165–186. [Google Scholar] [CrossRef] [Green Version]
- Montani, G.; Battisti, M.V.; Benini, R.; Imponente, G. Primordial Cosmology; World Scientific: Singapore, 2011. [Google Scholar] [CrossRef]
- Weinberg, S. Cosmology; OUP Oxford: Oxford, UK, 2008. [Google Scholar]
- Kolb, E.W.; Turner, M.S. The Early Universe; Westview Press: Boulder, CO, USA, 1990; Volume 69. [Google Scholar] [CrossRef]
- Riotto, A. Inflation and the Theory of Cosmological Perturbations. arXiv 2002, arXiv:hep-ph/0210162. [Google Scholar]
- Arnowitt, R.; Deser, S.; Misner, C.W. Canonical Variables for General Relativity. Phys. Rev. 1960, 117, 1595–1602. [Google Scholar] [CrossRef] [Green Version]
- Misner, C.; Thorne, K.; Wheeler, J.; Kaiser, D. Gravitation; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory, 3rd ed.; Course on Theoretical Physics; Pergamon Press: Oxford, UK, 1981; Volume 3. [Google Scholar]
- Gundlach, C. Cosmological quantum fluctuations: Gauge-invariance and Gaussian states. Class. Quantum Gravity 1993, 10, 1103. [Google Scholar] [CrossRef]
- Maniccia, G.; Montani, G.; Antonini, S. QFT in curved spacetime from quantum gravity: Proper WKB decomposition of the gravitational component. Phys. Rev. D 2023, 107, L061901. [Google Scholar] [CrossRef]
- Brandenberger, R.H. Lectures on the Theory of Cosmological Perturbations. In The Early Universe and Observational Cosmology; Springer: Berlin/Heidelberg, Germany, 2004; pp. 127–167. [Google Scholar] [CrossRef] [Green Version]
- Peter, P.; Uzan, J.P. Primordial Cosmology; Oxford Graduate Texts; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Mukhanov, V.F. Gravitational Instability of the Universe Filled with a Scalar Field. JETP Lett. 1985, 41, 493–496. [Google Scholar]
- Sasaki, M. Large Scale Quantum Fluctuations in the Inflationary Universe. Prog. Theor. Phys. 1986, 76, 1036–1046. [Google Scholar] [CrossRef] [Green Version]
- Mukhanov, V.F. Quantum Theory of Gauge Invariant Cosmological Perturbations. Sov. Phys. JETP 1988, 67, 1297–1302. [Google Scholar]
- de Blas, D.M.; Olmedo, J. Primordial power spectra for scalar perturbations in loop quantum cosmology. J. Cosmol. Astropart. Phys. 2016, 2016, 029. [Google Scholar] [CrossRef] [Green Version]
- Li, B.F.; Olmedo, J.; Singh, P.; Wang, A. Primordial scalar power spectrum from the hybrid approach in loop cosmologies. Phys. Rev. D 2020, 102, 126025. [Google Scholar] [CrossRef]
- Gielen, S.; Mickel, L. Gauge-Invariant Perturbations at a Quantum Gravity Bounce. Universe 2022, 9, 29. [Google Scholar] [CrossRef]
- Kiefer, C.; Vardanyan, T. Power spectrum for perturbations in an inflationary model for a closed universe. Gen. Relativ. Gravit. 2022, 54, 30. [Google Scholar] [CrossRef]
- Cheng, S.L.; Lee, D.S.; Ng, K.W. Power spectrum of primordial perturbations during ultra-slow-roll inflation with back reaction effects. Phys. Lett. B 2022, 827, 136956. [Google Scholar] [CrossRef]
- Bortolotti, N.; Montani, G. Inflationary Quantum Spectrum of the Quasi-Isotropic Universe. arXiv 2022, arXiv:2212.08640. [Google Scholar]
- Martin, J.; Vennin, V.; Peter, P. Cosmological inflation and the quantum measurement problem. Phys. Rev. D 2012, 86, 103524. [Google Scholar] [CrossRef] [Green Version]
- Langlois, D. Hamiltonian formalism and gauge invariance for linear perturbations in inflation. Class. Quantum Gravity 1994, 11, 389. [Google Scholar] [CrossRef]
- Giesel, K.; Herold, L.; Li, B.F.; Singh, P. Mukhanov-Sasaki equation in a manifestly gauge-invariant linearized cosmological perturbation theory with dust reference fields. Phys. Rev. D 2020, 102, 023524. [Google Scholar] [CrossRef]
- Kamenshchik, A.Y.; Tronconi, A.; Venturi, G. The Born–Oppenheimer approach to quantum cosmology. Class. Quantum Gravity 2021, 38, 155011. [Google Scholar] [CrossRef]
- Lewis, H.R. Classical and Quantum Systems with Time-Dependent Harmonic-Oscillator-Type Hamiltonians. Phys. Rev. Lett. 1967, 18, 510–512. [Google Scholar] [CrossRef]
- Lewis, H.R.; Riesenfeld, W.B. Class of Exact Invariants for Classical and Quantum Time-Dependent Harmonic Oscillators. J. Math. Phys. 1968, 9, 1976–1986. [Google Scholar] [CrossRef]
- Lewis, H.R.; Riesenfeld, W.B. An Exact Quantum Theory of the Time-Dependent Harmonic Oscillator and of a Charged Particle in a Time-Dependent Electromagnetic Field. J. Math. Phys. 1969, 10, 1458–1473. [Google Scholar] [CrossRef]
- Pedrosa, I.A. Exact wave functions of a harmonic oscillator with time-dependent mass and frequency. Phys. Rev. A 1997, 55, 3219–3221. [Google Scholar] [CrossRef]
- Bennett, C.L.; Larson, D.; Weiland, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; et al. Nine-Year Wilkinson Microwave Anisotropy Probe (Wmap) Observations: Final Maps Additionally, Results. Astrophys. J. Suppl. Ser. 2013, 208, 20. [Google Scholar] [CrossRef] [Green Version]
