Spectral Variability Studies in Active Galactic Nuclei: Exploring Continuum and Emission Line Regions in the Age of LSST and JWST
Abstract
:1. Introduction
2. Understanding Accretion Disk and BLR Structure and Emission
3. AGNs for Cosmology
3.1. Effectiveness of the Radius-Luminosity Relation(s)
4. Coronal Lines as BH Mass Tracers Using Optical and NIR Spectroscopy
4.1. Standard Disk Predictions and Radiative Transfer Modeling
5. Getting Ready for LSST: Predictions for BLR and AD Time-Lag Recovery
5.1. BLR Time-Lag Recovery Expectations from LSST
5.2. Accretion Disk Continuum Modeling and Contamination from the BLR
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Accretion disk |
AGN | Active galactic nuclei |
BH | Black hole |
BLR | Broad-line region |
CL | Coronal lines |
DCE | Diffuse Continuum Emission |
DDF | Deep Drilling Field |
DL | Luminosity distance |
ECDFS | Extended Chandra Deep Field-South |
EDFS | Euclid Deep Field Survey |
FWHM | Full width at half maximum |
GNIRS | Gemini Near-Infrared Spectrograph |
IMBH | Intermediary mass black hole |
IP | Ionization potential |
ISCO | Innermost stable circular orbit |
LSST | Legacy Survey of Space and Time |
MS | Main Survey |
NLR | Narrow line region |
NLS1 | Narrow-Line Seyfert 1 |
NIR | Near infrared |
PRM | Photometric Reverberation Mapping |
RM | Reverberation Mapping |
SDSS | Sloan Digital Sky Survey |
SED | Spectral energy distribution |
SEAMBH | Super-Eddington Accreting Massive Black Holes |
SMBH | Supermassive black hole |
SNe | Supernovae |
SS | Shakura and Sunyaev |
VLTI | Very Large Telescope Interferometer |
WC | Warm Corona |
1 | The left panel of Figure 1 corresponds to the optical domain of Eigenvector 1, often referred to as the quasar main sequence. It defines the parameter space based on FWHM(H) and the strength of optical Fe ii emission (denoted as R). The latter is determined by the ratio of Fe ii flux within 4434–4684 Å (characterizing the blueward bump of the H profile) to the broad H flux. |
2 | This relationship supposes the radius of the BLR for H and the adjacent continuum luminosity at 5100 Å |
3 | |
4 | We note in passing that there is a good agreement between the FWHMs obtained for Br and H where the Br-based FWHMs are narrower by ∼300 km s (see, e.g., [155]) |
5 | http://www-astro.physics.ox.ac.uk/mxc/software/lts (accessed on 24 September 2022) |
6 | For the Main Survey (MS), we adopted the sky location (0, ), while for the DDF, the central coordinates of ELAIS-S1 at (9.45, ) were utilized. |
References
- Krolik, J.H. Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Seyfert, C.K. Nuclear Emission in Spiral Nebulae. Astrophys. J. 1943, 97, 28. [Google Scholar] [CrossRef]
- Schmidt, M. 3C 273: A Star-Like Object with Large Red-Shift. Nature 1963, 197, 1040. [Google Scholar] [CrossRef]
- Greenstein, J.L. Red-Shift of the Unusual Radio Source: 3C 48. Nature 1963, 197, 1041–1042. [Google Scholar] [CrossRef]
- Greenstein, J.L.; Schmidt, M. The Quasi-Stellar Radio Sources 3C 48 and 3C 273. Astrophys. J. 1964, 140, 1. [Google Scholar] [CrossRef]
- Souffrin, S. Study of Seyfert Galaxies. Ill. Ionization Mechanism. Astron. Astrophys. 1969, 1, 414. [Google Scholar]
- Lynden-Bell, D. Galactic Nuclei as Collapsed Old Quasars. Nature 1969, 223, 690–694. [Google Scholar] [CrossRef]
- Weedman, D.W. High-Velocity Gas Motions in Galactic Nuclei. Astrophys. J. 1970, 159, 405. [Google Scholar] [CrossRef]
- Khachikian, E.E.; Weedman, D.W. A spectroscopic study of luminous galactic nuclei. Astrofizika 1971, 7, 389–406. [Google Scholar] [CrossRef]
- Weedman, D.W. Luminosities of Seyfert galaxies and QSOs. Astrophys. J. 1976, 208, 30–36. [Google Scholar] [CrossRef]
- Weedman, D.W. Seyfert galaxies. Annu. Rev. Astron. Astrophys. 1977, 15, 69–95. [Google Scholar] [CrossRef]
- Blandford, R.D.; McKee, C.F. Reverberation mapping of the emission line regions of Seyfert galaxies and quasars. Astrophys. J. 1982, 255, 419–439. [Google Scholar] [CrossRef]
- Schmidt, M.; Green, R.F. Quasar evolution derived from the Palomar bright quasar survey and other complete quasar surveys. Astrophys. J. 1983, 269, 352–374. [Google Scholar] [CrossRef]
- Peterson, B.M. Emission-Line Variability in Seyfert Galaxies. Publ. Astron. Soc. Pac. 1988, 100, 18. [Google Scholar] [CrossRef]
- Peterson, B.M. Reverberation Mapping of Active Galactic Nuclei. Publ. Astron. Soc. Pac. 1993, 105, 247. [Google Scholar] [CrossRef]
- Kaspi, S.; Smith, P.S.; Netzer, H.; Maoz, D.; Jannuzi, B.T.; Giveon, U. Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei. Astrophys. J. 2000, 533, 631–649. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Marziani, P.; Dultzin-Hacyan, D. Phenomenology of Broad Emission Lines in Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2000, 38, 521–571. [Google Scholar] [CrossRef]
- Peterson, B.M.; Ferrarese, L.; Gilbert, K.M.; Kaspi, S.; Malkan, M.A.; Maoz, D.; Merritt, D.; Netzer, H.; Onken, C.A.; Pogge, R.W.; et al. Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database. Astrophys. J. 2004, 613, 682–699. [Google Scholar] [CrossRef]
- Vestergaard, M.; Peterson, B.M. Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships. Astrophys. J. 2006, 641, 689–709. [Google Scholar] [CrossRef]
- Tadhunter, C. An introduction to active galactic nuclei: Classification and unification. New Astron. 2008, 52, 227–239. [Google Scholar] [CrossRef]
- Bentz, M.C.; Peterson, B.M.; Netzer, H.; Pogge, R.W.; Vestergaard, M. The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements. II. The Full Sample of Reverberation-Mapped AGNs. Astrophys. J. 2009, 697, 160–181. [Google Scholar] [CrossRef]
- Antonucci, R. A panchromatic review of thermal and nonthermal active galactic nuclei. Astron. Astrophys. Trans. 2012, 27, 557–602. [Google Scholar] [CrossRef]
- Bentz, M.C.; Denney, K.D.; Grier, C.J.; Barth, A.J.; Peterson, B.M.; Vestergaard, M.; Bennert, V.N.; Canalizo, G.; De Rosa, G.; Filippenko, A.V.; et al. The Low-luminosity End of the Radius-Luminosity Relationship for Active Galactic Nuclei. APJ 2013, 767, 149. [Google Scholar] [CrossRef]
- Kormendy, J.; Ho, L.C. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 511–653. [Google Scholar] [CrossRef]
- Du, P.; Hu, C.; Lu, K.X.; Wang, F.; Qiu, J.; Li, Y.R.; Bai, J.M.; Kaspi, S.; Netzer, H.; Wang, J.M.; et al. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. I. First Results from a New Reverberation Mapping Campaign. Astrophys. J. 2014, 782, 45. [Google Scholar] [CrossRef]
- Du, P.; Hu, C.; Lu, K.X.; Huang, Y.K.; Cheng, C.; Qiu, J.; Li, Y.R.; Zhang, Y.W.; Fan, X.L.; Bai, J.M.; et al. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IV. Hβ Time Lags and Implications for Super-Eddington Accretion. Astrophys. J. 2015, 806, 22. [Google Scholar] [CrossRef]
- Netzer, H. Revisiting the Unified Model of Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2015, 53, 365–408. [Google Scholar] [CrossRef]
- Du, P.; Lu, K.X.; Zhang, Z.X.; Huang, Y.K.; Wang, K.; Hu, C.; Qiu, J.; Li, Y.R.; Fan, X.L.; Fang, X.E.; et al. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. V. A New Size-Luminosity Scaling Relation for the Broad-line Region. Astrophys. J. 2016, 825, 126. [Google Scholar] [CrossRef]
- Padovani, P.; Alexander, D.M.; Assef, R.J.; De Marco, B.; Giommi, P.; Hickox, R.C.; Richards, G.T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; et al. Active galactic nuclei: What’s in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar] [CrossRef]
