Looking inside the Swampland from Warm Inflation: Dissipative Effects in De Sitter Expansion
Abstract
:1. Introduction
2. Swampland Burdens on Inflation
2.1. The Challenges of de Sitter States in an Inflationary Universe
2.2. Bounds on the Amplitude of the Inflaton Excursions
2.3. The Issue with Trans-Planckian Modes
However, Is This Really an Issue?
3. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Recall that in warm inflation, the damping term is , where is a dissipation term arising from the interaction between the inflaton and other fields. |
2 | We have used in the expression for the radiation energy density corresponding to the MSSM. Other choices change the numerical values by a factor of at most. |
3 | It has also been argued that TCC also leads to a fine-tuning problem [57]. In particular, the models of cold inflation which survive the TCC are low-scale models, and these are typically the ones which require a high degree of fine-tuning to be started. |
4 | This is not a swampland statement—it merely states that, at the very least on Poincaré recurrence times, it is expected that the moduli destabilizes, and dS is not eternal. For reference, the swampland version of this statement for eternal inflation is given in [74,75,76]. Notice that the time-scales involved are nevertheless extremely large. |
References
- Burgess, C.P.; Leblond, L.; Holman, R.; Shandera, S. Super-Hubble de Sitter Fluctuations and the Dynamical RG. J. Cosmol. Astropart. Phys. 2010, 3, 33. [Google Scholar] [CrossRef]
- Giddings, S.B.; Sloth, M.S. Semiclassical relations and IR effects in de Sitter and slow-roll space-times. J. Cosmol. Astropart. Phys. 2011, 1, 023. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, A.M. Infrared instability of the de Sitter space. arXiv 2012, arXiv:1209.4135. [Google Scholar]
- Cheung, C.; Creminelli, P.; Fitzpatrick, A.L.; Kaplan, J.; Senatore, L. The Effective Field Theory of Inflation. JHEPJ. High Energy Phys. 2008, 3, 14. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, N.; Holman, R.; Tolley, A.J.; Lin, J. Effective field theory and non-Gaussianity from general inflationary states. J. High Energy Phys. 2013, 5, 85. [Google Scholar] [CrossRef] [Green Version]
- Green, D. EFT for de Sitter Space. arXiv Preprint 2022, arXiv:2210.05820. [Google Scholar]
- Burgess, C.P.; Holman, R.; Tasinato, G. Open EFTs, IR effects \& late-time resummations: Systematic corrections in stochastic inflation. J. High Energy Phys. 2016, 1, 153. [Google Scholar] [CrossRef] [Green Version]
- Shandera, S.; Agarwal, N.; Kamal, A. Open quantum cosmological system. Phys. Rev. D 2018, 98, 083535. [Google Scholar] [CrossRef] [Green Version]
- Brahma, S.; Berera, A.; Calderón-Figueroa, J. Universal signature of quantum entanglement across cosmological distances. Class. Quant. Grav. 2022, 39, 245002. [Google Scholar] [CrossRef]
- Colas, T.; Grain, J.; Vennin, V. Benchmarking the cosmological master equations. Eur. Phys. J. C 2022, 82, 1085. [Google Scholar] [CrossRef]
- Vafa, C. The String landscape and the swampland. arXiv, 2005; arXiv:hep-th/0509212. [Google Scholar]
- Palti, E. The Swampland: Introduction and Review. Fortsch. Phys. 2019, 67, 1900037. [Google Scholar] [CrossRef] [Green Version]