- Planck Collaboration, R.A.; Ade, P.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.; Barreiro, R. [Planck Collaboration]. PLANCK 2015 results. Astron. Astrophys. 2016, 594, A20. [Google Scholar] [CrossRef] [Green Version]
- Collaboration, P.; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. [Planck Collaboration]. PLANCK 2018 results. V. CMB power spectra and likelihoods. Astron. Astrophys. 2020, 641, A5. [Google Scholar] [CrossRef]
- Cabass, G.; Di Valentino, E.; Melchiorri, A.; Pajer, E.; Silk, J. Constraints on the running of the running of the scalar tilt from CMB anisotropies and spectral distortions. Phys. Rev. D 2016, 94, 023523. [Google Scholar] [CrossRef] [Green Version]
- van de Bruck, C.; Longden, C. Running of the running and entropy perturbations during inflation. Phys. Rev. D 2016, 94, 021301. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, N.A. Explicit spacetime-symmetry breaking and the dynamics of primordial fields. Phys. Rev. D 2022, 106, 104036. [Google Scholar] [CrossRef]
- Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. 1927, 389, 457–484. [Google Scholar] [CrossRef]
- Massar, S.; Parentani, R. Particle creation and non-adiabatic transitions in quantum cosmology. Nucl. Phys. B 1998, 513, 375–401. [Google Scholar] [CrossRef] [Green Version]
- Schander, S.; Thiemann, T. Backreaction in Cosmology. Front. Astron. Space Sci. 2021, 8, 692198. [Google Scholar] [CrossRef]
- Kiefer, C. Quantum Gravity, 3rd ed.; Oxford University Press: New York, NY, USA, 2012. [Google Scholar]
- Mead, C.A. The geometric phase in molecular systems. Rev. Mod. Phys. 1992, 64, 51–85. [Google Scholar] [CrossRef]
- Panati, G.; Spohn, H.; Teufel, S. The time-dependent Born-Oppenheimer approximation. ESAIM M2AN 2007, 41, 297–314. [Google Scholar] [CrossRef]
- Min, S.K.; Abedi, A.; Kim, K.S.; Gross, E.K.U. Is the Molecular Berry Phase an Artifact of the Born-Oppenheimer Approximation? Phys. Rev. Lett. 2014, 113, 263004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bransden, B.; Joachain, C. Physics of Atoms and Molecules; Prentice Hall: Hoboken, NJ, USA, 2003. [Google Scholar]
- Hwang, J.C.; Noh, H. Cosmological perturbations in generalized gravity theories. Phys. Rev. D 1996, 54, 1460–1473. [Google Scholar] [CrossRef]
- Hwang, J.C. Cosmological perturbations in generalized gravity theories: Conformal transformation. Class. Quantum Gravity 1997, 14, 1981. [Google Scholar] [CrossRef]
- Hwang, J.C.; Noh, H. Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories. Phys. Rev. D 2001, 65, 023512. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.C.; Noh, H. Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyons: Unified analyses. Phys. Rev. D 2005, 71, 063536. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M.; Francaviglia, M. Higher-order gravity and the cosmological background of gravitational waves. Astropart. Phys. 2008, 29, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Carlevaro, N.; Laurentis, M.; Lattanzi, M.; Montani, G. Cosmological implications of a viable non-analytical f(R) model. Eur. Phys. J. Plus 2013, 128, 155. [Google Scholar] [CrossRef] [Green Version]
- Bamonti, N.; Costantini, A.; Montani, G. Features of the primordial Universe in f(R)-gravity as viewed in the Jordan frame. Class. Quantum Gravity 2022, 39, 175011. [Google Scholar] [CrossRef]
- De Angelis, M.; Figurato, L.; Montani, G. Quantum dynamics of the isotropic universe in metric f(R) gravity. Phys. Rev. D 2021, 104, 024054. [Google Scholar] [CrossRef]
- Angelis, M.D.; Montani, G. On the emergence of a classical Isotropic Universe from a Quantum f(R) Bianchi Cosmology in the Jordan Frame. arXiv 2022, arXiv:2207.14683. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniccia, G.; Montani, G.; Torcellini, L. Study of the Inflationary Spectrum in the Presence of Quantum Gravity Corrections. Universe 2023, 9, 169. https://doi.org/10.3390/universe9040169
Maniccia G, Montani G, Torcellini L. Study of the Inflationary Spectrum in the Presence of Quantum Gravity Corrections. Universe. 2023; 9(4):169. https://doi.org/10.3390/universe9040169
Chicago/Turabian StyleManiccia, Giulia, Giovanni Montani, and Leonardo Torcellini. 2023. "Study of the Inflationary Spectrum in the Presence of Quantum Gravity Corrections" Universe 9, no. 4: 169. https://doi.org/10.3390/universe9040169
APA StyleManiccia, G., Montani, G., & Torcellini, L. (2023). Study of the Inflationary Spectrum in the Presence of Quantum Gravity Corrections. Universe, 9(4), 169. https://doi.org/10.3390/universe9040169