- Grier, C.J.; Trump, J.R.; Shen, Y.; Horne, K.; Kinemuchi, K.; McGreer, I.D.; Starkey, D.A.; Brandt, W.N.; Hall, P.B.; Kochanek, C.S.; et al. The Sloan Digital Sky Survey Reverberation Mapping Project: Hα and Hβ Reverberation Measurements from First-year Spectroscopy and Photometry. Astrophys. J. 2017, 851, 21. [Google Scholar] [CrossRef]
- Du, P.; Wang, J.M. The Radius-Luminosity Relationship Depends on Optical Spectra in Active Galactic Nuclei. Astrophys. J. 2019, 886, 42. [Google Scholar] [CrossRef]
- Popović, L.Č. Broad spectral lines in AGNs and supermassive black hole mass measurements. Open Astron. 2020, 29, 1–14. [Google Scholar] [CrossRef]
- Zou, S.; Jiang, L.; Shen, Y.; Wu, J.; Bañados, E.; Fan, X.; Ho, L.C.; Riechers, D.A.; Venemans, B.; Vestergaard, M.; et al. Strong Mg II and Fe II Absorbers at 2.2 < z < 6.0. Astrophys. J. 2021, 906, 32. [Google Scholar] [CrossRef]
- Matthews, B.M.; Shemmer, O.; Dix, C.; Brotherton, M.S.; Myers, A.D.; Andruchow, I.; Brandt, W.N.; Ferrero, G.A.; Gallagher, S.C.; Green, R.; et al. Placing High-redshift Quasars in Perspective: A Catalog of Spectroscopic Properties from the Gemini Near Infrared Spectrograph-Distant Quasar Survey. Astrophys. J. Suppl. 2021, 252, 15. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, L.; Shen, Y.; Ho, L.C.; Vestergaard, M.; Bañados, E.; Willott, C.J.; Wu, J.; Zou, S.; Yang, J.; et al. Metallicity in Quasar Broad-line Regions at Redshift 6. Astrophys. J. 2022, 925, 121. [Google Scholar] [CrossRef]
- Ramos Padilla, A.F.; Wang, L.; Małek, K.; Efstathiou, A.; Yang, G. The viewing angle in AGN SED models: A data-driven analysis. Mon. Not. R. Astron. Soc. 2022, 510, 687–707. [Google Scholar] [CrossRef]
- Lai, S.; Bian, F.; Onken, C.A.; Wolf, C.; Mazzucchelli, C.; Bañados, E.; Bischetti, M.; Bosman, S.E.I.; Becker, G.; Cupani, G.; et al. Chemical abundance of z 6 quasar broad-line regions in the XQR-30 sample. Mon. Not. R. Astron. Soc. 2022, 513, 1801–1819. [Google Scholar] [CrossRef]
- Bianchi, S.; Mainieri, V.; Padovani, P. Active Galactic Nuclei and Their Demography Through Cosmic Time. In Handbook of X-ray and Gamma-ray Astrophysics; Springer: Singapore, 2022; p. 4. [Google Scholar] [CrossRef]
- Sacchi, A.; Risaliti, G.; Signorini, M.; Lusso, E.; Nardini, E.; Bargiacchi, G.; Bisogni, S.; Civano, F.; Elvis, M.; Fabbiano, G.; et al. Quasars as high-redshift standard candles. Astron. Astrophys. 2022, 663, L7. [Google Scholar] [CrossRef]
- Guo, H.; Barth, A.J.; Wang, S. Active Galactic Nuclei Continuum Reverberation Mapping Based on Zwicky Transient Facility Light Curves. Astrophys. J. 2022, 940, 20. [Google Scholar] [CrossRef]
- Schindler, J.T.; Bañados, E.; Connor, T.; Decarli, R.; Fan, X.; Farina, E.P.; Mazzucchelli, C.; Nanni, R.; Rix, H.W.; Stern, D.; et al. The Pan-STARRS1 z > 5.6 Quasar Survey. III. The z ≈ 6 Quasar Luminosity Function. Astrophys. J. 2023, 943, 67. [Google Scholar] [CrossRef]
- Wu, Q.; Shen, Y. A Catalog of Quasar Properties from Sloan Digital Sky Survey Data Release 16. Astrophys. J. Suppl. 2022, 263, 42. [Google Scholar] [CrossRef]
- Onken, C.A.; Wolf, C.; Hon, W.J.; Lai, S.; Tisserand, P.; Webster, R. AllBRICQS: The All-sky BRIght, Complete Quasar Survey. Publ. Astron. Soc. Aust. 2023, 40, e010. [Google Scholar] [CrossRef]
- Kynoch, D.; Mitchell, J.A.J.; Ward, M.J.; Done, C.; Lusso, E.; Landt, H. The SOUX AGN sample: SDSS-XMM-Newton optical, ultraviolet, and X-ray selected active galactic nuclei spanning a wide range of parameter space - sample definition. Mon. Not. R. Astron. Soc. 2023, 520, 2781–2805. [Google Scholar] [CrossRef]
- Mazzucchelli, C.; Bischetti, M.; D’Odorico, V.; Feruglio, C.; Schindler, J.T.; Onoue, M.; Bañados, E.; Becker, G.D.; Bian, F.; Carniani, S.; et al. XQR-30: Black hole masses and accretion rates of 42 z ≳ 6 quasars. Astron. Astrophys. 2023, 676, A71. [Google Scholar] [CrossRef]
- Yang, J.; Wang, F.; Fan, X.; Hennawi, J.F.; Barth, A.J.; Bañados, E.; Sun, F.; Liu, W.; Cai, Z.; Jiang, L.; et al. A SPectroscopic Survey of Biased Halos in the Reionization Era (ASPIRE): A First Look at the Rest-frame Optical Spectra of z > 6.5 Quasars Using JWST. Astrophys. J. Lett. 2023, 951, L5. [Google Scholar] [CrossRef]
- Bischetti, M.; Fiore, F.; Feruglio, C.; D’Odorico, V.; Arav, N.; Costa, T.; Zubovas, K.; Becker, G.; Bosman, S.E.I.; Cupani, G.; et al. The Fraction and Kinematics of Broad Absorption Line Quasars across Cosmic Time. Astrophys. J. 2023, 952, 44. [Google Scholar] [CrossRef]
- López, I.E.; Brusa, M.; Bonoli, S.; Shankar, F.; Acharya, N.; Laloux, B.; Dolag, K.; Georgakakis, A.; Lapi, A.; Ramos Almeida, C.; et al. The miniJPAS survey: AGN and host galaxy coevolution of X-ray-selected sources. Astron. Astrophys. 2023, 672, A137. [Google Scholar] [CrossRef]
- Sun, M. The mass distribution of quasars in optical time-domain surveys. Mon. Not. R. Astron. Soc. 2023, 521, 2954–2961. [Google Scholar] [CrossRef]
- D’Odorico, V.; Bañados, E.; Becker, G.D.; Bischetti, M.; Bosman, S.E.I.; Cupani, G.; Davies, R.; Farina, E.P.; Ferrara, A.; Feruglio, C.; et al. XQR-30: The ultimate XSHOOTER quasar sample at the reionization epoch. Mon. Not. R. Astron. Soc. 2023, 523, 1399–1420. [Google Scholar] [CrossRef]
- Secunda, A.; Greene, J.E.; Jiang, Y.F.; Yao, P.Z.; Zoghbi, A. Negative Lags on the Viscous Timescale in Quasar Photometry and Prospects for Detecting More with LSST. Astrophys. J. 2023, 956, 81. [Google Scholar] [CrossRef]
- Fan, X.; Bañados, E.; Simcoe, R.A. Quasars and the Intergalactic Medium at Cosmic Dawn. Annu. Rev. Astron. Astrophys. 2023, 61, 373–426. [Google Scholar] [CrossRef]
- Kokorev, V.; Fujimoto, S.; Labbe, I.; Greene, J.E.; Bezanson, R.; Dayal, P.; Nelson, E.J.; Atek, H.; Brammer, G.; Caputi, K.I.; et al. UNCOVER: A NIRSpec Identification of a Broad-line AGN at z = 8.50. Astrophys. J. Lett. 2023, 957, L7. [Google Scholar] [CrossRef]
- Jin, C.; Lusso, E.; Ward, M.; Done, C.; Middei, R. Wavelength Dependences of the Optical/UV and X-ray Luminosity Correlations of Quasars. Mon. Not. R. Astron. Soc. 2023, 527, 356–373. [Google Scholar] [CrossRef]
- Arevalo, P.; Churazov, E.; Lira, P.; Sanchez-Saez, P.; Bernal, S.; Hernandez-Garcia, L.; Lopez-Navas, E.; Patel, P. The universal power spectrum of Quasars in optical wavelengths: Break timescale scales directly with both black hole mass and accretion rate. arXiv 2023, arXiv:2306.11099. [Google Scholar] [CrossRef]
- Ward, C.; Gezari, S.; Nugent, P.; Kerr, M.; Eracleous, M.; Frederick, S.; Hammerstein, E.; Graham, M.J.; van Velzen, S.; Kasliwal, M.M.; et al. Panic at the ISCO: The visible accretion disks powering optical variability in ZTF AGN. arXiv 2023, arXiv:2309.02516. [Google Scholar] [CrossRef]
- Juráňová, A.; Costantini, E.; Di Gesu, L.; Ebrero, J.; Kaastra, J.; Korista, K.; Kriss, G.A.; Mehdipour, M.; Piconcelli, E.; Rogantini, D. Study of the optical to X-ray broad emission lines of Mrk 110. arXiv 2023, arXiv:2311.03459. [Google Scholar] [CrossRef]
- Rosborough, S.; Robinson, A.; Almeyda, T.; Noll, M. Modeling the Reverberation Response of the Broad Line Region in Active Galactic Nuclei. arXiv 2023, arXiv:2311.03590. [Google Scholar] [CrossRef]
- Strittmatter, P.A.; Hill, P.; Pauliny-Toth, I.I.K.; Steppe, H.; Witzel, A. Radio observations of optically selected quasars. Astron. Astrophys. 1980, 88, L12–L15. [Google Scholar]
- Peacock, J.A.; Miller, L.; Longair, M.S. The statistics of radio emission from quasars. Mon. Not. R. Astron. Soc. 1986, 218, 265–278. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Sramek, R.; Schmidt, M.; Shaffer, D.B.; Green, R. VLA Observations of Objects in the Palomar Bright Quasar Survey. Astron. J. 1989, 98, 1195. [Google Scholar] [CrossRef]
- Miller, L.; Peacock, J.A.; Mead, A.R.G. The bimodal radio luminosity function of quasars. Mon. Not. R. Astron. Soc. 1990, 244, 207–213. [Google Scholar]
- Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 1993, 31, 473–521. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Sramek, R.A.; Schmidt, M.; Green, R.F.; Shaffer, D.B. The Radio Structure of Radio Loud and Quiet Quasars in the Palomar Bright Quasar Survey. Astron. J. 1994, 108, 1163. [Google Scholar] [CrossRef]
- Wilson, A.S.; Colbert, E.J.M. The Difference between Radio-loud and Radio-quiet Active Galaxies. Astrophys. J. 1995, 438, 62. [Google Scholar] [CrossRef]
- Xu, C.; Livio, M.; Baum, S. Radio-loud and Radio-quiet Active Galactic Nuclei. Astron. J. 1999, 118, 1169–1176. [Google Scholar] [CrossRef]
- Laor, A. On Black Hole Masses and Radio Loudness in Active Galactic Nuclei. Astrophys. J. Lett. 2000, 543, L111–L114. [Google Scholar] [CrossRef]
- Véron-Cetty, M.P.; Véron, P. The emission line spectrum of active galactic nuclei and the unifying scheme. Astron. Astrophys. Rev. 2000, 10, 81–133. [Google Scholar] [CrossRef]
- Boroson, T.A. Black Hole Mass and Eddington Ratio as Drivers for the Observable Properties of Radio-loud and Radio-quiet QSOs. Astrophys. J. 2002, 565, 78–85. [Google Scholar] [CrossRef]
- Sikora, M.; Stawarz, Ł.; Lasota, J.P. Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications. Astrophys. J. 2007, 658, 815–828. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Black Hole Spin and The Radio Loud/Quiet Dichotomy of Active Galactic Nuclei. Astrophys. J. 2010, 711, 50–63. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Condon, J.J.; Kimball, A.E.; Perley, R.A.; Ivezić, Ž. Radio-loud and Radio-quiet QSOs. Astrophys. J. 2016, 831, 168. [Google Scholar] [CrossRef]
- Padovani, P. On the two main classes of active galactic nuclei. Nat. Astron. 2017, 1, 0194. [Google Scholar] [CrossRef]
- Panessa, F.; Baldi, R.D.; Laor, A.; Padovani, P.; Behar, E.; McHardy, I. The origin of radio emission from radio-quiet active galactic nuclei. Nat. Astron. 2019, 3, 387–396. [Google Scholar] [CrossRef]
- Schmidt, M. Space Distribution and Luminosity Functions of Quasars. Astrophys. J. 1970, 162, 371. [Google Scholar] [CrossRef]
- Padovani, P.; Miller, N.; Kellermann, K.I.; Mainieri, V.; Rosati, P.; Tozzi, P. The VLA Survey of Chandra Deep Field South. V. Evolution and Luminosity Functions of Sub-millijansky Radio Sources and the Issue of Radio Emission in Radio-quiet Active Galactic Nuclei. Astrophys. J. 2011, 740, 20. [Google Scholar] [CrossRef]
- Bonzini, M.; Padovani, P.; Mainieri, V.; Kellermann, K.I.; Miller, N.; Rosati, P.; Tozzi, P.; Vattakunnel, S. The sub-mJy radio sky in the Extended Chandra Deep Field-South: Source population. Mon. Not. R. Astron. Soc. 2013, 436, 3759–3771. [Google Scholar] [CrossRef]
- Padovani, P. The faint radio sky: Radio astronomy becomes mainstream. Astron. Astrophys. Rev. 2016, 24, 13. [Google Scholar] [CrossRef]
- Boroson, T.A.; Green, R.F. The Emission-Line Properties of Low-Redshift Quasi-stellar Objects. Astrophys. J. Suppl. 1992, 80, 109. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W. Highly accreting quasars: Sample definition and possible cosmological implications. Mon. Not. R. Astron. Soc. 2014, 442, 1211–1229. [Google Scholar] [CrossRef]
- Marziani, P.; Panda, S.; Deconto Machado, A.; Del Olmo, A. Metal Content in Relativistically Jetted and Radio-Quiet Quasars in the Main Sequence Context. Galaxies 2023, 11, 52. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Marziani, P.; Zamanov, R.; Bachev, R.; Calvani, M.; Dultzin-Hacyan, D. Average Quasar Spectra in the Context of Eigenvector 1. Astrophys. J. Lett. 2002, 566, L71–L75. [Google Scholar] [CrossRef]
- Zamfir, S.; Sulentic, J.W.; Marziani, P.; Dultzin, D. Detailed characterization of Hβ emission line profile in low-z SDSS quasars. Mon. Not. R. Astron. Soc. 2010, 403, 1759. [Google Scholar] [CrossRef]
- Marziani, P.; Dultzin, D.; Sulentic, J.W.; Del Olmo, A.; Negrete, C.A.; Martínez-Aldama, M.L.; D’Onofrio, M.; Bon, E.; Bon, N.; Stirpe, G.M. A main sequence for quasars. Front. Astron. Space Sci. 2018, 5, 6. [Google Scholar] [CrossRef]
- Marziani, P.; Berton, M.; Panda, S.; Bon, E. Optical Singly-Ionized Iron Emission in Radio-Quiet and Relativistically Jetted Active Galactic Nuclei. Universe 2021, 7, 484. [Google Scholar] [CrossRef]
- Dias dos Santos, D.; Rodríguez-Ardila, A.; Panda, S.; Marinello, M. First Observation of a Double-peaked O I Emission in the Near-infrared Spectrum of an Active Galaxy. Astrophys. J. Lett. 2023, 953, L3. [Google Scholar] [CrossRef]
- Panda, S.; Marziani, P.; Czerny, B. The Quasar Main Sequence Explained by the Combination of Eddington Ratio, Metallicity, and Orientation. Astrophys. J. 2019, 882, 79. [Google Scholar] [CrossRef]
- Sulentic, J.; Marziani, P. Quasars in the 4D Eigenvector 1 Context: A stroll down memory lane. Front. Astron. Space Sci. 2015, 2, 6. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Gaskell, C.M. What broad emission lines tell us about how active galactic nuclei work. New Astron. 2009, 53, 140–148. [Google Scholar] [CrossRef]
- Panda, S. Physical Conditions in the Broad-line Regions of Active Galaxies. Ph.D. Thesis, Polish Academy of Sciences, Center for Theoretical Physics, Warsaw, Poland, 2021. [Google Scholar]
- Netzer, H.; Peterson, B.M. Reverberation Mapping and the Physics of Active Galactic Nuclei. In Proceedings of the Astronomical Time Series; Maoz, D., Sternberg, A., Leibowitz, E.M., Eds.; Astrophysics and Space Science Library; Spriger: Berlin/Heidelberg, Germany, 1997; Volume 218, p. 85. [Google Scholar] [CrossRef]
- Wandel, A.; Peterson, B.M.; Malkan, M.A. Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques. Astrophys. J. 1999, 526, 579–591. [Google Scholar] [CrossRef]
- Horne, K.; Peterson, B.M.; Collier, S.J.; Netzer, H. Observational Requirements for High-Fidelity Reverberation Mapping. Publ. Astron. Soc. Pac. 2004, 116, 465–476. [Google Scholar] [CrossRef]
- Denney, K.D.; Watson, L.C.; Peterson, B.M.; Pogge, R.W.; Atlee, D.W.; Bentz, M.C.; Bird, J.C.; Brokofsky, D.J.; Comins, M.L.; Dietrich, M.; et al. A Revised Broad-line Region Radius and Black Hole Mass for the Narrow-line Seyfert 1 NGC 4051. Astrophys. J. 2009, 702, 1353–1366. [Google Scholar] [CrossRef]
- Shapovalova, A.I.; Popović, L.Č.; Burenkov, A.N.; Chavushyan, V.H.; Ilić, D.; Kovačević, A.; Bochkarev, N.G.; León-Tavares, J. Long-term variability of the optical spectra of NGC 4151. II. Evolution of the broad Hα and Hβ emission-line profiles. Astron. Astrophys. 2010, 509, A106. [Google Scholar] [CrossRef]
- Woo, J.H.; Treu, T.; Barth, A.J.; Wright, S.A.; Walsh, J.L.; Bentz, M.C.; Martini, P.; Bennert, V.N.; Canalizo, G.; Filippenko, A.V.; et al. The Lick AGN Monitoring Project: The M BH-σ* Relation for Reverberation-mapped Active Galaxies. Astrophys. J. 2010, 716, 269–280. [Google Scholar] [CrossRef]
- Denney, K.D.; Peterson, B.M.; Pogge, R.W.; Adair, A.; Atlee, D.W.; Au-Yong, K.; Bentz, M.C.; Bird, J.C.; Brokofsky, D.J.; Chisholm, E.; et al. Reverberation Mapping Measurements of Black Hole Masses in Six Local Seyfert Galaxies. Astrophys. J. 2010, 721, 715–737. [Google Scholar] [CrossRef]
- Grier, C.J.; Peterson, B.M.; Pogge, R.W.; Denney, K.D.; Bentz, M.C.; Martini, P.; Sergeev, S.G.; Kaspi, S.; Minezaki, T.; Zu, Y.; et al. Reverberation Mapping Results for Five Seyfert 1 Galaxies. Astrophys. J. 2012, 755, 60. [Google Scholar] [CrossRef]
- Wang, J.M.; Du, P.; Hu, C.; Netzer, H.; Bai, J.M.; Lu, K.X.; Kaspi, S.; Qiu, J.; Li, Y.R.; Wang, F.; et al. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. II. The Most Luminous Standard Candles in the Universe. Astrophys. J. 2014, 793, 108. [Google Scholar] [CrossRef]
- Pancoast, A.; Brewer, B.J.; Treu, T.; Park, D.; Barth, A.J.; Bentz, M.C.; Woo, J.H. Modelling reverberation mapping data—II. Dynamical modelling of the Lick AGN Monitoring Project 2008 data set. Mon. Not. R. Astron. Soc. 2014, 445, 3073–3091. [Google Scholar] [CrossRef]
- Barth, A.J.; Bennert, V.N.; Canalizo, G.; Filippenko, A.V.; Gates, E.L.; Greene, J.E.; Li, W.; Malkan, M.A.; Pancoast, A.; Sand, D.J.; et al. The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves. Astrophys. J. Suppl. 2015, 217, 26. [Google Scholar] [CrossRef]
- Zu, Y.; Kochanek, C.S.; Kozłowski, S.; Peterson, B.M. Application of Stochastic Modeling to Analysis of Photometric Reverberation Mapping Data. Astrophys. J. 2016, 819, 122. [Google Scholar] [CrossRef]
- Pei, L.; Fausnaugh, M.M.; Barth, A.J.; Peterson, B.M.; Bentz, M.C.; De Rosa, G.; Denney, K.D.; Goad, M.R.; Kochanek, C.S.; Korista, K.T.; et al. Space Telescope and Optical Reverberation Mapping Project. V. Optical Spectroscopic Campaign and Emission-line Analysis for NGC 5548. Astrophys. J. 2017, 837, 131. [Google Scholar] [CrossRef]
- Fausnaugh, M.M.; Grier, C.J.; Bentz, M.C.; Denney, K.D.; De Rosa, G.; Peterson, B.M.; Kochanek, C.S.; Pogge, R.W.; Adams, S.M.; Barth, A.J.; et al. Reverberation Mapping of Optical Emission Lines in Five Active Galaxies. Astrophys. J. 2017, 840, 97. [Google Scholar] [CrossRef]
- Du, P.; Zhang, Z.X.; Wang, K.; Huang, Y.K.; Zhang, Y.; Lu, K.X.; Hu, C.; Li, Y.R.; Bai, J.M.; Bian, W.H.; et al. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. IX. 10 New Observations of Reverberation Mapping and Shortened Hβ Lags. Astrophys. J. 2018, 856, 6. [Google Scholar] [CrossRef]
- Williams, P.R.; Pancoast, A.; Treu, T.; Brewer, B.J.; Barth, A.J.; Bennert, V.N.; Buehler, T.; Canalizo, G.; Cenko, S.B.; Clubb, K.I.; et al. The Lick AGN Monitoring Project 2011: Dynamical Modeling of the Broad-line Region. Astrophys. J. 2018, 866, 75. [Google Scholar] [CrossRef]
- Penton, A.; Malik, U.; Davis, T.M.; Martini, P.; Yu, Z.; Sharp, R.; Lidman, C.; Tucker, B.E.; Hoormann, J.K.; Aguena, M.; et al. OzDES reverberation mapping program: Lag recovery reliability for 6-yr C IV analysis. Mon. Not. R. Astron. Soc. 2022, 509, 4008–4023. [Google Scholar] [CrossRef]
- Malik, U.; Sharp, R.; Penton, A.; Yu, Z.; Martini, P.; Lidman, C.; Tucker, B.E.; Davis, T.M.; Lewis, G.F.; Aguena, M.; et al. OzDES Reverberation Mapping Program: Hβ lags from the 6-yr survey. Mon. Not. R. Astron. Soc. 2023, 520, 2009–2023. [Google Scholar] [CrossRef]
- Yu, Z.; Martini, P.; Penton, A.; Davis, T.M.; Kochanek, C.S.; Lewis, G.F.; Lidman, C.; Malik, U.; Sharp, R.; Tucker, B.E.; et al. OzDES Reverberation Mapping Programme: Mg II lags and R-L relation. Mon. Not. R. Astron. Soc. 2023, 522, 4132–4147. [Google Scholar] [CrossRef]
- Shen, Y.; Grier, C.J.; Horne, K.; Stone, Z.; Li, J.I.; Yang, Q.; Homayouni, Y.; Trump, J.R.; Anderson, S.F.; Brandt, W.N.; et al. The Sloan Digital Sky Survey Reverberation Mapping Project: Key Results. arXiv 2023, arXiv:2305.01014. [Google Scholar] [CrossRef]
- Hu, C.; Du, P.; Lu, K.X.; Li, Y.R.; Wang, F.; Qiu, J.; Bai, J.M.; Kaspi, S.; Ho, L.C.; Netzer, H.; et al. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. III. Detection of Fe II Reverberation in Nine Narrow-line Seyfert 1 Galaxies. Astrophys. J. 2015, 804, 138. [Google Scholar] [CrossRef]
- Shen, Y.; Hall, P.B.; Horne, K.; Zhu, G.; McGreer, I.; Simm, T.; Trump, J.R.; Kinemuchi, K.; Brandt, W.N.; Green, P.J.; et al. The Sloan Digital Sky Survey Reverberation Mapping Project: Sample Characterization. Astrophys. J. Suppl. 2019, 241, 34. [Google Scholar] [CrossRef]
- Panda, S.; Marziani, P. High Eddington quasars as discovery tools: Current state and challenges. Front. Astron. Space Sci. 2023, 10, 1130103. [Google Scholar] [CrossRef]
- Martínez-Aldama, M.L.; Czerny, B.; Kawka, D.; Karas, V.; Panda, S.; Zajaček, M.; Życki, P.T. Can Reverberation-measured Quasars Be Used for Cosmology? Astrophys. J. 2019, 883, 170. [Google Scholar] [CrossRef]
- Shen, Y.; Ho, L.C. The diversity of quasars unified by accretion and orientation. Nature 2014, 513, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Aldama, M.L.; Panda, S.; Czerny, B.; Marinello, M.; Marziani, P.; Dultzin, D. The CaFe Project: Optical Fe II and Near-infrared Ca II Triplet Emission in Active Galaxies. II. The Driver(s) of the Ca II and Fe II and Its Potential Use as a Chemical Clock. Astrophys. J. 2021, 918, 29. [Google Scholar] [CrossRef]
- Wang, J.M.; Qiu, J.; Du, P.; Ho, L.C. Self-shadowing Effects of Slim Accretion Disks in Active Galactic Nuclei: The Diverse Appearance of the Broad-line Region. Astrophys. J. 2014, 797, 65. [Google Scholar] [CrossRef]
- Abramowicz, M.A.; Czerny, B.; Lasota, J.P.; Szuszkiewicz, E. Slim accretion disks. Astrophys. J. 1988, 332, 646–658. [Google Scholar] [CrossRef]
- Sadowski, A. Slim accretion disks around black holes. arXiv 2011, arXiv:1108.0396. [Google Scholar]
- Panda, S. The CaFe Project: Optical Fe II and Near-Infrared Ca II triplet emission in active galaxies: (II) synthetic EWs, co-dependence between cloud sizes and metal content. arXiv 2020, arXiv:2004.13113. [Google Scholar] [CrossRef]
- Panda, S.; Marziani, P. Modelling the quasar spectra for super-Eddington sources – The What, the Why and the How. arXiv 2023, arXiv:2308.05830. [Google Scholar] [CrossRef]
- Lusso, E.; Risaliti, G. Quasars as standard candles. I. The physical relation between disc and coronal emission. Astron. Astrophys. 2017, 602, A79. [Google Scholar] [CrossRef]
- Ferland, G.J.; Done, C.; Jin, C.; Landt, H.; Ward, M.J. State-of-the-art AGN SEDs for photoionization models: BLR predictions confront the observations. Mon. Not. R. Astron. Soc. 2020, 494, 5917–5922. [Google Scholar] [CrossRef]
- Panda, S. Parameterizing the AGN Radius–Luminosity Relation from the Eigenvector 1 Viewpoint. Front. Astron. Space Sci. 2022, 9, 850409. [Google Scholar] [CrossRef]
- Wills, B.J.; Netzer, H.; Wills, D. Broad emission features in QSOs and active galactic nuclei. II—New observations and theory of Fe II and H I emission. Astrophys. J. 1985, 288, 94–116. [Google Scholar] [CrossRef]
- Davidson, K. On photoionization analyses of emission spectra of quasars. Astrophys. J. 1977, 218, 20–32. [Google Scholar] [CrossRef]
- Osterbrock, D.E.; Ferland, G.J. Astrophysics of Gaseous Nebulae and Active Galactic Nuclei; University Science Books: Herndon, VA, USA, 2006. [Google Scholar]
- Shen, Y.; Richards, G.T.; Strauss, M.A.; Hall, P.B.; Schneider, D.P.; Snedden, S.; Bizyaev, D.; Brewington, H.; Malanushenko, V.; Malanushenko, E.; et al. A Catalog of Quasar Properties from Sloan Digital Sky Survey Data Release 7. Astrophys. J. Suppl. 2011, 194, 45. [Google Scholar] [CrossRef]
- Panda, S.; Martínez-Aldama, M.L.; Zajaček, M. Current and future applications of Reverberation-mapped quasars in Cosmology. Front. Astron. Space Sci. 2019, 6, 75. [Google Scholar] [CrossRef]
- Haas, M.; Chini, R.; Ramolla, M.; Pozo Nuñez, F.; Westhues, C.; Watermann, R.; Hoffmeister, V.; Murphy, M. Photometric AGN reverberation mapping—an efficient tool for BLR sizes, black hole masses, and host-subtracted AGN luminosities. Astron. Astrophys. 2011, 535, A73. [Google Scholar] [CrossRef]
- Pozo Nuñez, F.; Ramolla, M.; Westhues, C.; Bruckmann, C.; Haas, M.; Chini, R.; Steenbrugge, K.; Murphy, M. Photometric reverberation mapping of 3C 120. Astron. Astrophys. 2012, 545, A84. [Google Scholar] [CrossRef]
- Ma, Q.; Wu, X.B.; Gu, H.; Wen, Y.; Fu, Y. The Hα Broadband Photometric Reverberation Mapping of Four Seyfert 1 Galaxies. Astrophys. J. 2023, 949, 22. [Google Scholar] [CrossRef]
- Watson, D.; Denney, K.D.; Vestergaard, M.; Davis, T.M. A New Cosmological Distance Measure Using Active Galactic Nuclei. Astrophys. J. Lett. 2011, 740, L49. [Google Scholar] [CrossRef]
- Czerny, B.; Hryniewicz, K.; Maity, I.; Schwarzenberg-Czerny, A.; Życki, P.T.; Bilicki, M. Towards equation of state of dark energy from quasar monitoring: Reverberation strategy. Astron. Astrophys. 2013, 556, A97. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Marziani, P.; del Olmo, A.; Dultzin, D.; Perea, J.; Alenka Negrete, C. GTC spectra of z ≈ 2.3 quasars: Comparison with local luminosity analogs. Astron. Astrophys. 2014, 570, A96. [Google Scholar] [CrossRef]
- Cavaliere, A.; Vittorini, V. The Fall of the Quasar Population. Astrophys. J. 2000, 543, 599–610. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Hernquist, L.; Cox, T.J.; Di Matteo, T.; Robertson, B.; Springel, V. A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids. Astrophys. J. Suppl. 2006, 163, 1–49. [Google Scholar] [CrossRef]
- Davidson, K.; Netzer, H. The emission lines of quasars and similar objects. Rev. Mod. Phys. 1979, 51, 715–766. [Google Scholar] [CrossRef]
- Lipari, S.; Macchetto, F. Coronal Lines and Starburst Features in Two New IRAS Active Galactic Nuclei: IRAS 04493-6441 and IRAS 22419-6049. Astrophys. J. 1992, 387, 522. [Google Scholar] [CrossRef]
- Reunanen, J.; Kotilainen, J.K.; Prieto, M.A. Near-infrared spectroscopy of nearby Seyfert galaxies—I. First results. Mon. Not. R. Astron. Soc. 2002, 331, 154–168. [Google Scholar] [CrossRef]
- Molina, M.; Reines, A.E.; Latimer, L.J.; Baldassare, V.; Salehirad, S. A Sample of Massive Black Holes in Dwarf Galaxies Detected via [Fe X] Coronal Line Emission: Active Galactic Nuclei and/or Tidal Disruption Events. Astrophys. J. 2021, 922, 155. [Google Scholar] [CrossRef]
- Kynoch, D.; Landt, H.; Dehghanian, M.; Ward, M.J.; Ferland, G.J. Multiple locations of near-infrared coronal lines in NGC 5548. Mon. Not. R. Astron. Soc. 2022, 516, 4397–4416. [Google Scholar] [CrossRef]
- Reefe, M.; Sexton, R.O.; Doan, S.M.; Satyapal, S.; Secrest, N.J.; Cann, J.M. CLASS Survey Description: Coronal-line Needles in the SDSS Haystack. Astrophys. J. Suppl. 2023, 265, 21. [Google Scholar] [CrossRef]
- Short, P.; Lawrence, A.; Nicholl, M.; Ward, M.; Reynolds, T.M.; Mattila, S.; Yin, C.; Arcavi, I.; Carnall, A.; Charalampopoulos, P.; et al. Delayed appearance and evolution of coronal lines in the TDE AT2019qiz. Mon. Not. R. Astron. Soc. 2023, 525, 1568–1587. [Google Scholar] [CrossRef]
- Marconi, A.; Moorwood, A.F.M.; Salvati, M.; Oliva, E. A [SiVI] (1.962 μm) coronal line survey of galactic nuclei. Astron. Astrophys. 1994, 291, 18–28. [Google Scholar]
- Müller-Sánchez, F.; Prieto, M.A.; Hicks, E.K.S.; Vives-Arias, H.; Davies, R.I.; Malkan, M.; Tacconi, L.J.; Genzel, R. Outflows from Active Galactic Nuclei: Kinematics of the Narrow-line and Coronal-line Regions in Seyfert Galaxies. Astrophys. J. 2011, 739, 69. [Google Scholar] [CrossRef]
- Rodríguez-Ardila, A.; Prieto, M.A.; Mazzalay, X.; Fernández-Ontiveros, J.A.; Luque, R.; Müller-Sánchez, F. Powerful outflows in the central parsecs of the low-luminosity active galactic nucleus NGC 1386. Mon. Not. R. Astron. Soc. 2017, 470, 2845–2860. [Google Scholar] [CrossRef]
- Gravity Collaboration; Amorim, A.; Bauböck, M.; Brandner, W.; Clénet, Y.; Davies, R.; de Zeeuw, P.T.; Dexter, J.; Eckart, A.; Eisenhauer, F.; et al. The spatially resolved broad line region of IRAS 09149-6206. Astron. Astrophys. 2020, 643, A154. [Google Scholar] [CrossRef]
- Reunanen, J.; Kotilainen, J.K.; Prieto, M.A. Near-infrared spectroscopy of nearby Seyfert galaxies—II. Molecular content and coronal emission. Mon. Not. R. Astron. Soc. 2003, 343, 192–208. [Google Scholar] [CrossRef]
- Rodríguez-Ardila, A.; Prieto, M.A.; Portilla, J.G.; Tejeiro, J.M. The Near-infrared Coronal Line Spectrum of 54 nearby Active Galactic Nuclei. Astrophys. J. 2011, 743, 100. [Google Scholar] [CrossRef]
- Prieto, A.; Rodríguez-Ardila, A.; Panda, S.; Marinello, M. A novel black hole mass scaling relation based on coronal gas, and its dependence with the accretion disc. Mon. Not. R. Astron. Soc. 2022, 510, 1010–1030. [Google Scholar] [CrossRef]
- Bentz, M.C.; Katz, S. The AGN Black Hole Mass Database. Publ. Astron. Soc. Pac. 2015, 127, 67. [Google Scholar] [CrossRef]
- Riffel, R.; Rodríguez-Ardila, A.; Pastoriza, M.G. A 0.8-2.4 μm spectral atlas of active galactic nuclei. Astron. Astrophys. 2006, 457, 61–70. [Google Scholar] [CrossRef]
- Landt, H.; Bentz, M.C.; Ward, M.J.; Elvis, M.; Peterson, B.M.; Korista, K.T.; Karovska, M. The Near-Infrared Broad Emission Line Region of Active Galactic Nuclei. I. The Observations. Astrophys. J. Suppl. 2008, 174, 282–312. [Google Scholar] [CrossRef]
- Cappellari, M.; Scott, N.; Alatalo, K.; Blitz, L.; Bois, M.; Bournaud, F.; Bureau, M.; Crocker, A.F.; Davies, R.L.; Davis, T.A.; et al. The ATLAS3D project—XV. Benchmark for early-type galaxies scaling relations from 260 dynamical models: Mass-to-light ratio, dark matter, Fundamental Plane and Mass Plane. Mon. Not. R. Astron. Soc. 2013, 432, 1709–1741. [Google Scholar] [CrossRef]
- Gültekin, K.; Richstone, D.O.; Gebhardt, K.; Lauer, T.R.; Tremaine, S.; Aller, M.C.; Bender, R.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; et al. The M-σ and M-L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter. Astrophys. J. 2009, 698, 198–221. [Google Scholar] [CrossRef]
- Kaspi, S.; Maoz, D.; Netzer, H.; Peterson, B.M.; Vestergaard, M.; Jannuzi, B.T. The Relationship between Luminosity and Broad-Line Region Size in Active Galactic Nuclei. Astrophys. J. 2005, 629, 61–71. [Google Scholar] [CrossRef]
- Ferland, G.J.; Chatzikos, M.; Guzmán, F.; Lykins, M.L.; van Hoof, P.A.M.; Williams, R.J.R.; Abel, N.P.; Badnell, N.R.; Keenan, F.P.; Porter, R.L.; et al. The 2017 Release Cloudy. Rev. Mex. Astron. Astrofísica 2017, 53, 385–438. [Google Scholar]
- Mathews, W.G.; Ferland, G.J. What heats the hot phase in active nuclei? Astrophys. J. 1987, 323, 456–467. [Google Scholar] [CrossRef]
- Frank, J.; King, A.; Raine, D.J. Accretion Power in Astrophysics, 3rd ed.; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Lasota, J.P. Black Hole Accretion Discs. In Proceedings of the Astrophysics of Black Holes: From Fundamental Aspects to Latest Developments; Bambi, C., Ed.; Astrophysics and Space Science Library; Springer: Berlin/Heidelberg, Germany, 2016; Volume 440, p. 1. [Google Scholar] [CrossRef]
- Reynolds, C.S. Observing black holes spin. Nat. Astron. 2019, 3, 41–47. [Google Scholar] [CrossRef]
- Campitiello, S.; Celotti, A.; Ghisellini, G.; Sbarrato, T. Black hole mass and spin estimates of the most distant quasars. Astron. Astrophys. 2019, 625, A23. [Google Scholar] [CrossRef]
- Ivezić, Ž.; Kahn, S.M.; Tyson, J.A.; Abel, B.; Acosta, E.; Allsman, R.; Alonso, D.; AlSayyad, Y.; Anderson, S.F.; Andrew, J.; et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophys. J. 2019, 873, 111. [Google Scholar] [CrossRef]
- Bianco, F.B.; Ivezić, Ž.; Jones, R.L.; Graham, M.L.; Marshall, P.; Saha, A.; Strauss, M.A.; Yoachim, P.; Ribeiro, T.; Anguita, T.; et al. Optimization of the Observing Cadence for the Rubin Observatory Legacy Survey of Space and Time: A Pioneering Process of Community-focused Experimental Design. Astrophys. J. Suppl. 2022, 258, 1. [Google Scholar] [CrossRef]
- LSST Science Collaboration; Abell, P.A.; Allison, J.; Anderson, S.F.; Andrew, J.R.; Angel, J.R.P.; Armus, L.; Arnett, D.; Asztalos, S.J.; Axelrod, T.S.; et al. LSST Science Book, Version 2.0. arXiv 2009, arXiv:0912.0201. [Google Scholar] [CrossRef]
- LSST Dark Energy Science Collaboration. Large Synoptic Survey Telescope: Dark Energy Science Collaboration. arXiv 2012, arXiv:1211.0310. [Google Scholar] [CrossRef]
- LSST Science Collaboration; Marshall, P.; Anguita, T.; Bianco, F.B.; Bellm, E.C.; Brandt, N.; Clarkson, W.; Connolly, A.; Gawiser, E.; Ivezic, Z.; et al. Science-Driven Optimization of the LSST Observing Strategy. arXiv 2017, arXiv:1708.04058. [Google Scholar] [CrossRef]
- Narayan, G.; Zaidi, T.; Soraisam, M.D.; Wang, Z.; Lochner, M.; Matheson, T.; Saha, A.; Yang, S.; Zhao, Z.; Kececioglu, J.; et al. Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream. Astrophys. J. Suppl. 2018, 236, 9. [Google Scholar] [CrossRef]
- LSST Dark Energy Science Collaboration (LSST DESC); Abolfathi, B.; Alonso, D.; Armstrong, R.; Aubourg, É.; Awan, H.; Babuji, Y.N.; Bauer, F.E.; Bean, R.; Beckett, G.; et al. The LSST DESC DC2 Simulated Sky Survey. Astrophys. J. Suppl. 2021, 253, 31. [Google Scholar] [CrossRef]
- Shen, X.; Hopkins, P.F.; Faucher-Giguère, C.A.; Alexander, D.M.; Richards, G.T.; Ross, N.P.; Hickox, R.C. The bolometric quasar luminosity function at z = 0-7. Mon. Not. R. Astron. Soc. 2020, 495, 3252–3275. [Google Scholar] [CrossRef]
- Kovačević, A.B.; Radović, V.; Ilić, D.; Popović, L.Č.; Assef, R.J.; Sánchez-Sáez, P.; Nikutta, R.; Raiteri, C.M.; Yoon, I.; Homayouni, Y.; et al. The LSST Era of Supermassive Black Hole Accretion Disk Reverberation Mapping. Astrophys. J. Suppl. 2022, 262, 49. [Google Scholar] [CrossRef]
- Gravity Collaboration; Sturm, E.; Dexter, J.; Pfuhl, O.; Stock, M.R.; Davies, R.I.; Lutz, D.; Clénet, Y.; Eckart, A.; Eisenhauer, F.; et al. Spatially resolved rotation of the broad-line region of a quasar at sub-parsec scale. Nature 2018, 563, 657–660. [Google Scholar] [CrossRef]
- GRAVITY Collaboration; Amorim, A.; Bauböck, M.; Bentz, M.C.; Brandner, W.; Bolzer, M.; Clénet, Y.; Davies, R.; de Zeeuw, P.T.; Dexter, J.; et al. A geometric distance to the supermassive black Hole of NGC 3783. Astron. Astrophys. 2021, 654, A85. [Google Scholar] [CrossRef]
- Brandt, W.N.; Ni, Q.; Yang, G.; Anderson, S.F.; Assef, R.J.; Barth, A.J.; Bauer, F.E.; Bongiorno, A.; Chen, C.T.; De Cicco, D.; et al. Active Galaxy Science in the LSST Deep-Drilling Fields: Footprints, Cadence Requirements, and Total-Depth Requirements. arXiv 2018, arXiv:1811.06542. [Google Scholar] [CrossRef]
- Aihara, H.; AlSayyad, Y.; Ando, M.; Armstrong, R.; Bosch, J.; Egami, E.; Furusawa, H.; Furusawa, J.; Harasawa, S.; Harikane, Y.; et al. Third data release of the Hyper Suprime-Cam Subaru Strategic Program. Publ. Astron. Soc. Jpn. 2022, 74, 247–272. [Google Scholar] [CrossRef]
- Zou, F.; Brandt, W.N.; Chen, C.T.; Leja, J.; Ni, Q.; Yan, W.; Yang, G.; Zhu, S.; Luo, B.; Nyland, K.; et al. Spectral Energy Distributions in Three Deep-drilling Fields of the Vera C. Rubin Observatory Legacy Survey of Space and Time: Source Classification and Galaxy Properties. Astrophys. J. Suppl. 2022, 262, 15. [Google Scholar] [CrossRef]
- Scolnic, D.M.; Lochner, M.; Gris, P.; Regnault, N.; Hložek, R.; Aldering, G.; Allam Tarek, J.; Awan, H.; Biswas, R.; Blazek, J.; et al. Optimizing the LSST Observing Strategy for Dark Energy Science: DESC Recommendations for the Deep Drilling Fields and other Special Programs. arXiv 2018, arXiv:1812.00516. [Google Scholar] [CrossRef]
- Sheng, X.; Ross, N.; Nicholl, M. Legacy Survey of Space and Time cadence strategy evaluations for active galactic nucleus time-series data in Wide-Fast-Deep field. Mon. Not. R. Astron. Soc. 2022, 512, 5580–5600. [Google Scholar] [CrossRef]
- Raiteri, C.M.; Carnerero, M.I.; Balmaverde, B.; Bellm, E.C.; Clarkson, W.; D’Ammando, F.; Paolillo, M.; Richards, G.T.; Villata, M.; Yoachim, P.; et al. Blazar Variability with the Vera C. Rubin Legacy Survey of Space and Time. Astrophys. J. Suppl. 2022, 258, 3. [Google Scholar] [CrossRef]
- Czerny, B.; Panda, S.; Prince, R.; Kumar Jaiswal, V.; Zajaček, M.; Martinez Aldama, M.L.; Kozłowski, S.; Kovacevic, A.B.; Ilic, D.; Popović, L.Č.; et al. Expectations for time-delay measurements in active galactic nuclei with the Vera Rubin Observatory. Astron. Astrophys. 2023, 675, A163. [Google Scholar] [CrossRef]
- Fausnaugh, M.M.; Starkey, D.A.; Horne, K.; Kochanek, C.S.; Peterson, B.M.; Bentz, M.C.; Denney, K.D.; Grier, C.J.; Grupe, D.; Pogge, R.W.; et al. Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies. Astrophys. J. 2018, 854, 107. [Google Scholar] [CrossRef]
- Mudd, D.; Martini, P.; Zu, Y.; Kochanek, C.; Peterson, B.M.; Kessler, R.; Davis, T.M.; Hoormann, J.K.; King, A.; Lidman, C.; et al. Quasar Accretion Disk Sizes from Continuum Reverberation Mapping from the Dark Energy Survey. Astrophys. J. 2018, 862, 123. [Google Scholar] [CrossRef]
- Sun, M.; Xue, Y.; Trump, J.R.; Gu, W.M. Winds can `blow up’ AGN accretion disc sizes. Mon. Not. R. Astron. Soc. 2019, 482, 2788–2794. [Google Scholar] [CrossRef]
- Chan, J.H.H.; Millon, M.; Bonvin, V.; Courbin, F. Twisted quasar light curves: Implications for continuum reverberation mapping of accretion disks. Astron. Astrophys. 2020, 636, A52. [Google Scholar] [CrossRef]
- Vincentelli, F.M.; McHardy, I.; Cackett, E.M.; Barth, A.J.; Horne, K.; Goad, M.; Korista, K.; Gelbord, J.; Brandt, W.; Edelson, R.; et al. On the multiwavelength variability of Mrk 110: Two components acting at different time-scales. Mon. Not. R. Astron. Soc. 2021, 504, 4337–4353. [Google Scholar] [CrossRef]
- Cackett, E.M.; Zoghbi, A.; Ulrich, O. Frequency-resolved Lags in UV/Optical Continuum Reverberation Mapping. Astrophys. J. 2022, 925, 29. [Google Scholar] [CrossRef]
- Guo, W.J.; Li, Y.R.; Zhang, Z.X.; Ho, L.C.; Wang, J.M. Accretion Disk Size Measurements of Active Galactic Nuclei Monitored by the Zwicky Transient Facility. Astrophys. J. 2022, 929, 19. [Google Scholar] [CrossRef]
- Jha, V.K.; Joshi, R.; Chand, H.; Wu, X.B.; Ho, L.C.; Rastogi, S.; Ma, Q. Accretion disc sizes from continuum reverberation mapping of AGN selected from the ZTF survey. Mon. Not. R. Astron. Soc. 2022, 511, 3005–3016. [Google Scholar] [CrossRef]
- Hagen, S.; Done, C. Modelling continuum reverberation in active galactic nuclei: A spectral-timing analysis of the ultraviolet variability through X-ray reverberation in Fairall 9. Mon. Not. R. Astron. Soc. 2023, 521, 251–268. [Google Scholar] [CrossRef]
- Fian, C.; Chelouche, D.; Kaspi, S.; Sobrino Figaredo, C.; Lewis, T.; Catalan, S. Continuum reverberation mapping of MCG 08-11-011. Astron. Astrophys. 2023, 672, A132. [Google Scholar] [CrossRef]
- Miller, J.A.; Cackett, E.M.; Goad, M.R.; Horne, K.; Barth, A.J.; Romero-Colmenero, E.; Fausnaugh, M.; Gelbord, J.; Korista, K.T.; Landt, H.; et al. Continuum Reverberation Mapping of Mrk 876 over Three Years with Remote Robotic Observatories. Astrophys. J. 2023, 953, 137. [Google Scholar] [CrossRef] [PubMed]
- Collier, S.; Horne, K.; Wanders, I.; Peterson, B.M. A new direct method for measuring the Hubble constant from reverberating accretion discs in active galaxies. Mon. Not. R. Astron. Soc. 1999, 302, L24–L28. [Google Scholar] [CrossRef]
- Oknyanskij, V.L. On the Possibility for Measuring the Hubble Constant from Optical-to-NIR Variability Time Delay in AGNs. Odessa Astron. Publ. 1999, 12, 99. [Google Scholar]
- Panda, S.; Czerny, B.; Adhikari, T.P.; Hryniewicz, K.; Wildy, C.; Kuraszkiewicz, J.; Śniegowska, M. Modeling of the Quasar Main Sequence in the Optical Plane. Astrophys. J. 2018, 866, 115. [Google Scholar] [CrossRef]
- Cackett, E.M.; Horne, K.; Winkler, H. Testing thermal reprocessing in active galactic nuclei accretion discs. Mon. Not. R. Astron. Soc. 2007, 380, 669–682. [Google Scholar] [CrossRef]
- Pozo Nuñez, F.; Gianniotis, N.; Blex, J.; Lisow, T.; Chini, R.; Polsterer, K.L.; Pott, J.U.; Esser, J.; Pietrzyński, G. Optical continuum photometric reverberation mapping of the Seyfert-1 galaxy Mrk509. Mon. Not. R. Astron. Soc. 2019, 490, 3936–3951. [Google Scholar] [CrossRef]
- Lobban, A.P.; Zola, S.; Pajdosz-Śmierciak, U.; Braito, V.; Nardini, E.; Bhatta, G.; Markowitz, A.; Bachev, R.; Carosati, D.; Caton, D.B.; et al. X-ray, UV, and optical time delays in the bright Seyfert galaxy Ark 120 with co-ordinated Swift and ground-based observations. Mon. Not. R. Astron. Soc. 2020, 494, 1165–1179. [Google Scholar] [CrossRef]
- González-Buitrago, D.H.; García-Díaz, M.T.; Pozo Nuñez, F.; Guo, H. On the nature of the continuum reverberation of X-ray/UV and optical emission of IRAS 09149-6206. Mon. Not. R. Astron. Soc. 2023, 525, 4524–4539. [Google Scholar] [CrossRef]
- Weaver, J.R.; Horne, K. Dust and the intrinsic spectral index of quasar variations: Hints of finite stress at the innermost stable circular orbit. Mon. Not. R. Astron. Soc. 2022, 512, 899–916. [Google Scholar] [CrossRef]
- Gaskell, C.M. The case for cases B and C: Intrinsic hydrogen line ratios of the broad-line region of active galactic nuclei, reddenings, and accretion disc sizes. Mon. Not. R. Astron. Soc. 2017, 467, 226–238. [Google Scholar] [CrossRef]
- Gaskell, C.M.; Anderson, F.C.; Birmingham, S.Á.; Ghosh, S. Estimating reddening of the continuum and broad-line region of active galactic nuclei: The mean reddening of NGC 5548 and the size of the accretion disc. Mon. Not. R. Astron. Soc. 2023, 519, 4082–4093. [Google Scholar] [CrossRef]
- Kammoun, E.S.; Papadakis, I.E.; Dovčiak, M. Modelling the UV/optical continuum time-lags in AGN. Mon. Not. R. Astron. Soc. 2021, 503, 4163–4171. [Google Scholar] [CrossRef]
- Kammoun, E.S.; Robin, L.; Papadakis, I.E.; Dovčiak, M.; Panagiotou, C. Revisiting UV/optical continuum time lags in AGN. Mon. Not. R. Astron. Soc. 2023, 526, 138–151. [Google Scholar] [CrossRef]
- Edelson, R.; Gelbord, J.M.; Horne, K.; McHardy, I.M.; Peterson, B.M.; Arévalo, P.; Breeveld, A.A.; De Rosa, G.; Evans, P.A.; Goad, M.R.; et al. Space Telescope and Optical Reverberation Mapping Project. II. Swift and HST Reverberation Mapping of the Accretion Disk of NGC 5548. Astrophys. J. 2015, 806, 129. [Google Scholar] [CrossRef]
- Kammoun, E.S.; Papadakis, I.E.; Dovčiak, M. A Hard Look at Thermal Reverberation and Optical/Ultraviolet Lags in NGC 5548. Astrophys. J. Lett. 2019, 879, L24. [Google Scholar] [CrossRef]
- McHardy, I.M.; Connolly, S.D.; Horne, K.; Cackett, E.M.; Gelbord, J.; Peterson, B.M.; Pahari, M.; Gehrels, N.; Goad, M.; Lira, P.; et al. X-ray/UV/optical variability of NGC 4593 with Swift: Reprocessing of X-rays by an extended reprocessor. Mon. Not. R. Astron. Soc. 2018, 480, 2881–2897. [Google Scholar] [CrossRef]
- Cackett, E.M.; Chiang, C.Y.; McHardy, I.; Edelson, R.; Goad, M.R.; Horne, K.; Korista, K.T. Accretion Disk Reverberation with Hubble Space Telescope Observations of NGC 4593: Evidence for Diffuse Continuum Lags. Astrophys. J. 2018, 857, 53. [Google Scholar] [CrossRef]
- Hernández Santisteban, J.V.; Edelson, R.; Horne, K.; Gelbord, J.M.; Barth, A.J.; Cackett, E.M.; Goad, M.R.; Netzer, H.; Starkey, D.; Uttley, P.; et al. Intensive disc-reverberation mapping of Fairall 9: First year of Swift and LCO monitoring. Mon. Not. R. Astron. Soc. 2020, 498, 5399–5416. [Google Scholar] [CrossRef]
- Cackett, E.M.; Gelbord, J.; Li, Y.R.; Horne, K.; Wang, J.M.; Barth, A.J.; Bai, J.M.; Bian, W.H.; Carroll, R.W.; Du, P.; et al. Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. XI. Accretion Disk Reverberation Mapping of Mrk 142. Astrophys. J. 2020, 896, 1. [Google Scholar] [CrossRef]
- Chelouche, D.; Pozo Nuñez, F.; Kaspi, S. Direct evidence of non-disk optical continuum emission around an active black hole. Nat. Astron. 2019, 3, 251–257. [Google Scholar] [CrossRef]
- Korista, K.T.; Goad, M.R. The Variable Diffuse Continuum Emission of Broad-Line Clouds. Astrophys. J. 2001, 553, 695–708. [Google Scholar] [CrossRef]
- Pozo Nuñez, F.; Bruckmann, C.; Deesamutara, S.; Czerny, B.; Panda, S.; Lobban, A.P.; Pietrzyński, G.; Polsterer, K.L. Modelling photometric reverberation mapping data for the next generation of big data surveys. Quasar accretion discs sizes with the LSST. Mon. Not. R. Astron. Soc. 2023, 522, 2002–2018. [Google Scholar] [CrossRef]
- Netzer, H. Continuum reverberation mapping and a new lag-luminosity relationship for AGN. Mon. Not. R. Astron. Soc. 2021, 509, 2637–2646. [Google Scholar] [CrossRef]
- Lawther, D.; Goad, M.R.; Korista, K.T.; Ulrich, O.; Vestergaard, M. Quantifying the diffuse continuum contribution of BLR Clouds to AGN Continuum Inter-band Delays. Mon. Not. R. Astron. Soc. 2018, 481, 533–554. [Google Scholar] [CrossRef]
- Jaiswal, V.K.; Prince, R.; Panda, S.; Czerny, B. Modeling time delays from two reprocessors in active galactic nuclei. Astron. Astrophys. 2023, 670, A147. [Google Scholar] [CrossRef]
- Choloniewski, J. The Shape and Variability of the Nonthermal Component of the Optical Spectra of Active Galaxies. Acta Astron. 1981, 31, 293. [Google Scholar]
- Winkler, H.; Glass, I.S.; van Wyk, F.; Marang, F.; Jones, J.H.S.; Buckley, D.A.H.; Sekiguchi, K. Variability studies of seyfert galaxies—I. Broad-band optical photometry. Mon. Not. R. Astron. Soc. 1992, 257, 659–676. [Google Scholar] [CrossRef]
- Pozo Nuñez, F.; Haas, M.; Ramolla, M.; Bruckmann, C.; Westhues, C.; Chini, R.; Steenbrugge, K.; Lemke, R.; Murphy, M.; Kollatschny, W. Modelling photometric reverberation data: A disk-like broad-line region and a potentially larger black hole mass for 3C 120. Astron. Astrophys. 2014, 568, A36. [Google Scholar] [CrossRef]
- Gaskell, C.M.; Goosmann, R.W.; Antonucci, R.R.J.; Whysong, D.H. The Nuclear Reddening Curve for Active Galactic Nuclei and the Shape of the Infrared to X-Ray Spectral Energy Distribution. Astrophys. J. 2004, 616, 147–156. [Google Scholar] [CrossRef]
- Gaskell, C.M.; Benker, A.J. AGN Reddening and Ultraviolet Extinction Curves from Hubble Space Telescope Spectra. arXiv 2007, arXiv:0711.1013. [Google Scholar] [CrossRef]
- Korista, K.T.; Goad, M.R. Quantifying the impact of variable BLR diffuse continuum contributions on measured continuum interband delays. Mon. Not. R. Astron. Soc. 2019, 489, 5284–5300. [Google Scholar] [CrossRef]
- Vanden Berk, D.E.; Richards, G.T.; Bauer, A.; Strauss, M.A.; Schneider, D.P.; Heckman, T.M.; York, D.G.; Hall, P.B.; Fan, X.; Knapp, G.R.; et al. Composite Quasar Spectra from the Sloan Digital Sky Survey. Astron. J. 2001, 122, 549–564. [Google Scholar] [CrossRef]
- Glikman, E.; Helfand, D.J.; White, R.L. A Near-Infrared Spectral Template for Quasars. Astrophys. J. 2006, 640, 579–591. [Google Scholar] [CrossRef]
- Wang, S.; Guo, H.; Woo, J.H. Estimating AGN Black Hole Masses via Continuum Reverberation Mapping in the Era of LSST. Astrophys. J. Lett. 2023, 948, L23. [Google Scholar] [CrossRef]
- Elvis, M.; Karovska, M. Quasar Parallax: A Method for Determining Direct Geometrical Distances to Quasars. Astrophys. J. Lett. 2002, 581, L67–L70. [Google Scholar] [CrossRef]
- Horne, K.; Korista, K.T.; Goad, M.R. Quasar tomography: Unification of echo mapping and photoionization models. Mon. Not. R. Astron. Soc. 2003, 339, 367–386. [Google Scholar] [CrossRef]
- Marshall, J.; Bolton, A.; Bullock, J.; Burgasser, A.; Chambers, K.; DePoy, D.; Dey, A.; Flagey, N.; Hill, A.; Hillenbrand, L.; et al. The Maunakea Spectroscopic Explorer. In Proceedings of the Bulletin of the American Astronomical Society; IOP Publishing: Bristol, UK, 2019; Volume 51, p. 126. [Google Scholar]
- Evans, C.; Puech, M.; Afonso, J.; Almaini, O.; Amram, P.; Aussel, H.; Barbuy, B.; Basden, A.; Bastian, N.; Battaglia, G.; et al. The Science Case for Multi-Object Spectroscopy on the European ELT. arXiv 2015, arXiv:1501.04726. [Google Scholar]
- Gardner, J.P.; Mather, J.C.; Clampin, M.; Doyon, R.; Greenhouse, M.A.; Hammel, H.B.; Hutchings, J.B.; Jakobsen, P.; Lilly, S.J.; Long, K.S.; et al. The James Webb Space Telescope. Space Sci. Rev. 2006, 123, 485–606. [Google Scholar] [CrossRef]
- Jakobsen, P.; Ferruit, P.; Alves de Oliveira, C.; Arribas, S.; Bagnasco, G.; Barho, R.; Beck, T.L.; Birkmann, S.; Böker, T.; Bunker, A.J.; et al. The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope. I. Overview of the instrument and its capabilities. Astron. Astrophys. 2022, 661, A80. [Google Scholar] [CrossRef]
- Spergel, D.; Gehrels, N.; Breckinridge, J.; Donahue, M.; Dressler, A.; Gaudi, B.S.; Greene, T.; Guyon, O.; Hirata, C.; Kalirai, J.; et al. Wide-Field InfraRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA Final Report. arXiv 2013, arXiv:1305.5422. [Google Scholar]
- Trindade Falcão, A.; Kraemer, S.B.; Crenshaw, D.M.; Melendez, M.; Revalski, M.; Fischer, T.C.; Schmitt, H.R.; Turner, T.J. Tracking X-ray outflows with optical/infrared footprint lines. Mon. Not. R. Astron. Soc. 2022, 511, 1420–1430. [Google Scholar] [CrossRef]
- Backhaus, B.E.; Trump, J.R.; Cleri, N.J.; Simons, R.; Momcheva, I.; Papovich, C.; Estrada-Carpenter, V.; Finkelstein, S.L.; Matharu, J.; Ji, Z.; et al. CLEAR: Emission-line Ratios at Cosmic High Noon. Astrophys. J. 2022, 926, 161. [Google Scholar] [CrossRef]
- U, V.; Lai, T.; Bianchin, M.; Remigio, R.P.; Armus, L.; Larson, K.L.; Díaz-Santos, T.; Evans, A.; Stierwalt, S.; Law, D.R.; et al. GOALS-JWST: Resolving the Circumnuclear Gas Dynamics in NGC 7469 in the Mid-infrared. Astrophys. J. Lett. 2022, 940, L5. [Google Scholar] [CrossRef]
- Harikane, Y.; Ouchi, M.; Oguri, M.; Ono, Y.; Nakajima, K.; Isobe, Y.; Umeda, H.; Mawatari, K.; Zhang, Y. A Comprehensive Study of Galaxies at z 9-16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch. Astrophys. J. Suppl. 2023, 265, 5. [Google Scholar] [CrossRef]
- Bunker, A.J.; Saxena, A.; Cameron, A.J.; Willott, C.J.; Curtis-Lake, E.; Jakobsen, P.; Carniani, S.; Smit, R.; Maiolino, R.; Witstok, J.; et al. JADES NIRSpec Spectroscopy of GN-z11: Lyman-α emission and possible enhanced nitrogen abundance in a z = 10.60 luminous galaxy. Astron. Astrophys. 2023, 677, A88. [Google Scholar] [CrossRef]
- Onoue, M.; Inayoshi, K.; Ding, X.; Li, W.; Li, Z.; Molina, J.; Inoue, A.K.; Jiang, L.; Ho, L.C. A Candidate for the Least-massive Black Hole in the First 1.1 Billion Years of the Universe. Astrophys. J. Lett. 2023, 942, L17. [Google Scholar] [CrossRef]
- Armus, L.; Lai, T.; U, V.; Larson, K.L.; Diaz-Santos, T.; Evans, A.S.; Malkan, M.A.; Rich, J.; Medling, A.M.; Law, D.R.; et al. GOALS-JWST: Mid-infrared Spectroscopy of the Nucleus of NGC 7469. Astrophys. J. Lett. 2023, 942, L37. [Google Scholar] [CrossRef]
- Larson, R.L.; Finkelstein, S.L.; Kocevski, D.D.; Hutchison, T.A.; Trump, J.R.; Arrabal Haro, P.; Bromm, V.; Cleri, N.J.; Dickinson, M.; Fujimoto, S.; et al. A CEERS Discovery of an Accreting Supermassive Black Hole 570 Myr after the Big Bang: Identifying a Progenitor of Massive z > 6 Quasars. Astrophys. J. Lett. 2023, 953, L29. [Google Scholar] [CrossRef]
- Kocevski, D.D.; Onoue, M.; Inayoshi, K.; Trump, J.R.; Arrabal Haro, P.; Grazian, A.; Dickinson, M.; Finkelstein, S.L.; Kartaltepe, J.S.; Hirschmann, M.; et al. Hidden Little Monsters: Spectroscopic Identification of Low-mass, Broad-line AGNs at z > 5 with CEERS. Astrophys. J. Lett. 2023, 954, L4. [Google Scholar] [CrossRef]
- Goulding, A.D.; Greene, J.E.; Setton, D.J.; Labbe, I.; Bezanson, R.; Miller, T.B.; Atek, H.; Bogdán, Á.; Brammer, G.; Chemerynska, I.; et al. UNCOVER: The Growth of the First Massive Black Holes from JWST/NIRSpec-Spectroscopic Redshift Confirmation of an X-Ray Luminous AGN at z = 10.1. Astrophys. J. Lett. 2023, 955, L24. [Google Scholar] [CrossRef]
- Cresci, G.; Tozzi, G.; Perna, M.; Brusa, M.; Marconcini, C.; Marconi, A.; Carniani, S.; Brienza, M.; Giroletti, M.; Belfiore, F.; et al. Bubbles and outflows: The novel JWST/NIRSpec view of the z = 1.59 obscured quasar XID2028. Astron. Astrophys. 2023, 672, A128. [Google Scholar] [CrossRef]
- Übler, H.; Maiolino, R.; Curtis-Lake, E.; Pérez-González, P.G.; Curti, M.; Perna, M.; Arribas, S.; Charlot, S.; Marshall, M.A.; D’Eugenio, F.; et al. GA-NIFS: A massive black hole in a low-metallicity AGN at z ∼ 5.55 revealed by JWST/NIRSpec IFS. Astron. Astrophys. 2023, 677, A145. [Google Scholar] [CrossRef]
- Cleri, N.J.; Yang, G.; Papovich, C.; Trump, J.R.; Backhaus, B.E.; Estrada-Carpenter, V.; Finkelstein, S.L.; Giavalisco, M.; Hutchison, T.A.; Ji, Z.; et al. CLEAR: High-ionization [Ne V] λ3426 Emission-line Galaxies at 1.4 < z < 2.3. Astrophys. J. 2023, 948, 112. [Google Scholar] [CrossRef]
- Cleri, N.J.; Olivier, G.M.; Hutchison, T.A.; Papovich, C.; Trump, J.R.; Amorín, R.O.; Backhaus, B.E.; Berg, D.A.; Fernández, V.; Finkelstein, S.L.; et al. Using [Ne V]/[Ne III] to Understand the Nature of Extreme-ionization Galaxies. Astrophys. J. 2023, 953, 10. [Google Scholar] [CrossRef]
- Harikane, Y.; Zhang, Y.; Nakajima, K.; Ouchi, M.; Isobe, Y.; Ono, Y.; Hatano, S.; Xu, Y.; Umeda, H. A JWST/NIRSpec First Census of Broad-Line AGNs at z = 4–7: Detection of 10 Faint AGNs with M_BH~10-10 M_sun and Their Host Galaxy Properties. arXiv 2023, arXiv:2303.11946. [Google Scholar] [CrossRef]
- Matthee, J.; Naidu, R.P.; Brammer, G.; Chisholm, J.; Eilers, A.C.; Goulding, A.; Greene, J.; Kashino, D.; Labbe, I.; Lilly, S.J.; et al. Little Red Dots: An abundant population of faint AGN at z∼5 revealed by the EIGER and FRESCO JWST surveys. arXiv 2023, arXiv:2306.05448. [Google Scholar] [CrossRef]
- Labbe, I.; Greene, J.E.; Bezanson, R.; Fujimoto, S.; Furtak, L.J.; Goulding, A.D.; Matthee, J.; Naidu, R.P.; Oesch, P.A.; Atek, H.; et al. UNCOVER: Candidate Red Active Galactic Nuclei at 3 < z < 7 with JWST and ALMA. arXiv 2023, arXiv:2306.07320. [Google Scholar] [CrossRef]
- Greene, J.E.; Labbe, I.; Goulding, A.D.; Furtak, L.J.; Chemerynska, I.; Kokorev, V.; