The EBLM Project—From False Positives to Benchmark Stars and Circumbinary Exoplanets
Abstract
:1. Introduction
2. Goals of the EBLM Project
- A comparison sample to the hot Jupiter population. Hot Jupiters were the first exoplanets detected with the radial-velocity and transit methods [46,47]. Despite their relatively low occurrence rates (circa 1 per 200 solar-type stars [48,49]), they are the easiest to find and the most studied [50]. Many of their early characteristics were unclear and some of their characteristics are still puzzling today [50]. Most hot Jupiters are, for instance, inflated beyond what irradiative models predict [51]. When we initiated the EBLM project, some of the hot Jupiters were found on small but non-zero eccentricities, leading to questions about tidal circularisation [52,53,54,55].1 The spin–orbit alignment for many transiting hot Jupiters have been studied using measurements of the Rossiter–McLaughlin effect. A large fraction of these planets are found to have orbital planes misaligned with their host star’s equatorial plane. A likely explanation came in with the Kozai–Lidov mechanism [57,58,59], which is also invoked for the production of short-period binaries [58]. EBLM systems have radii and effective temperatures similar to hot Jupiters, i.e., they occupy a similar region in a colour-magnitude diagram to hot Jupiters [60,61]. As such, EBLM systems provide an interesting comparison sample for many properties of the hot Jupiter population. Using this comparison sample, our early hope was to ascertain whether trends discovered about hot Jupiters might be caused by observational biases, or instead explained via physical processes common to all types of objects, e.g., to explore the apparent radius inflation reported in some early studies of hot Jupiters, brown dwarfs, and low-mass stars.
- Refining the boundaries of the brown dwarf desert. Brown dwarfs are star-like objects with masses between 13 and that fuse deuterium in their core but are not massive enough to fuse hydrogen [62]. They are rarely found in eclipsing geometries, so their physical parameters were mostly unknown when the EBLM project started in 2008. Radial-velocity surveys had shown the existence of a “brown dwarf desert”—a reduced occurrence rate of brown dwarf companions to solar-type stars [63]. Although the occurrence rate is low, it is not zero, so it was expected that some brown dwarfs would eventually be identified in eclipsing binary systems. Transit surveys can identify hot Jupiters in larger numbers than radial-velocity surveys, so we expected that the WASP survey would be an effective way to find these eclipsing brown dwarf systems. The EBLM project could then improve the study of the brown dwarf desert by providing a greater resolution on its shape, of which its masses are the least frequent, and whether the bounds of the desert depend on the mass of the primary star. Since the EBLM systems are typically at a short period, this also refines the characteristics of the desert at a short orbital period. Preliminary results on this topic appeared in [29].
- The study of tides. The phenomenon of tides has been known since antiquity and has many visible effects in the Solar System, e.g., Mercury’s spin–orbit resonance, tidally induced volcanic activity on Jupiter’s moons, and of course, the effects of our own Moon. The loss of energy from the orbit due to tides leads towards the lowest energy configuration in which the orbit is circular and the rotation of the stars is aligned and synchronised with the orbit [53]. There is limited observational evidence available to study the efficiency of orbital synchronisation and circularisation and a function of orbital separation and companion mass. The canonical orbital period for circularisation is ≈8 days [64,65]. This result is based on the samples dominated by binary systems with stars of similar masses. Furthermore, more precise radial velocities are needed to probe if an orbit is truly circular, or instead, if a small but non-negligible eccentricity remains [29]. Tidal synchronisation can be probed using light curves to measure the rotation period of the primary star either via starspot modulation [66] or using spectroscopy to infer the rotation period via spectral line broadening [67]. More work is needed that combines both methods to resolve the ambiguities that exist from using only one of these methods. The alignment of the spin and orbital axes can be measured using the Rossiter–McLaughlin effect. Many results using this method have been published for hot Jupiters and, perhaps surprisingly, often find the rotation and orbital axes to be significantly misaligned [59,68]. Similar studies of binary stars have largely been restricted to massive stars (>, [69]). These results may not be representative of the tidal efficiency in less massive stars which have deep convective envelopes, in contrast to the radiative atmospheres of more massive stars. For all of these tidal signatures, EBLM can more easily be used to probe the limit of efficient tidal interactions, since the low-mass secondaries have a smaller influence at a given separation.
- A sample to seek circumbinary planets. The observation of circumbinary planets was first proposed by [70,71,72], before the discovery of 51 Peg b in 1995 kick-started the exoplanet revolution [46]. Despite theoretical work implying such planets might not exist or may be very rare, there were ample reasons to test these predictions, given that exoplanet detections have often defied theoretical expectations, e.g., the existence of both hot Jupiters and super-Earths were unexpected discoveries. The first proposed method for circumbinary detection was the transit method [70,71,72], which led to the first bona fide circumbinary planet discovery (Kepler-16 [73]). Since the early 2000s, there have also been significant efforts to use radial velocities to find circumbinary planets, e.g., the TATOOINE project (The Attempt To Observe Outer-planets In Non-single-stellar Environments). This project’s goal was to detect circumbinary planets orbiting bright nearby double-lined binaries [74,75]. However, despite much effort spent in refining algorithms to both disentangle the spectra and extract accurate radial-velocities, the TATOOINE team concluded that too much noise remained present in their data for an effective circumbinary exoplanet search [75]. Instead, they suggested that single-lined systems would be better suited for such surveys [75]. Few suitable binary systems were known at the time, but the advent of large-scale surveys for transiting exoplanets, such as WASP that identified dozens of EBLM systems, made this idea viable. In particular, the BEBOP search for circumbinary planets (Binaries Escorted By Orbiting Planets) is an offshoot of the EBLM project [44], which we describe in more detail in Section 5.1.
3. History and Background to the EBLM Project
3.1. The WASP Project
3.2. The WASP Follow-Up Programme and the Origin of the EBLM Flag
3.3. Origins of the EBLM Project
4. Methodology
4.1. Mass and Radius Estimates for EBLM Systems
4.2. Primary Star Characterisation
4.3. M-Dwarf Effective Temperature Estimates
4.4. The Rossiter–McLaughlin Effect
5. Related Projects
5.1. The BEBOP Radial-Velocity Search for Circumbinary Planets
5.2. Improved Effective Temperature Measurements
5.3. Tidal Evolution
6. Discussion
6.1. An Updated View of M-Dwarf Properties
6.2. On the Accuracy of M-Dwarf Parameters for EBLM Binaries
6.3. Triple Systems
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EB | Eclipsing binary (star) |
EBLM | Eclipsing binary–low mass |
CLV | Centre-to-limb variation |
RM | Rossiter–McLaughlin |
RV | Radial velocity |
SB1 | Single-lined spectroscopic binary star |
SB2 | Double-lined spectroscopic binary star |
1 | It later transpired those small eccentricities were spurious, artefacts of the fitting algorithms which were later adapted to avoid the problem [56]. |
2 | https://wasp-planets.net (accessed on 19 November 2023). |
3 | This system was assigned a WASP number rather than an EBLM identifier because it has a “sub-stellar” companion. |
4 | Also referred to as where . |
5 | https://github.com/pmaxted/ellc (accessed on 19 November 2023). |
References
- Pollacco, D.L.; Skillen, I.; Collier Cameron, A.; Christian, D.J.; Hellier, C.; Irwin, J.; Lister, T.A.; Street, R.A.; West, R.G.; Anderson, D. The WASP Project and the SuperWASP Cameras. Publ. Astron. Soc. Pac. 2006, 118, 1407–1418. [Google Scholar] [CrossRef]
- Kopparapu, R.K.; Ramirez, R.; Kasting, J.F.; Eymet, V.; Robinson, T.D.; Mahadevan, S.; Terrien, R.C.; Domagal-Goldman, S.; Meadows, V.; Deshpande, R. Habitable Zones around Main-sequence Stars: New Estimates. Astrophys. J. 2013, 765, 131. [Google Scholar] [CrossRef]
- Gillon, M.; Triaud, A.H.M.J.; Demory, B.O.; Jehin, E.; Agol, E.; Deck, K.M.; Lederer, S.M.; de Wit, J.; Burdanov, A.; Ingalls, J.G.; et al. Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 2017, 542, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Triaud, A.H.M.J. Small Star Opportunities. In ExoFrontiers; Big Questions in Exoplanetary Science; Madhusudhan, N., Ed.; IOP ebooks: Bristol, UK, 2021; pp. 6-1–6-6. [Google Scholar] [CrossRef]
- Hebb, L.; Gomez Maqueo Chew, Y.; Pollacco, D.; Stassun, K.; Collier Cameron, A. The EBLM Project: Defining The M Dwarf Mass-radius Relation As A Function Of Activity And Metallicity Using F/G/K + M Dwarf Eclipsing Binaries. In Proceedings of the 219th American Astronomical Society Meeting, Austin, TX, USA, 8–12 January 2012; Volume 219, p. 345.15. [Google Scholar]
- Spada, F.; Demarque, P.; Kim, Y.C.; Sills, A. The Radius Discrepancy in Low-mass Stars: Single versus Binaries. Astrophys. J. 2013, 776, 87. [Google Scholar] [CrossRef]
- Kostov, V.B.; Orosz, J.A.; Feinstein, A.D.; Welsh, W.F.; Cukier, W.; Haghighipour, N.; Quarles, B.; Martin, D.V.; Montet, B.T.; Torres, G.; et al. TOI-1338: TESS’ First Transiting Circumbinary Planet. Astron. J. 2020, 159, 253. [Google Scholar] [CrossRef]
- Standing, M.R.; Sairam, L.; Martin, D.V.; Triaud, A.H.M.J.; Correia, A.C.M.; Coleman, G.A.L.; Baycroft, T.A.; Kunovac, V.; Boisse, I.; Cameron, A.C.; et al. Radial-velocity discovery of a second planet in the TOI-1338/BEBOP-1 circumbinary system. Nat. Astron. 2023, 7, 702–714. [Google Scholar] [CrossRef]
- Hoxie, D.T. The Structure and Evolution of Stars of Very Low Mass. Astrophys. J. 1970, 161, 1083. [Google Scholar] [CrossRef]
- Popper, D.M. Orbits of detached main-sequence eclipsing binaries of types late F to K. II. UV leonis, UV piscium, and BH virginis. Astron. J. 1997, 114, 1195. [Google Scholar] [CrossRef]
- Von Boetticher, A.; Triaud, A.H.M.J.; Queloz, D.; Gill, S.; Maxted, P.F.L.; Almleaky, Y.; Anderson, D.R.; Bouchy, F.; Burdanov, A.; Collier Cameron, A.; et al. The EBLM Project. V. Physical properties of ten fully convective, very-low-mass stars. Astron. Astrophys. 2019, 625, A150. [Google Scholar] [CrossRef]
- Morales, J.C.; Gallardo, J.; Ribas, I.; Jordi, C.; Baraffe, I.; Chabrier, G. The Effect of Magnetic Activity on Low-Mass Stars in Eclipsing Binaries. Astrophys. J. 2010, 718, 502–512. [Google Scholar] [CrossRef]
- Chabrier, G.; Gallardo, J.; Baraffe, I. Evolution of low-mass star and brown dwarf eclipsing binaries. Astron. Astrophys. 2007, 472, L17–L20. [Google Scholar] [CrossRef]
- López-Morales, M. On the Correlation between the Magnetic Activity Levels, Metallicities, and Radii of Low-Mass Stars. Astrophys. J. 2007, 660, 732–739. [Google Scholar] [CrossRef]
- Morales, J.C.; Ribas, I.; Giménez, Á.; Baroch, D. Fundamental Properties of Late-Type Stars in Eclipsing Binaries. Galaxies 2022, 10, 98. [Google Scholar] [CrossRef]
- Spada, F.; Demarque, P. Modelling fully convective stars in eclipsing binaries: KOI-126 and CM Draconis. Mon. Not. R. Astron. Soc. 2012, 422, 2255–2261. [Google Scholar] [CrossRef]
- Zhou, G.; Bayliss, D.; Hartman, J.D.; Rabus, M.; Bakos, G.Á.; Jordán, A.; Brahm, R.; Penev, K.; Csubry, Z.; Mancini, L.; et al. A 0.24+0.18 M⊙ double-lined eclipsing binary from the HATSouth survey. Mon. Not. R. Astron. Soc. 2015, 451, 2263–2277. [Google Scholar] [CrossRef]
- MacDonald, J.; Mullan, D.J. Precision modelling of M dwarf stars: The magnetic components of CM Draconis. Mon. Not. R. Astron. Soc. 2012, 421, 3084–3101. [Google Scholar] [CrossRef]
- Somers, G.; Cao, L.; Pinsonneault, m.H. The SPOTS Models: A Grid of Theoretical Stellar Evolution Tracks and Isochrones for Testing the Effects of Starspots on Structure and Colors. Astrophys. J. 2020, 891, 29. [Google Scholar] [CrossRef]
- Davis, Y.T.; Triaud, A.H.M.J.; Freckelton, A.V.; Mortier, A.; Brahm, R.; Sebastian, D.; Baycroft, T.; Dransfield, G.; Duck, A.; Henning, T.; et al. The EBLM Project XII. An eccentric, long-period eclipsing binary with a companion near the hydrogen-burning limit. Mon. Not. R. Astron. Soc. 2023; submitted. [Google Scholar]
- Feiden, G.A.; Skidmore, K.; Jao, W.C. Gaia Gaps and the Physics of Low-mass Stars. I. The Fully Convective Boundary. Astrophys. J. 2021, 907, 53. [Google Scholar] [CrossRef]
- Feiden, G.A.; Chaboyer, B. Magnetic Inhibition of Convection and the Fundamental Properties of Low-mass Stars. I. Stars with a Radiative Core. Astrophys. J. 2013, 779, 183. [Google Scholar] [CrossRef]
- Feiden, G.A.; Chaboyer, B. Magnetic Inhibition of Convection and the Fundamental Properties of Low-mass Stars. II. Fully Convective Main-sequence Stars. Astrophys. J. 2014, 789, 53. [Google Scholar] [CrossRef]
- Dotter, A. MESA Isochrones and Stellar Tracks (MIST) 0: Methods for the Construction of Stellar Isochrones. Astrophys. J. Suppl. Ser. 2016, 222, 8. [Google Scholar] [CrossRef]
- Choi, J.; Dotter, A.; Conroy, C.; Cantiello, M.; Paxton, B.; Johnson, B.D. Mesa Isochrones and Stellar Tracks (MIST). I. Solar-scaled Models. Astrophys. J. 2016, 823, 102. [Google Scholar] [CrossRef]
- Triaud, A.H.M.J.; Hebb, L.; Anderson, D.R.; Cargile, P.; Collier Cameron, A.; Doyle, A.P.; Faedi, F.; Gillon, M.; Gomez Maqueo Chew, Y.; Hellier, C.; et al. The EBLM project. I. Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the brown dwarf limit. Astron. Astrophys. 2013, 549, A18. [Google Scholar] [CrossRef]
- Gómez Maqueo Chew, Y.; Morales, J.C.; Faedi, F.; García-Melendo, E.; Hebb, L.; Rodler, F.; Deshpande, R.; Mahadevan, S.; McCormac, J.; Barnes, R.; et al. The EBLM project. II. A very hot, low-mass M dwarf in an eccentric and long-period, eclipsing binary system from the SuperWASP Survey. Astron. Astrophys. 2014, 572, A50. [Google Scholar] [CrossRef]
- Von Boetticher, A.; Triaud, A.H.M.J.; Queloz, D.; Gill, S.; Lendl, M.; Delrez, L.; Anderson, D.R.; Collier Cameron, A.; Faedi, F.; Gillon, M.; et al. The EBLM project. III. A Saturn-size low-mass star at the hydrogen-burning limit. Astron. Astrophys. 2017, 604, L6. [Google Scholar] [CrossRef]
- Triaud, A.H.M.J.; Martin, D.V.; Ségransan, D.; Smalley, B.; Maxted, P.F.L.; Anderson, D.R.; Bouchy, F.; Collier Cameron, A.; Faedi, F.; Gómez Maqueo Chew, Y.; et al. The EBLM Project. IV. Spectroscopic orbits of over 100 eclipsing M dwarfs masquerading as transiting hot Jupiters. Astron. Astrophys. 2017, 608, A129. [Google Scholar] [CrossRef]
- Gill, S.; Maxted, P.F.L.; Evans, J.A.; Evans, D.F.; Southworth, J.; Smalley, B.; Gary, B.L.; Anderson, D.R.; Bouchy, F.; Cameron, A.C.; et al. The EBLM project. VI. Mass and radius of five low-mass stars in F+M binaries discovered by the WASP survey. Astron. Astrophys. 2019, 626, A119. [Google Scholar] [CrossRef]
- Kunovac Hodžić, V.; Triaud, A.H.M.J.; Martin, D.V.; Fabrycky, D.C.; Cegla, H.M.; Collier Cameron, A.; Gill, S.; Hellier, C.; Kostov, V.B.; Maxted, P.F.L.; et al. The EBLM project—VII. Spin-orbit alignment for the circumbinary planet host EBLM J0608-59 A/TOI-1338 A. Mon. Not. R. Astron. Soc. 2020, 497, 1627–1633. [Google Scholar] [CrossRef]
- Swayne, M.I.; Maxted, P.F.L.; Triaud, A.H.M.J.; Sousa, S.G.; Broeg, C.; Florén, H.G.; Guterman, P.; Simon, A.E.; Boisse, I.; Bonfanti, A.; et al. The EBLM project—VIII. First results for M-dwarf mass, radius, and effective temperature measurements using CHEOPS light curves. Mon. Not. R. Astron. Soc. 2021, 506, 306–322. [Google Scholar] [CrossRef]
- Sebastian, D.; Swayne, M.I.; Maxted, P.F.L.; Triaud, A.H.M.J.; Sousa, S.G.; Olofsson, G.; Beck, M.; Billot, N.; Hoyer, S.; Gill, S.; et al. The EBLM project-IX. Five fully convective M-dwarfs, precisely measured with CHEOPS and TESS light curves. Mon. Not. R. Astron. Soc. 2023, 519, 3546–3563. [Google Scholar] [CrossRef]
- Duck, A.; Martin, D.V.; Gill, S.; Armitage, T.; Rodríguez martínez, R.; Maxted, P.F.L.; Sebastian, D.; Sethi, R.; Swayne, M.I.; Cameron, A.C.; et al. The EBLM project X. Benchmark masses, radii, and temperatures for two fully convective M-dwarfs using K2. Mon. Not. R. Astron. Soc. 2023, 521, 6305–6317. [Google Scholar] [CrossRef]
- Swayne, M.I.; Maxted, P.F.L.; Triaud, A.H.M.J.; Sousa, S.G.; Deline, A.; Ehrenreich, D.; Hoyer, S.; Olofsson, G.; Boisse, I.; Duck, A.; et al. The EBLM Project XI. Mass, radius and effective temperature measurements for 23 M-dwarf companions to solar-type stars observed with CHEOPS. Mon. Not. R. Astron. Soc. 2023; in press. [Google Scholar]
- Maxted, P.F.L.; Miller, N.J.; Hoyer, S.; Adibekyan, V.; Sousa, S.G.; Billot, N.; Fortier, A.; Simon, A.E.; Collier Cameron, A.; Swayne, M.I.; et al. Fundamental effective temperature measurements for eclipsing binary stars—III. SPIRou near-infrared spectroscopy and CHEOPS photometry of the benchmark G0V star EBLM J0113+31. Mon. Not. R. Astron. Soc. 2022, 513, 6042–6057. [Google Scholar] [CrossRef]
- Swayne, M.I.; Maxted, P.F.L.; Hodžić, V.K.; Triaud, A.H.M.J. The TESS light curve of the eccentric eclipsing binary 1SWASP J011351.29+314909.7-no evidence for a very hot M-dwarf companion. Mon. Not. R. Astron. Soc. 2020, 498, L15–L19. [Google Scholar] [CrossRef]
- Martin, D.V.; Armitage, T.; Duck, A.; Swayne, M.I.; Rodríguez Martínez, R.; Sethi, R.; Gaudi, B.S.; Gill, S.; Sebastian, D.; Maxted, P.F.L. Revised Temperatures For Two Benchmark M-dwarfs–Outliers No More. arXiv 2022, arXiv:2208.10510. [Google Scholar] [CrossRef]
- Gill, S.; Maxted, P.F.L.; Smalley, B. The atmospheric parameters of FGK stars using wavelet analysis of CORALIE spectra. Astron. Astrophys. 2018, 612, A111. [Google Scholar] [CrossRef]
- Freckelton, A.V.; Sebastian, D.; Mortier, A.; Triaud, A.H.M.J.; Maxted, P.F.L.; Acuña, L.; Armstrong, D.J.; Battley, M.P.; Baycroft, T.A.; Boisse, I.; et al. BEBOP V. Homogeneous Stellar Analysis of Potential Circumbinary Planet Hosts. Mon. Not. R. Astron. Soc. 2023; submitted. [Google Scholar]
- Gillon, M.; Jehin, E.; Lederer, S.M.; Delrez, L.; de Wit, J.; Burdanov, A.; Van Grootel, V.; Burgasser, A.J.; Triaud, A.H.M.J.; Opitom, C.; et al. Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 2016, 533, 221–224. [Google Scholar] [CrossRef]
- Delrez, L.; Murray, C.A.; Pozuelos, F.J.; Narita, N.; Ducrot, E.; Timmermans, M.; Watanabe, N.; Burgasser, A.J.; Hirano, T.; Rackham, B.V.; et al. Two temperate super-Earths transiting a nearby late-type M dwarf. Astron. Astrophys. 2022, 667, A59. [Google Scholar] [CrossRef]
- Ricker, G.R.; Winn, J.N.; Vanderspek, R.; Latham, D.W.; Bakos, G.A.; Bean, J.L.; Berta-Thompson, Z.K.; Brown, T.M.; Buchhave, L.; Butler, N.R.; et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instrum. Syst. 2015, 1, 014003. [Google Scholar] [CrossRef]
- Martin, D.V.; Triaud, A.H.M.J.; Udry, S.; Marmier, M.; Maxted, P.F.L.; Collier Cameron, A.; Hellier, C.; Pepe, F.; Pollacco, D.; Ségransan, D.; et al. The BEBOP radial-velocity survey for circumbinary planets. I. Eight years of CORALIE observations of 47 single-line eclipsing binaries and abundance constraints on the masses of circumbinary planets. Astron. Astrophys. 2019, 624, A68. [Google Scholar] [CrossRef]
- Triaud, A.H.M.J.; Standing, M.R.; Heidari, N.; Martin, D.V.; Boisse, I.; Santerne, A.; Correia, A.C.M.; Acuña, L.; Battley, M.; Bonfils, X.; et al. BEBOP III. Observations and an independent mass measurement of Kepler-16 (AB) b—The first circumbinary planet detected with radial velocities. Mon. Not. R. Astron. Soc. 2022, 511, 3561–3570. [Google Scholar] [CrossRef]
- Mayor, M.; Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 1995, 378, 355–359. [Google Scholar] [CrossRef]
- Charbonneau, D.; Brown, T.M.; Latham, D.W.; Mayor, M. Detection of Planetary Transits Across a Sun-like Star. Astrophys. J. Lett. 2000, 529, L45–L48. [Google Scholar] [CrossRef] [PubMed]
- Mayor, M.; Marmier, M.; Lovis, C.; Udry, S.; Ségransan, D.; Pepe, F.; Benz, W.; Bertaux, J.L.; Bouchy, F.; Dumusque, X.; et al. The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. arXiv 2011, arXiv:1109.2497. [Google Scholar]
- Santerne, A.; Moutou, C.; Tsantaki, M.; Bouchy, F.; Hébrard, G.; Adibekyan, V.; Almenara, J.M.; Amard, L.; Barros, S.C.C.; Boisse, I.; et al. SOPHIE velocimetry of Kepler transit candidates. XVII. The physical properties of giant exoplanets within 400 days of period. Astron. Astrophys. 2016, 587, A64. [Google Scholar] [CrossRef]
- Dawson, R.I.; Johnson, J.A. Origins of Hot Jupiters. Annu. Rev. Astron. Astrophys. 2018, 56, 175–221. [Google Scholar] [CrossRef]
- Demory, B.O.; Seager, S. Lack of Inflated Radii for Kepler Giant Planet Candidates Receiving Modest Stellar Irradiation. Astrophys. J. Suppl. Ser. 2011, 197, 12. [Google Scholar] [CrossRef]
- Hebb, L.; Collier-Cameron, A.; Loeillet, B.; Pollacco, D.; Hébrard, G.; Street, R.A.; Bouchy, F.; Stempels, H.C.; Moutou, C.; Simpson, E.; et al. WASP-12b: The Hottest Transiting Extrasolar Planet Yet Discovered. Astrophys. J. 2009, 693, 1920–1928. [Google Scholar] [CrossRef]
- Barker, A.J.; Ogilvie, G.I. On the tidal evolution of Hot Jupiters on inclined orbits. Mon. Not. R. Astron. Soc. 2009, 395, 2268–2287. [Google Scholar] [CrossRef]
- Ibgui, L.; Burrows, A. Coupled Evolution with Tides of the Radius and Orbit of Transiting Giant Planets: General Results. Astrophys. J. 2009, 700, 1921–1932. [Google Scholar] [CrossRef]
- Miller, N.; Fortney, J.J.; Jackson, B. Inflating and Deflating Hot Jupiters: Coupled Tidal and Thermal Evolution of Known Transiting Planets. Astrophys. J. 2009, 702, 1413–1427. [Google Scholar] [CrossRef]
- Triaud, A.H.M.J.; Queloz, D.; Hellier, C.; Gillon, M.; Smalley, B.; Hebb, L.; Collier Cameron, A.; Anderson, D.; Boisse, I.; Hébrard, G.; et al. WASP-23b: A transiting hot Jupiter around a K dwarf and its Rossiter-McLaughlin effect. Astron. Astrophys. 2011, 531, A24. [Google Scholar] [CrossRef]
- Wu, Y.; Murray, N. Planet Migration and Binary Companions: The Case of HD 80606b. Astrophys. J. 2003, 589, 605–614. [Google Scholar] [CrossRef]
- Fabrycky, D.; Tremaine, S. Shrinking Binary and Planetary Orbits by Kozai Cycles with Tidal Friction. Astrophys. J. 2007, 669, 1298–1315. [Google Scholar] [CrossRef]
- Triaud, A.H.M.J.; Collier Cameron, A.; Queloz, D.; Anderson, D.R.; Gillon, M.; Hebb, L.; Hellier, C.; Loeillet, B.; Maxted, P.F.L.; Mayor, M.; et al. Spin-orbit angle measurements for six southern transiting planets. New insights into the dynamical origins of hot Jupiters. Astron. Astrophys. 2010, 524, A25. [Google Scholar] [CrossRef]
- Triaud, A.H.M.J. Colour-magnitude diagrams of transiting Exoplanets—I. Systems with parallaxes. Mon. Not. R. Astron. Soc. 2014, 439, L61–L64. [Google Scholar] [CrossRef]
- Dransfield, G.; Triaud, A.H.M.J. Colour-magnitude diagrams of transiting exoplanets—III. A public code, nine strange planets, and the role of phosphine. Mon. Not. R. Astron. Soc. 2020, 499, 505–519. [Google Scholar] [CrossRef]
- Kumar, S.S. On the Nature of van Biesbroeck’s Star +4 4048B. Astron. J. 1963, 68, 283. [Google Scholar] [CrossRef]
- Grether, D.; Lineweaver, C.H. How Dry is the Brown Dwarf Desert? Quantifying the Relative Number of Planets, Brown Dwarfs, and Stellar Companions around Nearby Sun-like Stars. Astrophys. J. 2006, 640, 1051–1062. [Google Scholar] [CrossRef]
- Meibom, S.; Mathieu, R.D. A Robust Measure of Tidal Circularization in Coeval Binary Populations: The Solar-Type Spectroscopic Binary Population in the Open Cluster M35. Astrophys. J. 2005, 620, 970–983. [Google Scholar] [CrossRef]
- Torres, G.; Andersen, J.; Giménez, A. Accurate masses and radii of normal stars: Modern results and applications. Astron. Astrophys. Rev. 2010, 18, 67–126. [Google Scholar] [CrossRef]
- Lurie, J.C.; Vyhmeister, K.; Hawley, S.L.; Adilia, J.; Chen, A.; Davenport, J.R.A.; Jurić, m.; Puig-Holzman, M.; Weisenburger, K.L. Tidal Synchronization and Differential Rotation of Kepler Eclipsing Binaries. Astron. J. 2017, 154, 250. [Google Scholar] [CrossRef]
- Levato, H. Rotation in binary stars. Astron. Astrophys. 1974, 35, 259–265. [Google Scholar]
- Winn, J.N.; Fabrycky, D.; Albrecht, S.; Johnson, J.A. Hot Stars with Hot Jupiters Have High Obliquities. Astrophys. J. Lett. 2010, 718, L145–L149. [Google Scholar] [CrossRef]
- Marcussen, M.L.; Albrecht, S.H. The BANANA Project. VI. Close Double Stars are Well Aligned with Noticeable Exceptions; Results from an Ensemble Study Using Apsidal Motion and Rossiter-McLaughlin Measurements. Astrophys. J. 2022, 933, 227. [Google Scholar] [CrossRef]
- Borucki, W.J.; Summers, A.L. The photometric method of detecting other planetary systems. Icarus 1984, 58, 121–134. [Google Scholar] [CrossRef]
- Schneider, J.; Chevreton, M. The photometric search for Earth-sized extrasolar planets by occultation in binary systems. Astron. Astrophys. 1990, 232, 251. [Google Scholar]
- Schneider, J. On the occultations of a binary star by a circum-orbiting dark companion. Planet. Space Sci. 1994, 42, 539–544. [Google Scholar] [CrossRef]
- Doyle, L.R.; Carter, J.A.; Fabrycky, D.C.; Slawson, R.W.; Howell, S.B.; Winn, J.N.; Orosz, J.A.; Přsa, A.; Welsh, W.F.; Quinn, S.N.; et al. Kepler-16: A Transiting Circumbinary Planet. Science 2011, 333, 1602. [Google Scholar] [CrossRef]
- Konacki, M.; Muterspaugh, M.W.; Kulkarni, S.R.; Hełminiak, K.G. The Radial Velocity Tatooine Search for Circumbinary Planets: Planet Detection Limits for a Sample of Double-Lined Binary Stars—Initial Results from Keck I/Hires, Shane/CAT/Hamspec, and TNG/Sarg Observations. Astrophys. J. 2009, 704, 513–521. [Google Scholar] [CrossRef]
- Konacki, M.; Muterspaugh, M.W.; Kulkarni, S.R.; Hełminiak, K.G. High-precision Orbital and Physical Parameters of Double-lined Spectroscopic Binary Stars—HD78418, HD123999, HD160922, HD200077, and HD210027. Astrophys. J. 2010, 719, 1293–1314. [Google Scholar] [CrossRef]
- Smith, A.M.S.; WASP Consortium. The SuperWASP exoplanet transit survey. Contrib. Astron. Obs. Skaln. Pleso 2014, 43, 500–512. [Google Scholar]
- Collier Cameron, A.; Pollacco, D.; Street, R.A.; Lister, T.A.; West, R.G.; Wilson, D.M.; Pont, F.; Christian, D.J.; Clarkson, W.I.; Enoch, B.; et al. A fast hybrid algorithm for exoplanetary transit searches. Mon. Not. R. Astron. Soc. 2006, 373, 799–810. [Google Scholar] [CrossRef]
- Hellier, C.; Anderson, D.R.; Barkaoui, K.; Benkhaldoun, Z.; Bouchy, F.; Burdanov, A.; Collier Cameron, A.; Delrez, L.; Gillon, M.; Jehin, E.; et al. WASP-South hot Jupiters: WASP-178b, WASP-184b, WASP-185b, and WASP-192b. Mon. Not. R. Astron. Soc. 2019, 490, 1479–1487. [Google Scholar] [CrossRef]
- Maxted, P.F.L.; Serenelli, A.M.; Miglio, A.; Marsh, T.R.; Heber, U.; Dhillon, V.S.; Littlefair, S.; Copperwheat, C.; Smalley, B.; Breedt, E.; et al. Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system. Nature 2013, 498, 463–465. [Google Scholar] [CrossRef]
- Maxted, P.F.L.; Bloemen, S.; Heber, U.; Geier, S.; Wheatley, P.J.; Marsh, T.R.; Breedt, E.; Sebastian, D.; Faillace, G.; Owen, C.; et al. EL CVn-type binaries-discovery of 17 helium white dwarf precursors in bright eclipsing binary star systems. Mon. Not. R. Astron. Soc. 2014, 437, 1681–1697. [Google Scholar] [CrossRef]
- Mamajek, E.E.; Quillen, A.C.; Pecaut, M.J.; Moolekamp, F.; Scott, E.L.; Kenworthy, M.A.; Collier Cameron, A.; Parley, N.R. Planetary Construction Zones in Occultation: Discovery of an Extrasolar Ring System Transiting a Young Sun-like Star and Future Prospects for Detecting Eclipses by Circumsecondary and Circumplanetary Disks. Astron. J. 2012, 143, 72. [Google Scholar] [CrossRef]
- Smalley, B.; Kurtz, D.W.; Smith, A.M.S.; Fossati, L.; Anderson, D.R.; Barros, S.C.C.; Butters, O.W.; Collier Cameron, A.; Christian, D.J.; Enoch, B.; et al. SuperWASP observations of pulsating Am stars. Astron. Astrophys. 2011, 535, A3. [Google Scholar] [CrossRef]
- Bakos, G.; Noyes, R.W.; Kovács, G.; Stanek, K.Z.; Sasselov, D.D.; Domsa, I. Wide-Field Millimagnitude Photometry with the HAT: A Tool for Extrasolar Planet Detection. Publ. Astron. Soc. Pac. 2004, 116, 266–277. [Google Scholar] [CrossRef]
- Bakos, G.Á.; Csubry, Z.; Penev, K.; Bayliss, D.; Jordán, A.; Afonso, C.; Hartman, J.D.; Henning, T.; Kovács, G.; Noyes, R.W.; et al. HATSouth: A Global Network of Fully Automated Identical Wide-Field Telescopes. Publ. Astron. Soc. Pac. 2013, 125, 154. [Google Scholar] [CrossRef]
- Wheatley, P.J.; Pollacco, D.L.; Queloz, D.; Rauer, H.; Watson, C.A.; West, R.G.; Chazelas, B.; Louden, T.M.; Walker, S.; Bannister, N.; et al. The Next Generation Transit Survey (NGTS). EPJ Web Conf. 2013, 47, 13002. [Google Scholar] [CrossRef]
- Alsubai, K.A.; Parley, N.R.; Bramich, D.M.; Horne, K.; Collier Cameron, A.; West, R.G.; Sorensen, P.M.; Pollacco, D.; Smith, J.C.; Fors, O. The Qatar Exoplanet Survey. Acta Astronomica 2013, 63, 465–480. [Google Scholar]
- Alonso, R.; Brown, T.M.; Torres, G.; Latham, D.W.; Sozzetti, A.; Mandushev, G.; Belmonte, J.A.; Charbonneau, D.; Deeg, H.J.; Dunham, E.W.; et al. TrES-1: The Transiting Planet of a Bright K0 V Star. Astrophys. J. Lett. 2004, 613, L153–L156. [Google Scholar] [CrossRef]
- Talens, G.J.J.; Spronck, J.F.P.; Lesage, A.L.; Otten, G.P.P.L.; Stuik, R.; Pollacco, D.; Snellen, I.A.G. The Multi-site All-Sky CAmeRA (MASCARA). Finding transiting exoplanets around bright (mV < 8) stars. Astron. Astrophys. 2017, 601, A11. [Google Scholar] [CrossRef]
- McCullough, P.R.; Stys, J.E.; Valenti, J.A.; Fleming, S.W.; Janes, K.A.; Heasley, J.N. The XO Project: Searching for Transiting Extrasolar Planet Candidates. Publ. Astron. Soc. Pac. 2005, 117, 783–795. [Google Scholar] [CrossRef]
- Pepper, J.; Pogge, R.W.; DePoy, D.L.; Marshall, J.L.; Stanek, K.Z.; Stutz, A.M.; Poindexter, S.; Siverd, R.; O’Brien, T.P.; Trueblood, M.; et al. The Kilodegree Extremely Little Telescope (KELT): A Small Robotic Telescope for Large-Area Synoptic Surveys. Publ. Astron. Soc. Pac. 2007, 119, 923–935. [Google Scholar] [CrossRef]
- Pepper, J.; Kuhn, R.B.; Siverd, R.; James, D.; Stassun, K. The KELT-South Telescope. Publ. Astron. Soc. Pac. 2012, 124, 230. [Google Scholar] [CrossRef]
- Collins, K.A.; Collins, K.I.; Pepper, J.; Labadie-Bartz, J.; Stassun, K.G.; Gaudi, B.S.; Bayliss, D.; Bento, J.; COLÓN, K.D.; Feliz, D.; et al. The KELT Follow-up Network and Transit False-positive Catalog: Pre-vetted False Positives for TESS. Astron. J. 2018, 156, 234. [Google Scholar] [CrossRef]
- Schanche, N.; Collier Cameron, A.; Almenara, J.M.; Alsubai, K.A.; Anderson, D.R.; Armstrong, D.J.; Barkaoui, K.; Barros, S.C.C.; Bochiński, J.; Bonomo, A.S.; et al. SuperWASP dispositions and false positive catalogue. Mon. Not. R. Astron. Soc. 2019, 488, 4905–4915. [Google Scholar] [CrossRef]
- Günther, M.N.; Queloz, D.; Demory, B.O.; Bouchy, F. A new yield simulator for transiting planets and false positives: Application to the Next Generation Transit Survey. Mon. Not. R. Astron. Soc. 2017, 465, 3379–3389. [Google Scholar] [CrossRef]
- Latham, D.W.; Bakos, G.A.; Torres, G.; Stefanik, R.P.; Noyes, R.W.; Kovács, G.; Pál, A.; Marcy, G.W.; Fischer, D.A.; Butler, R.P.; et al. Discovery of a Transiting Planet and Eight Eclipsing Binaries in HATNet Field G205. Astrophys. J. 2009, 704, 1107–1119. [Google Scholar] [CrossRef]
- Beatty, T.G.; Fernández, J.M.; Latham, D.W.; Bakos, G.Á.; Kovács, G.; Noyes, R.W.; Stefanik, R.P.; Torres, G.; Everett, m.E.; Hergenrother, C.W. The Mass and Radius of the Unseen M Dwarf Companion in the Single-Lined Eclipsing Binary HAT-TR-205-013. Astrophys. J. 2007, 663, 573–582. [Google Scholar] [CrossRef]
- Fernandez, J.M.; Latham, D.W.; Torres, G.; Everett, m.E.; Mandushev, G.; Charbonneau, D.; O’Donovan, F.T.; Alonso, R.; Esquerdo, G.A.; Hergenrother, C.W.; et al. Mass and Radius Determinations for Five Transiting M-Dwarf Stars. Astrophys. J. 2009, 701, 764–775. [Google Scholar] [CrossRef]
- Zhou, G.; Bayliss, D.; Hartman, J.D.; Bakos, G.Á.; Penev, K.; Csubry, Z.; Tan, T.G.; Jordán, A.; Mancini, L.; Rabus, M.; et al. The mass-radius relationship for very low mass stars: Four new discoveries from the HATSouth Survey. Mon. Not. R. Astron. Soc. 2014, 437, 2831–2844. [Google Scholar] [CrossRef]
- Eigmüller, P.; Eislöffel, J.; Csizmadia, S.; Lehmann, H.; Erikson, A.; Fridlund, M.; Hartmann, M.; Hatzes, A.; Pasternacki, T.; Rauer, H.; et al. An M Dwarf Companion to an F-type Star in a Young Main-sequence Binary. Astron. J. 2016, 151, 84. [Google Scholar] [CrossRef]
- Han, E.; Muirhead, P.S.; Swift, J.J.; Baranec, C.; Law, N.M.; Riddle, R.; Atkinson, D.; Mace, G.N.; DeFelippis, D. Magnetic Inflation and Stellar Mass. I. Revised Parameters for the Component Stars of the Kepler Low-mass Eclipsing Binary T-Cyg1-12664. Astron. J. 2017, 154, 100. [Google Scholar] [CrossRef]
- Jennings, Z.; Southworth, J.; Maxted, P.F.L.; Mancini, L. Revising the properties of low mass eclipsing binary stars using TESS light curves. Mon. Not. R. Astron. Soc. 2023, 521, 3405–3420. [Google Scholar] [CrossRef]
- Triaud, A.H.M.J. Constraints on Planetary Formation from the Discovery & Study of Transiting Extrasolar Planets. Ph.D. Thesis, University of Geneva, Versoix, Switzerland, 2011. [Google Scholar]
- Hellier, C.; Anderson, D.R.; Collier Cameron, A.; Gillon, M.; Hebb, L.; Maxted, P.F.L.; Queloz, D.; Smalley, B.; Triaud, A.H.M.J.; West, R.G.; et al. An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b. Nature 2009, 460, 1098–1100. [Google Scholar] [CrossRef]
- Deleuil, M.; Deeg, H.J.; Alonso, R.; Bouchy, F.; Rouan, D.; Auvergne, M.; Baglin, A.; Aigrain, S.; Almenara, J.M.; Barbieri, M.; et al. Transiting exoplanets from the CoRoT space mission. VI. CoRoT-Exo-3b: The first secure inhabitant of the brown-dwarf desert. Astron. Astrophys. 2008, 491, 889–897. [Google Scholar] [CrossRef]
- Bouchy, F.; Deleuil, M.; Guillot, T.; Aigrain, S.; Carone, L.; Cochran, W.D.; Almenara, J.M.; Alonso, R.; Auvergne, M.; Baglin, A.; et al. Transiting exoplanets from the CoRoT space mission. XV. CoRoT-15b: A brown-dwarf transiting companion. Astron. Astrophys. 2011, 525, A68. [Google Scholar] [CrossRef]
- Anderson, D.R.; Collier Cameron, A.; Hellier, C.; Lendl, M.; Maxted, P.F.L.; Pollacco, D.; Queloz, D.; Smalley, B.; Smith, A.M.S.; Todd, I.; et al. WASP-30b: A 61 M Jup Brown Dwarf Transiting a V = 12, F8 Star. Astrophys. J. Lett. 2011, 726, L19. [Google Scholar] [CrossRef]
- Maxted, P.F.L.; Ehrenreich, D.; Wilson, T.G.; Alibert, Y.; Cameron, A.C.; Hoyer, S.; Sousa, S.G.; Olofsson, G.; Bekkelien, A.; Deline, A.; et al. Analysis of Early Science observations with the CHaracterising ExOPlanets Satellite (CHEOPS) using PYCHEOPS. Mon. Not. R. Astron. Soc. 2022, 514, 77–104. [Google Scholar] [CrossRef]
- Southworth, J. The solar-type eclipsing binary system LL Aquarii. Astron. Astrophys. 2013, 557, A119. [Google Scholar] [CrossRef]
- Maxted, P.F.L. ellc: A fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets. Astron. Astrophys. 2016, 591, A111. [Google Scholar] [CrossRef]
- Günther, M.N.; Daylan, T. Allesfitter: Flexible Star and Exoplanet Inference from Photometry and Radial Velocity. Astrophys. J. Suppl. Ser. 2021, 254, 13. [Google Scholar] [CrossRef]
- Eastman, J.; Gaudi, B.S.; Agol, E. EXOFAST: A Fast Exoplanetary Fitting Suite in IDL. Publ. Astron. Soc. Pac. 2013, 125, 83–112. [Google Scholar] [CrossRef]
- Eastman, J.D.; Rodriguez, J.E.; Agol, E.; Stassun, K.G.; Beatty, T.G.; Vanderburg, A.; Gaudi, B.S.; Collins, K.A.; Luger, R. EXOFASTv2: A public, generalized, publication-quality exoplanet modeling code. arXiv 2019, arXiv:1907.09480. [Google Scholar]
- Kreidberg, L. BATMAN: BAsic Transit Model cAlculatioN in Python. Publ. Astron. Soc. Pac. 2015, 127, 1161–1165. [Google Scholar] [CrossRef]
- Csizmadia, S. The Transit and Light Curve Modeller. Mon. Not. R. Astron. Soc. 2020, 496, 4442–4467. [Google Scholar] [CrossRef]
- Claret, A. A new non-linear limb-darkening law for LTE stellar atmosphere models. Calculations for -5.0 < log[M/H] < +1, 2000 K <= Teff < 50000 K at several surface gravities. Astron. Astrophys. 2000, 363, 1081–1190. [Google Scholar]
- Morello, G.; Tsiaras, A.; Howarth, I.D.; Homeier, D. High-precision Stellar Limb-darkening in Exoplanetary Transits. Astron. J. 2017, 154, 111. [Google Scholar] [CrossRef]
- Maxted, P.F.L. Limb darkening measurements from TESS and Kepler light curves of transiting exoplanets. Mon. Not. R. Astron. Soc. 2023, 519, 3723–3735. [Google Scholar] [CrossRef]
- Kostogryz, N.; Shapiro, A.I.; Witzke, V.; Cameron, R.H.; Gizon, L.; Krivova, N.; Maxted, P.F.L.; Seager, S.; Solanki, S.K.; Valenti, J. Stellar Surface Magnetic Fields Impact Limb Darkening. Nat. Astron. 2023; submitted. [Google Scholar]
- Mazeh, T.; Faigler, S. Detection of the ellipsoidal and the relativistic beaming effects in the CoRoT-3 lightcurve. Astron. Astrophys. 2010, 521, L59. [Google Scholar] [CrossRef]
- Chandrasekhar, S. The equilibrium of distorted polytropes. III. the double star problem. Mon. Not. R. Astron. Soc. 1933, 93, 462. [Google Scholar] [CrossRef]
- Markley, F.L. Kepler Equation Solver. Celest. Mech. Dyn. Astron. 1995, 63, 101–111. [Google Scholar] [CrossRef]
- Enoch, B.; Collier Cameron, A.; Parley, N.R.; Hebb, L. An improved method for estimating the masses of stars with transiting planets. Astron. Astrophys. 2010, 516, A33. [Google Scholar] [CrossRef]
- Southworth, J.; Zucker, S.; Maxted, P.F.L.; Smalley, B. Eclipsing binaries in open clusters—III. V621 Per in χ Persei. Mon. Not. R. Astron. Soc. 2004, 355, 986–994. [Google Scholar] [CrossRef]
- Jofré, P.; Heiter, U.; Soubiran, C. Accuracy and Precision of Industrial Stellar Abundances. Annu. Rev. Astron. Astrophys. 2019, 57, 571–616. [Google Scholar] [CrossRef]
- Jofré, P.; Heiter, U.; Tucci Maia, m.; Soubiran, C.; Worley, C.C.; Hawkins, K.; Blanco-Cuaresma, S.; Rodrigo, C. The Gaia FGK Benchmark Stars Version 2.1. Res. Notes Am. Astron. Soc. 2018, 2, 152. [Google Scholar] [CrossRef]
- Baschek, B.; Scholz, M.; Wehrse, R. The parameters R and Teff in stellar models and observations. Astron. Astrophys. 1991, 246, 374. [Google Scholar]
- Baines, E.K.; Armstrong, J.T.; Schmitt, H.R.; Benson, J.A.; Zavala, R.T.; van Belle, G.T. Navy Precision Optical Interferometer Measurements of 10 Stellar Oscillators. Astrophys. J. 2014, 781, 90. [Google Scholar] [CrossRef]
- Gaia Collaboration; Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne, J.H.J.; Babusiaux, C.; Biermann, M.; Creevey, O.L.; Evans, D.W.; Eyer, L.; et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 2021, 649, A1. [Google Scholar] [CrossRef]
- Miller, N.J.; Maxted, P.F.L.; Smalley, B. Fundamental effective temperature measurements for eclipsing binary stars—I. Development of the method and application to AI Phoenicis. Mon. Not. R. Astron. Soc. 2020, 497, 2899–2909. [Google Scholar] [CrossRef]
- Maxted, P.F.L.; Gaulme, P.; Graczyk, D.; Hełminiak, K.G.; Johnston, C.; Orosz, J.A.; Prša, A.; Southworth, J.; Torres, G.; Davies, G.R.; et al. The TESS light curve of AI Phoenicis. Mon. Not. R. Astron. Soc. 2020, 498, 332–343. [Google Scholar] [CrossRef]
- Graczyk, D.; Pietrzyński, G.; Gieren, W.; Storm, J.; Nardetto, N.; Gallenne, A.; Maxted, P.F.L.; Kervella, P.; Kołaczkowski, Z.; Konorski, P.; et al. Testing Systematics of Gaia DR2 Parallaxes with Empirical Surface Brightness: Color Relations Applied to Eclipsing Binaries. Astrophys. J. 2019, 872, 85. [Google Scholar] [CrossRef]
- De Jong, R.S.; Agertz, O.; Berbel, A.A.; Aird, J.; Alexander, D.A.; Amarsi, A.; Anders, F.; Andrae, R.; Ansarinejad, B.; Ansorge, W.; et al. 4MOST: Project overview and information for the First Call for Proposals. Messenger 2019, 175, 3–11. [Google Scholar] [CrossRef]
- Dalton, G.; Trager, S.C.; Abrams, D.C.; Carter, D.; Bonifacio, P.; Aguerri, J.A.L.; MacIntosh, M.; Evans, C.; Lewis, I.; Navarro, R.; et al. WEAVE: The next generation wide-field spectroscopy facility for the William Herschel Telescope. In Proceedings of the Ground-Based and Airborne Instrumentation for Astronomy IV, Amsterdam, The Netherlands, 1–6 July 2012; McLean, I.S., Ramsay, S.K., Takami, H., Eds.; Volume 8446, p. 84460. [Google Scholar] [CrossRef]
- Torres, G. The Transiting Exoplanet Host Star GJ 436: A Test of Stellar Evolution Models in the Lower Main Sequence, and Revised Planetary Parameters. Astrophys. J. Lett. 2007, 671, L65–L68. [Google Scholar] [CrossRef]
- Ofir, A.; Gandolfi, D.; Buchhave, L.; Lacy, C.H.S.; Hatzes, A.P.; Fridlund, M. KIC 1571511B: A benchmark low-mass star in an eclipsing binary system in the Kepler field. Mon. Not. R. Astron. Soc. 2012, 423, L1–L5. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Sharma, R.; Chakraborty, A.; Anandarao, B.G.; Prasad, N.J.S.S.V. Masses and Radii of Four Very Low-mass Stars in F+M Eclipsing Binary Systems. Astron. J. 2018, 156, 27. [Google Scholar] [CrossRef]
- Benz, W.; Broeg, C.; Fortier, A.; Rando, N.; Beck, T.; Beck, M.; Queloz, D.; Ehrenreich, D.; Maxted, P.F.L.; Isaak, K.G.; et al. The CHEOPS mission. Exp. Astron. 2021, 51, 109–151. [Google Scholar] [CrossRef]
- Albrecht, S.; Winn, J.N.; Johnson, J.A.; Howard, A.W.; Marcy, G.W.; Butler, R.P.; Arriagada, P.; Crane, J.D.; Shectman, S.A.; Thompson, I.B.; et al. Obliquities of Hot Jupiter Host Stars: Evidence for Tidal Interactions and Primordial Misalignments. Astrophys. J. 2012, 757, 18. [Google Scholar] [CrossRef]
- Ohta, Y.; Taruya, A.; Suto, Y. The Rossiter-McLaughlin Effect and Analytic Radial Velocity Curves for Transiting Extrasolar Planetary Systems. Astrophys. J. 2005, 622, 1118–1135. [Google Scholar] [CrossRef]
- Gaudi, B.S.; Winn, J.N. Prospects for the Characterization and Confirmation of Transiting Exoplanets via the Rossiter-McLaughlin Effect. Astrophys. J. 2007, 655, 550–563. [Google Scholar] [CrossRef]
- Triaud, A.H.M.J. The Rossiter-McLaughlin Effect in Exoplanet Research. In Handbook of Exoplanets; Deeg, H.J., Belmonte, J.A., Eds.; Springer: Cham, Switzerland, 2018; p. 2. [Google Scholar] [CrossRef]
- Cegla, H.M.; Oshagh, M.; Watson, C.A.; Figueira, P.; Santos, N.C.; Shelyag, S. Modeling the Rossiter-McLaughlin Effect: Impact of the Convective Center-to-limb Variations in the Stellar Photosphere. Astrophys. J. 2016, 819, 67. [Google Scholar] [CrossRef]
- Wolszczan, A. Searches for Planets Around Neutron Stars. Celest. Mech. Dyn. Astron. 1997, 68, 13–25. [Google Scholar] [CrossRef]
- Beuermann, K.; Dreizler, S.; Hessman, F.V. The quest for companions to post-common envelope binaries. IV. The 2:1 mean-motion resonance of the planets orbiting NN Serpentis. Astron. Astrophys. 2013, 555, A133. [Google Scholar] [CrossRef]
- Martin, D.V. Populations of Planets in Multiple Star Systems. In Handbook of Exoplanets; Deeg, H.J., Belmonte, J.A., Eds.; Springer: Cham, Switzerland, 2018; p. 156. [Google Scholar] [CrossRef]
- Martin, D.V.; Triaud, A.H.M.J. Planets transiting non-eclipsing binaries. Astron. Astrophys. 2014, 570, A91. [Google Scholar] [CrossRef]
- Armstrong, D.J.; Osborn, H.P.; Brown, D.J.A.; Faedi, F.; Gómez Maqueo Chew, Y.; Martin, D.V.; Pollacco, D.; Udry, S. On the abundance of circumbinary planets. Mon. Not. R. Astron. Soc. 2014, 444, 1873–1883. [Google Scholar] [CrossRef]
- Standing, M.R.; Triaud, A.H.M.J.; Faria, J.P.; Martin, D.V.; Boisse, I.; Correia, A.C.M.; Deleuil, M.; Dransfield, G.; Gillon, M.; Hébrard, G.; et al. BEBOP II: Sensitivity to sub-Saturn circumbinary planets using radial-velocities. Mon. Not. R. Astron. Soc. 2022, 511, 3571–3583. [Google Scholar] [CrossRef]
- Owen, J.E.; Wu, Y. The Evaporation Valley in the Kepler Planets. Astrophys. J. 2017, 847, 29. [Google Scholar] [CrossRef]
- Venturini, J.; Guilera, O.M.; Haldemann, J.; Ronco, m.P.; Mordasini, C. The nature of the radius valley. Hints from formation and evolution models. Astron. Astrophys. 2020, 643, L1. [Google Scholar] [CrossRef]
- Lee, E.J.; Chiang, E.; Ormel, C.W. Make Super-Earths, Not Jupiters: Accreting Nebular Gas onto Solid Cores at 0.1 AU and Beyond. Astrophys. J. 2014, 797, 95. [Google Scholar] [CrossRef]
- Holman, M.J.; Wiegert, P.A. Long-Term Stability of Planets in Binary Systems. Astron. J. 1999, 117, 621–628. [Google Scholar] [CrossRef]
- Meschiari, S. Circumbinary Planet Formation in the Kepler-16 System. I. N-body Simulations. Astrophys. J. 2012, 752, 71. [Google Scholar] [CrossRef]
- Bromley, B.C.; Kenyon, S.J. Planet Formation around Binary Stars: Tatooine Made Easy. Astrophys. J. 2015, 806, 98. [Google Scholar] [CrossRef]
- Pierens, A.; Nelson, R.P. Migration and gas accretion scenarios for the Kepler 16, 34, and 35 circumbinary planets. Astron. Astrophys. 2013, 556, A134. [Google Scholar] [CrossRef]
- Kley, W.; Haghighipour, N. Modeling circumbinary planets: The case of Kepler-38. Astron. Astrophys. 2014, 564, A72. [Google Scholar] [CrossRef]
- Martin, D.V.; Fabrycky, D.C. Searching for Small Circumbinary Planets. I. The STANLEY Automated Algorithm and No New Planets in Existing Systems. Astron. J. 2021, 162, 84. [Google Scholar] [CrossRef]
- Penzlin, A.B.T.; Kley, W.; Nelson, R.P. Parking planets in circumbinary discs. Astron. Astrophys. 2021, 645, A68. [Google Scholar] [CrossRef]
- Martin, D.V.; Fitzmaurice, E. Running the gauntlet-survival of small circumbinary planets migrating through destabilizing resonances. Mon. Not. R. Astron. Soc. 2022, 512, 602–616. [Google Scholar] [CrossRef]
- Fitzmaurice, E.; Martin, D.V.; Fabrycky, D.C. Sculpting the circumbinary planet size distribution through resonant interactions with companion planets. Mon. Not. R. Astron. Soc. 2022, 512, 5023–5036. [Google Scholar] [CrossRef]
- Sebastian, D.; Triaud, A.H.M.J.; Brogi, M.; Baycroft, T.; Standing, M.R.; Sairam, L. The EBLM Project XIII. The absolute dynamical masses of the circumbinary planet host TOI-1338/BEBOP-1, and applications to the study of exoplanet atmospheres. Mon. Not. R. Astron. Soc. 2023; submitted. [Google Scholar]
- Zahn, J.P. Tidal friction in close binary systems. Astron. Astrophys. 1977, 57, 383–394. [Google Scholar]
- Sethi, R.; Martin, D.V. Tight stellar binaries favour active longitudes at sub- and anti-stellar points. MNRAS, 2023; submitted. [Google Scholar]
- Jackson, R.J.; Jeffries, R.D. The effect of starspots on the radii of low-mass pre-main-sequence stars. Mon. Not. R. Astron. Soc. 2014, 441, 2111–2123. [Google Scholar] [CrossRef]
- Somers, G.; Stassun, K.G. A Measurement of Radius Inflation in the Pleiades and Its Relation to Rotation and Lithium Depletion. Astron. J. 2017, 153, 101. [Google Scholar] [CrossRef]
- Bass, G.; Orosz, J.A.; Welsh, W.F.; Windmiller, G.; Ames Gregg, T.; Fetherolf, T.; Wade, R.A.; Quinn, S.N. Kepler Studies of Low-mass Eclipsing Binaries. I. Parameters of the Long-period Binary KIC 6131659. Astrophys. J. 2012, 761, 157. [Google Scholar] [CrossRef]
- MacDonald, J.; Mullan, D.J. Magnetic Modeling of Inflated Low-mass Stars Using Interior Fields No Larger than ∼10 kG. Astrophys. J. 2017, 850, 58. [Google Scholar] [CrossRef]
- Jaehnig, K.; Somers, G.; Stassun, K.G. Radius Inflation at Low Rossby Number in the Hyades Cluster. Astrophys. J. 2019, 879, 39. [Google Scholar] [CrossRef]
- Barker, A.J. Tidal dissipation in evolving low-mass and solar-type stars with predictions for planetary orbital decay. Mon. Not. R. Astron. Soc. 2020, 498, 2270–2294. [Google Scholar] [CrossRef]
- Ribas, I. The 0.4-Msun eclipsing binary CU Cancri. Absolute dimensions, comparison with evolutionary models and possible evidence for a circumstellar dust disk. Astron. Astrophys. 2003, 398, 239–251. [Google Scholar] [CrossRef]
- Bouchy, F.; Pont, F.; Melo, C.; Santos, N.C.; Mayor, M.; Queloz, D.; Udry, S. Doppler follow-up of OGLE transiting companions in the Galactic bulge. Astron. Astrophys. 2005, 431, 1105–1121. [Google Scholar] [CrossRef]
- Pont, F.; Bouchy, F.; Melo, C.; Santos, N.C.; Mayor, M.; Queloz, D.; Udry, S. Doppler follow-up of OGLE planetary transit candidates in Carina. Astron. Astrophys. 2005, 438, 1123–1140. [Google Scholar] [CrossRef]
- Pont, F.; Moutou, C.; Bouchy, F.; Behrend, R.; Mayor, M.; Udry, S.; Queloz, D.; Santos, N.; Melo, C. Radius and mass of a transiting M dwarf near the hydrogen-burning limit. OGLE-TR-123. Astron. Astrophys. 2006, 447, 1035–1039. [Google Scholar] [CrossRef]
- Hebb, L.; Wyse, R.F.G.; Gilmore, G.; Holtzman, J. Photometric Monitoring of Open Clusters. II. A New M Dwarf Eclipsing Binary System in the Open Cluster NGC 1647. Astron. J. 2006, 131, 555–561. [Google Scholar] [CrossRef]
- Vaccaro, T.R.; Rudkin, M.; Kawka, A.; Vennes, S.; Oswalt, T.D.; Silver, I.; Wood, M.; Smith, J.A. LP 133-373: A New Chromospherically Active Eclipsing dMe Binary with a Distant, Cool White Dwarf Companion. Astrophys. J. 2007, 661, 1112–1118. [Google Scholar] [CrossRef]
- Blake, C.H.; Torres, G.; Bloom, J.S.; Gaudi, B.S. A New Low-Mass Eclipsing Binary from SDSS-II. Astrophys. J. 2008, 684, 635–643. [Google Scholar] [CrossRef]
- Irwin, J.; Charbonneau, D.; Berta, Z.K.; Quinn, S.N.; Latham, D.W.; Torres, G.; Blake, C.H.; Burke, C.J.; Esquerdo, G.A.; Fürész, G.; et al. GJ 3236: A New Bright, Very Low Mass Eclipsing Binary System Discovered by the MEARTH Observatory. Astrophys. J. 2009, 701, 1436–1449. [Google Scholar] [CrossRef]
- Hartman, J.D.; Bakos, G.Á.; Noyes, R.W.; Sipőcz, B.; Kovács, G.; Mazeh, T.; Shporer, A.; Pál, A. A Photometric Variability Survey of Field K and M Dwarf Stars with HATNet. Astron. J. 2011, 141, 166. [Google Scholar] [CrossRef]
- Kraus, A.L.; Tucker, R.A.; Thompson, M.I.; Craine, E.R.; Hillenbrand, L.A. The Mass-Radius(-Rotation?) Relation for Low-mass Stars. Astrophys. J. 2011, 728, 48. [Google Scholar] [CrossRef]
- Irwin, J.M.; Quinn, S.N.; Berta, Z.K.; Latham, D.W.; Torres, G.; Burke, C.J.; Charbonneau, D.; Dittmann, J.; Esquerdo, G.A.; Stefanik, R.P.; et al. LSPM J1112+7626: Detection of a 41 Day M-dwarf Eclipsing Binary from the MEarth Transit Survey. Astrophys. J. 2011, 742, 123. [Google Scholar] [CrossRef]
- Bender, C.F.; Mahadevan, S.; Deshpande, R.; Wright, J.T.; Roy, A.; Terrien, R.C.; Sigurdsson, S.; Ramsey, L.W.; Schneider, D.P.; Fleming, S.W. The SDSS-HET Survey of Kepler Eclipsing Binaries: Spectroscopic Dynamical Masses of the Kepler-16 Circumbinary Planet Hosts. Astrophys. J. Lett. 2012, 751, L31. [Google Scholar] [CrossRef]
- Orosz, J.A.; Welsh, W.F.; Carter, J.A.; Brugamyer, E.; Buchhave, L.A.; Cochran, W.D.; Endl, M.; Ford, E.B.; MacQueen, P.; Short, D.R.; et al. The Neptune-sized Circumbinary Planet Kepler-38b. Astrophys. J. 2012, 758, 87. [Google Scholar] [CrossRef]
- Birkby, J.; Nefs, B.; Hodgkin, S.; Kovács, G.; Sipőcz, B.; Pinfield, D.; Snellen, I.; Mislis, D.; Murgas, F.; Lodieu, N.; et al. Discovery and characterization of detached M dwarf eclipsing binaries in the WFCAM Transit Survey. Mon. Not. R. Astron. Soc. 2012, 426, 1507–1532. [Google Scholar] [CrossRef]
- Tal-Or, L.; Mazeh, T.; Alonso, R.; Bouchy, F.; Cabrera, J.; Deeg, H.J.; Deleuil, M.; Faigler, S.; Fridlund, M.; Hébrard, G.; et al. CoRoT 101186644: A transiting low-mass dense M-dwarf on an eccentric 20.7-day period orbit around a late F-star. Discovered in the CoRoT lightcurves. Astron. Astrophys. 2013, 553, A30. [Google Scholar] [CrossRef]
- Kostov, V.B.; McCullough, P.R.; Hinse, T.C.; Tsvetanov, Z.I.; Hébrard, G.; Díaz, R.F.; Deleuil, M.; Valenti, J.A. A Gas Giant Circumbinary Planet Transiting the F Star Primary of the Eclipsing Binary Star KIC 4862625 and the Independent Discovery and Characterization of the Two Transiting Planets in the Kepler-47 System. Astrophys. J. 2013, 770, 52. [Google Scholar] [CrossRef]
- Nefs, S.V.; Birkby, J.L.; Snellen, I.A.G.; Hodgkin, S.T.; Sipőcz, B.M.; Kovács, G.; Mislis, D.; Pinfield, D.J.; Martin, E.L. A highly unequal-mass eclipsing M-dwarf binary in the WFCAM Transit Survey. Mon. Not. R. Astron. Soc. 2013, 431, 3240–3257. [Google Scholar] [CrossRef]
- Díaz, R.F.; Montagnier, G.; Leconte, J.; Bonomo, A.S.; Deleuil, M.; Almenara, J.M.; Barros, S.C.C.; Bouchy, F.; Bruno, G.; Damiani, C.; et al. SOPHIE velocimetry of Kepler transit candidates. XIII. KOI-189 b and KOI-686 b: Two very low-mass stars in long-period orbits. Astron. Astrophys. 2014, 572, A109. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Deshpande, R.; Dixit, V.; Roy, A.; Chakraborty, A.; Mahadevan, S.; Anandarao, B.G.; Hebb, L.; Janardhan, P. Determination of mass and orbital parameters of a low-mass star HD 213597B. Mon. Not. R. Astron. Soc. 2014, 442, 3737–3744. [Google Scholar] [CrossRef]
- Welsh, W.F.; Orosz, J.A.; Short, D.R.; Cochran, W.D.; Endl, M.; Brugamyer, E.; Haghighipour, N.; Buchhave, L.A.; Doyle, L.R.; Fabrycky, D.C.; et al. Kepler 453 b—The 10th Kepler Transiting Circumbinary Planet. Astrophys. J. 2015, 809, 26. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Chakraborty, A.; Anandarao, B.G.; Roy, A.; Mahadevan, S. Detection of a very low mass star in an eclipsing binary system. Mon. Not. R. Astron. Soc. 2016, 462, 554–564. [Google Scholar] [CrossRef]
- Dittmann, J.A.; Irwin, J.M.; Charbonneau, D.; Berta-Thompson, Z.K.; Newton, E.R.; Latham, D.W.; Latham, C.A.; Esquerdo, G.; Berlind, P.; Calkins, M.L. Discovery and Precise Characterization by the MEarth Project of LP 661-13, an Eclipsing Binary Consisting of Two Fully Convective Low-mass Stars. Astrophys. J. 2017, 836, 124. [Google Scholar] [CrossRef]
- Kraus, A.L.; Douglas, S.T.; Mann, A.W.; Agüeros, M.A.; Law, N.M.; Covey, K.R.; Feiden, G.A.; Rizzuto, A.C.; Howard, A.W.; Isaacson, H.; et al. The Factory and the Beehive. III. PTFEB132.707+19.810, A Low-mass Eclipsing Binary in Praesepe Observed by PTF and K2. Astrophys. J. 2017, 845, 72. [Google Scholar] [CrossRef]
- Shporer, A.; Zhou, G.; Vanderburg, A.; Fulton, B.J.; Isaacson, H.; Bieryla, A.; Torres, G.; Morton, T.D.; Bento, J.; Berlind, P.; et al. Three Statistically Validated K2 Transiting Warm Jupiter Exoplanets Confirmed as Low-mass Stars. Astrophys. J. Lett. 2017, 847, L18. [Google Scholar] [CrossRef]
- Hartman, J.D.; Quinn, S.N.; Bakos, G.Á.; Torres, G.; Kovács, G.; Latham, D.W.; Noyes, R.W.; Shporer, A.; Fulton, B.J.; Esquerdo, G.A.; et al. HAT-TR-318-007: A Double-lined M Dwarf Binary with Total Secondary Eclipses Discovered by HATNet and Observed by K2. Astron. J. 2018, 155, 114. [Google Scholar] [CrossRef]
- Cañas, C.I.; Bender, C.F.; Mahadevan, S.; Fleming, S.W.; Beatty, T.G.; Covey, K.R.; De Lee, N.; Hearty, F.R.; García-Hernández, D.A.; Majewski, S.R.; et al. Kepler-503b: An Object at the Hydrogen Burning Mass Limit Orbiting a Subgiant Star. Astrophys. J. Lett. 2018, 861, L4. [Google Scholar] [CrossRef]
- Cruz, P.; Diaz, M.; Birkby, J.; Barrado, D.; Sipöcz, B.; Hodgkin, S. Low-mass eclipsing binaries in the WFCAM Transit Survey: The persistence of the M-dwarf radius inflation problem. Mon. Not. R. Astron. Soc. 2018, 476, 5253–5267. [Google Scholar] [CrossRef]
- Eigmüller, P.; Csizmadia, S.; Endl, M.; Gandolfi, D.; Cochran, W.D.; Yong, D.; Smith, A.M.S.; Cabrera, J.; Deeg, H.J.; Johnson, m.C.; et al. A transiting M-dwarf showing beaming effect in the field of Ruprecht 147. Mon. Not. R. Astron. Soc. 2018, 480, 3864–3870. [Google Scholar] [CrossRef]
- Casewell, S.L.; Raynard, L.; Watson, C.A.; Gillen, E.; de Mooij, E.; Bayliss, D.; Bouchy, F.; Thompson, A.; Jackman, J.A.G.; Burleigh, M.R.; et al. A low-mass eclipsing binary within the fully convective zone from the Next Generation Transit Survey. Mon. Not. R. Astron. Soc. 2018, 481, 1897–1907. [Google Scholar] [CrossRef]
- Orosz, J.A.; Welsh, W.F.; Haghighipour, N.; Quarles, B.; Short, D.R.; Mills, S.M.; Satyal, S.; Torres, G.; Agol, E.; Fabrycky, D.C.; et al. Discovery of a Third Transiting Planet in the Kepler-47 Circumbinary System. Astron. J. 2019, 157, 174. [Google Scholar] [CrossRef]
- Carmichael, T.W.; Latham, D.W.; Vanderburg, A.M. New Substellar Discoveries from Kepler and K2: Is There a Brown Dwarf Desert? Astron. J. 2019, 158, 38. [Google Scholar] [CrossRef]
- Han, E.; Muirhead, P.S.; Swift, J.J. Magnetic Inflation and Stellar Mass. IV. Four Low-mass Kepler Eclipsing Binaries Consistent with Non-magnetic Stellar Evolutionary Models. Astron. J. 2019, 158, 111. [Google Scholar] [CrossRef]
- Mireles, I.; Shporer, A.; Grieves, N.; Zhou, G.; Günther, M.N.; Brahm, R.; Ziegler, C.; Stassun, K.G.; Huang, C.X.; Nielsen, L.; et al. TOI 694b and TIC 220568520b: Two Low-mass Companions near the Hydrogen-burning Mass Limit Orbiting Sun-like Stars. Astron. J. 2020, 160, 133. [Google Scholar] [CrossRef]
- Gill, S.; Cooke, B.F.; Bayliss, D.; Nielsen, L.D.; Lendl, M.; Wheatley, P.J.; Anderson, D.R.; Moyano, M.; Bryant, E.M.; Acton, J.S.; et al. A long-period (P = 61.8 d) M5V dwarf eclipsing a Sun-like star from TESS and NGTS. Mon. Not. R. Astron. Soc. 2020, 495, 2713–2719. [Google Scholar] [CrossRef]
- Acton, J.S.; Goad, M.R.; Casewell, S.L.; Vines, J.I.; Burleigh, M.R.; Eigmüller, P.; Nielsen, L.D.; Gänsicke, B.T.; Bayliss, D.; Bouchy, F.; et al. An eclipsing M-dwarf close to the hydrogen burning limit from NGTS. Mon. Not. R. Astron. Soc. 2020, 498, 3115–3124. [Google Scholar] [CrossRef]
- Stevens, D.J.; Zhou, G.; Johnson, M.C.; Rizzuto, A.C.; Rodriguez, J.E.; Bieryla, A.; Collins, K.A.; Villanueva, S., Jr.; Wright, J.T.; Gaudi, B.S.; et al. An extreme-mass ratio, short-period eclipsing binary consisting of a B dwarf primary and a pre-main-sequence M star companion discovered by KELT. Mon. Not. R. Astron. Soc. 2020, 499, 3775–3791. [Google Scholar] [CrossRef]
- Grieves, N.; Bouchy, F.; Lendl, M.; Carmichael, T.; Mireles, I.; Shporer, A.; McLeod, K.K.; Collins, K.A.; Brahm, R.; Stassun, K.G.; et al. Populating the brown dwarf and stellar boundary: Five stars with transiting companions near the hydrogen-burning mass limit. Astron. Astrophys. 2021, 652, A127. [Google Scholar] [CrossRef]
- Yenawine, M.E.; Welsh, W.F.; Orosz, J.A.; Bieryla, A.; Cochran, W.D.; Endl, M.; Latham, D.W.; Quinn, S.N.; Short, D.R.; Windmiller, G. Photodynamical Modeling of the Fascinating Eclipses in the Triple-star System KOI-126. Astrophys. J. 2022, 924, 66. [Google Scholar] [CrossRef]
- Lambert, M.; Bender, C.F.; Kanodia, S.; Cañas, C.I.; Monson, A.; Stefánsson, G.; Cochran, W.D.; Everett, m.E.; Gupta, A.F.; Hearty, F.; et al. TOI-5375 B: A Very Low Mass Star at the Hydrogen-burning Limit Orbiting an Early M-type Star. Astron. J. 2023, 165, 218. [Google Scholar] [CrossRef]
- Cañas, C.I.; Bender, C.F.; Mahadevan, S.; Bizyaev, D.; De Lee, N.; Fleming, S.W.; Hearty, F.; Majewski, S.R.; Nitschelm, C.; Schneider, D.P.; et al. Characterization of Low-mass Companions to Kepler Objects of Interest Observed with APOGEE-N. Astrophys. J. Suppl. Ser. 2023, 265, 50. [Google Scholar] [CrossRef]
- Martin, D.V.; Sethi, R.; Armitage, T.; Gilbert, G.J.; Rodríguez Martínez, R.; Gilbert, E.A. The Benchmark M Dwarf Eclipsing Binary CM Draconis With TESS: Spots, Flares and Ultra-Precise Parameters. arXiv 2023, arXiv:2301.10858. [Google Scholar] [CrossRef]
- Southworth, J. DEBCat: A Catalog of Detached Eclipsing Binary Stars. In Proceedings of the Living Together: Planets, Host Stars and Binaries, Litomysl, Czech Republic, 8–12 September 2014; Rucinski, S.M., Torres, G., Zejda, M., Eds.; Astronomical Society of the Pacific Conference Series. Volume 496, p. 164. [Google Scholar]
- Brogi, M.; Snellen, I.A.G.; de Kok, R.J.; Albrecht, S.; Birkby, J.; de Mooij, E.J.W. The signature of orbital motion from the dayside of the planet τ Boötis b. Nature 2012, 486, 502–504. [Google Scholar] [CrossRef]
- De Kok, R.J.; Brogi, M.; Snellen, I.A.G.; Birkby, J.; Albrecht, S.; de Mooij, E.J.W. Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b. Astron. Astrophys. 2013, 554, A82. [Google Scholar] [CrossRef]
- Tokovinin, A.; Thomas, S.; Sterzik, M.; Udry, S. Tertiary companions to close spectroscopic binaries. Astron. Astrophys. 2006, 450, 681–693. [Google Scholar] [CrossRef]
- Southworth, J. Homogeneous studies of transiting extrasolar planets—III. Additional planets and stellar models. Mon. Not. R. Astron. Soc. 2010, 408, 1689–1713. [Google Scholar] [CrossRef]
- Rauer, H.; Catala, C.; Aerts, C.; Appourchaux, T.; Benz, W.; Brandeker, A.; Christensen-Dalsgaard, J.; Deleuil, M.; Gizon, L.; Goupil, M.J.; et al. The PLATO 2.0 mission. Exp. Astron. 2014, 38, 249–330. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maxted, P.F.L.; Triaud, A.H.M.J.; Martin, D.V. The EBLM Project—From False Positives to Benchmark Stars and Circumbinary Exoplanets. Universe 2023, 9, 498. https://doi.org/10.3390/universe9120498
Maxted PFL, Triaud AHMJ, Martin DV. The EBLM Project—From False Positives to Benchmark Stars and Circumbinary Exoplanets. Universe. 2023; 9(12):498. https://doi.org/10.3390/universe9120498
Chicago/Turabian StyleMaxted, Pierre F. L., Amaury H. M. J. Triaud, and David V. Martin. 2023. "The EBLM Project—From False Positives to Benchmark Stars and Circumbinary Exoplanets" Universe 9, no. 12: 498. https://doi.org/10.3390/universe9120498
APA StyleMaxted, P. F. L., Triaud, A. H. M. J., & Martin, D. V. (2023). The EBLM Project—From False Positives to Benchmark Stars and Circumbinary Exoplanets. Universe, 9(12), 498. https://doi.org/10.3390/universe9120498