- van Beest, M.; Calderón-Infante, J.; Mirfendereski, D.; Valenzuela, I. Lectures on the Swampland Program in String Compactifications. Phys. Rept. 2022, 989, 1–50. [Google Scholar] [CrossRef]
- Casse, M.; Silk, J. Swampland Revisited. Found. Phys. 2022, 52, 86. [Google Scholar] [CrossRef]
- Agrawal, P.; Obied, G.; Steinhardt, P.J.; Vafa, C. On the Cosmological Implications of the String Swampland. Phys. Lett. B 2018, 784, 271–276. [Google Scholar] [CrossRef]
- Banks, T.; Seiberg, N. Symmetries and Strings in Field Theory and Gravity. Phys. Rev. D 2011, 83, 084019. [Google Scholar] [CrossRef] [Green Version]
- Arkani-Hamed, N.; Motl, L.; Nicolis, A.; Vafa, C. The String landscape, black holes and gravity as the weakest force. J. High Energy Phys. 2007, 6, 60. [Google Scholar] [CrossRef]
- Ooguri, H.; Vafa, C. On the Geometry of the String Landscape and the Swampland. Nucl. Phys. B 2007, 766, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Brout, R.; Englert, F.; Gunzig, E. The Causal Universe. Gen. Rel. Grav. 1979, 10, 1–6. [Google Scholar] [CrossRef]
- Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Linde, A.D. Scalar Field Fluctuations in Expanding Universe and the New Inflationary Universe Scenario. Phys. Lett. B 1982, 116, 335–339. [Google Scholar] [CrossRef]
- Berera, A.; Fang, L.Z. Thermally induced density perturbations in the inflation era. Phys. Rev. Lett. 1995, 74, 1912–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berera, A. Warm inflation. Phys. Rev. Lett. 1995, 75, 3218–3221. [Google Scholar] [CrossRef] [PubMed]
- Motaharfar, M.; Kamali, V.; Ramos, R.O. Warm inflation as a way out of the swampland. Phys. Rev. D 2019, 99, 063513. [Google Scholar] [CrossRef] [Green Version]
- Das, S. Warm Inflation in the light of Swampland Criteria. Phys. Rev. D 2019, 99, 063514. [Google Scholar] [CrossRef] [Green Version]
- Das, S. Distance, de Sitter and Trans-Planckian Censorship conjectures: The status quo of Warm Inflation. Phys. Dark Univ. 2020, 27, 100432. [Google Scholar] [CrossRef] [Green Version]
- Berera, A.; Calderón, J.R. Trans-Planckian censorship and other swampland bothers addressed in warm inflation. Phys. Rev. D 2019, 100, 123530. [Google Scholar] [CrossRef] [Green Version]
- Bedroya, A.; Vafa, C. Trans-Planckian Censorship and the Swampland. J. High Energy Phys. 2020, 9, 123. [Google Scholar] [CrossRef]
- Bedroya, A.; Brandenberger, R.; Loverde, M.; Vafa, C. Trans-Planckian Censorship and Inflationary Cosmology. Phys. Rev. D 2020, 101, 103502. [Google Scholar] [CrossRef]
- Obied, G.; Ooguri, H.; Spodyneiko, L.; Vafa, C. De Sitter Space and the Swampland. arXiv 2018, arXiv:1806.08362. [Google Scholar]
- Kachru, S.; Kallosh, R.; Linde, A.D.; Trivedi, S.P. De Sitter vacua in string theory. Phys. Rev. D 2003, 68, 046005. [Google Scholar] [CrossRef] [Green Version]
- Kallosh, R.; Linde, A.D. Landscape, the scale of SUSY breaking, and inflation. J. High Energy Phys. 2004, 12, 4. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Berglund, P.; Conlon, J.P.; Quevedo, F. Systematics of moduli stabilisation in Calabi-Yau flux compactifications. J. High Energy Phys. 2005, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Akrami, Y.; Kallosh, R.; Linde, A.; Vardanyan, V. The Landscape, the Swampland and the Era of Precision Cosmology. Fortsch. Phys. 2019, 67, 1800075. [Google Scholar] [CrossRef]
- Garg, S.K.; Krishnan, C. Bounds on Slow Roll and the de Sitter Swampland. J. High Energy Phys. 2019, 11, 75. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Berera, A.; Calderón, J.R. Reexamination of the warm inflation curvature perturbations spectrum. J. Cosmol. Astropart. Phys. 2019, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Goswami, G.; Krishnan, C. Swampland, axions, and minimal warm inflation. Phys. Rev. D 2020, 101, 103529. [Google Scholar] [CrossRef]
- Mohammadi, A.; Golanbari, T.; Sheikhahmadi, H.; Sayar, K.; Akhtari, L.; Rasheed, M.A.; Saaidi, K. Warm tachyon inflation and swampland criteria. Chin. Phys. C 2020, 44, 095101. [Google Scholar] [CrossRef]
- Bousso, R. A Covariant entropy conjecture. J. High Energy Phys. 1999, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Brandenberger, R.; Kamali, V.; Ramos, R.O. Strengthening the de Sitter swampland conjecture in warm inflation. J. High Energy Phys. 2020, 8, 127. [Google Scholar] [CrossRef]
- Mottola, E. Thermodynamic Instability Of De Sitter Space. Phys. Rev. D 1986, 33, 1616–1621. [Google Scholar] [CrossRef] [PubMed]
- Polyakov, A.M. Decay of Vacuum Energy. Nucl. Phys. B 2010, 834, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Lyth, D.H. What would we learn by detecting a gravitational wave signal in the cosmic microwave background anisotropy? Phys. Rev. Lett. 1997, 78, 1861–1863. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.R.; et al.; BICEP/Keck Collaboration Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season. Phys. Rev. Lett. 2021, 127, 151301. [Google Scholar] [CrossRef] [PubMed]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Chowdhury, D.; Martin, J.; Ringeval, C.; Vennin, V. Assessing the scientific status of inflation after Planck. Phys. Rev. D 2019, 100, 083537. [Google Scholar] [CrossRef] [Green Version]
- Ramos, R.O.; da Silva, L.A. Power spectrum for inflation models with quantum and thermal noises. J. Cosmol. Astropart. Phys. 2013, 3, 32. [Google Scholar] [CrossRef]
- Brandenberger, R. Initial conditions for inflation — A short review. Int. J. Mod. Phys. D 2016, 26, 1740002. [Google Scholar] [CrossRef] [Green Version]
- Bastero-Gil, M.; Berera, A.; Brandenberger, R.; Moss, I.G.; Ramos, R.O.; Rosa, J.G. The role of fluctuation-dissipation dynamics in setting initial conditions for inflation. J. Cosmol. Astropart. Phys. 2018, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; Brandenberger, R.H. The TransPlanckian problem of inflationary cosmology. Phys. Rev. D 2001, 63, 123501. [Google Scholar] [CrossRef] [Green Version]
- Brandenberger, R.H.; Martin, J. The Robustness of inflation to changes in superPlanck scale physics. Mod. Phys. Lett. A 2001, 16, 999–1006. [Google Scholar] [CrossRef]
- Brandenberger, R.; Zhang, X.m. The Trans-Planckian Problem for Inflationary Cosmology Revisited. arXiv 2009, arXiv:0903.2065. [Google Scholar]
- Brandenberger, R.H.; Martin, J. Trans-Planckian Issues for Inflationary Cosmology. Class. Quant. Grav. 2013, 30, 113001. [Google Scholar] [CrossRef] [Green Version]
- Weiss, N. Constraints on Hamiltonian Lattice Formulations of Field Theories in an Expanding Universe. Phys. Rev. D 1985, 32, 3228. [Google Scholar] [CrossRef]
- Jacobson, T. Trans Planckian redshifts and the substance of the space-time river. Prog. Theor. Phys. Suppl. 1999, 136, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Brahma, S.; Brandenberger, R.; Yeom, D.H. Swampland, Trans-Planckian Censorship and Fine-Tuning Problem for Inflation: Tunnelling Wavefunction to the Rescue. J. Cosmol. Astropart. Phys. 2020, 10, 37. [Google Scholar] [CrossRef]
- Mohammadi, A.; Golanbari, T.; Nasri, S.; Saaidi, K. Brane inflation: Swampland criteria, TCC, and reheating predictions. Astropart. Phys. 2022, 142, 102734. [Google Scholar] [CrossRef]
- Kamali, V.; Moshafi, H.; Ebrahimi, S. Minimal warm inflation and TCC. arXiv 2021, arXiv:2111.11436. [Google Scholar]
- Kaloper, N.; Scargill, J. Quantum Cosmic No-Hair Theorem and Inflation. Phys. Rev. D 2019, 99, 103514. [Google Scholar] [CrossRef] [Green Version]
- Zee, A. The Horizon Problem and the Broken Symmetric Theory of Gravity. Phys. Rev. Lett. 1980, 44, 703. [Google Scholar] [CrossRef]
- Dvali, G.; Kehagias, A.; Riotto, A. Inflation and Decoupling. arXiv 2020, arXiv:2005.05146. [Google Scholar]
- Burgess, C.P.; de Alwis, S.P.; Quevedo, F. Cosmological Trans-Planckian Conjectures are not Effective. J. Cosmol. Astropart. Phys. 2021, 5, 37. [Google Scholar] [CrossRef]
- Berera, A.; Brahma, S.; Calderón, J.R. Role of trans-Planckian modes in cosmology. J. High Energy Phys. 2020, 8, 71. [Google Scholar] [CrossRef]
- Brahma, S. Trans-Planckian censorship conjecture from the swampland distance conjecture. Phys. Rev. D 2020, 101, 046013. [Google Scholar] [CrossRef] [Green Version]
- Cai, R.G.; Wang, S.J. A refined trans-Planckian censorship conjecture. Sci. China Phys. Mech. Astron. 2021, 64, 210011. [Google Scholar] [CrossRef]
- Seo, M.S. The entropic quasi-de Sitter instability time from the distance conjecture. Phys. Lett. B 2020, 807, 135580. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, Y.L. Notes on quantum corrections of swampland and trans-Planckian censorship conjectures. Phys. Lett. B 2021, 816, 136245. [Google Scholar] [CrossRef]
- Aalsma, L.; Shiu, G. Chaos and complementarity in de Sitter space. J. High Energy Phys. 2020, 5, 152. [Google Scholar] [CrossRef]
- Bedroya, A. de Sitter Complementarity, TCC, and the Swampland. LHEP 2021, 2021, 187. [Google Scholar] [CrossRef]
- Dvali, G.; Gomez, C.; Zell, S. Quantum Break-Time of de Sitter. J. Cosmol. Astropart. Phys. 2017, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Geng, H. Non-local entanglement and fast scrambling in de-Sitter holography. Annals Phys. 2021, 426, 168402. [Google Scholar] [CrossRef]
- Brahma, S.; Alaryani, O.; Brandenberger, R. Entanglement entropy of cosmological perturbations. Phys. Rev. D 2020, 102, 043529. [Google Scholar] [CrossRef]
- Brahma, S.; Shandera, S. Stochastic eternal inflation is in the swampland. J. High Energy Phys. 2019, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Rudelius, T. Conditions for (No) Eternal Inflation. J. Cosmol. Astropart. Phys. 2019, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Brandenberger, R.; Heisenberg, L. Eternal Inflation, Entropy Bounds and the Swampland. Eur. Phys. J. C 2020, 80, 864. [Google Scholar] [CrossRef]
- Brahma, S.; Dasgupta, K.; Tatar, R. de Sitter Space as a Glauber-Sudarshan State. J. High Energy Phys. 2021, 2, 104. [Google Scholar] [CrossRef]
- Bernardo, H.; Brahma, S.; Dasgupta, K.; Tatar, R. Crisis on Infinite Earths: Short-lived de Sitter Vacua in the String Theory Landscape. J. High Energy Phys. 2021, 4, 37. [Google Scholar] [CrossRef]
- Bernardo, H.; Brahma, S.; Dasgupta, K.; Faruk, M.M.; Tatar, R. de Sitter Space as a Glauber-Sudarshan State: II. Fortsch. Phys. 2021, 69, 2100131. [Google Scholar] [CrossRef]
- Brahma, S.; Dasgupta, K.; Faruk, M.M.; Kulinich, B.; Meruliya, V.; Pym, B.; Tatar, R. Resurgence of a de Sitter Glauber-Sudarshan State: Nodal Diagrams and Borel Resummation. arXiv Preprint 2022, arXiv:2211.09181. [Google Scholar]
- Brandenberger, R.H.; Vafa, C. Superstrings in the Early Universe. Nucl. Phys. B 1989, 316, 391–410. [Google Scholar] [CrossRef]
- Brahma, S.; Brandenberger, R.; Laliberte, S. Emergent cosmology from matrix theory. J. High Energy Phys. 2022, 3, 67. [Google Scholar] [CrossRef]
- Brahma, S.; Brandenberger, R.; Laliberte, S. Emergent metric space-time from matrix theory. J. High Energy Phys. 2022, 9, 31. [Google Scholar] [CrossRef]
- Agrawal, P.; Gukov, S.; Obied, G.; Vafa, C. Topological Gravity as the Early Phase of Our Universe. arXiv 2020, arXiv:2009.10077. [Google Scholar]
- Brahma, S.; Berera, A.; Calderón-Figueroa, J. Quantum corrections to the primordial tensor spectrum: Open EFTs & Markovian decoupling of UV modes. J. High Energy Phys. 2022, 8, 225. [Google Scholar] [CrossRef]
- Giddings, S.B.; Sloth, M.S. Cosmological observables, IR growth of fluctuations, and scale-dependent anisotropies. Phys. Rev. D 2011, 84, 063528. [Google Scholar] [CrossRef] [Green Version]
- Matarrese, S.; Pilo, L.; Rollo, R. Resilience of long modes in cosmological observables. J. Cosmol. Astropart. Phys. 2021, 1, 62. [Google Scholar] [CrossRef]
- Bartolo, N.; Carollo, G.B.; Matarrese, S.; Pilo, L.; Rollo, R. The physical content of long tensor modes in cosmology. J. Cosmol. Astropart. Phys. 2022, 11, 34. [Google Scholar] [CrossRef]
- Urakawa, Y.; Tanaka, T. IR divergence does not affect the gauge-invariant curvature perturbation. Phys. Rev. D 2010, 82, 121301. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, G.L.; Senatore, L.; Zaldarriaga, M. On Loops in Inflation III: Time Independence of zeta in Single Clock Inflation. J. High Energy Phys. 2012, 7, 166. [Google Scholar] [CrossRef] [Green Version]
- Woodard, R.P. Some Inconvenient Truths. J. High Energy Phys. 2016, 5, 152. [Google Scholar] [CrossRef] [Green Version]
- Danielsson, U. The quantum swampland. J. High Energy Phys. 2019, 4, 95. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berera, A.; Calderón-Figueroa, J. Looking inside the Swampland from Warm Inflation: Dissipative Effects in De Sitter Expansion. Universe 2023, 9, 168. https://doi.org/10.3390/universe9040168
Berera A, Calderón-Figueroa J. Looking inside the Swampland from Warm Inflation: Dissipative Effects in De Sitter Expansion. Universe. 2023; 9(4):168. https://doi.org/10.3390/universe9040168
Chicago/Turabian StyleBerera, Arjun, and Jaime Calderón-Figueroa. 2023. "Looking inside the Swampland from Warm Inflation: Dissipative Effects in De Sitter Expansion" Universe 9, no. 4: 168. https://doi.org/10.3390/universe9040168
APA StyleBerera, A., & Calderón-Figueroa, J. (2023). Looking inside the Swampland from Warm Inflation: Dissipative Effects in De Sitter Expansion. Universe, 9(4), 168. https://doi.org/10.3390/universe9040168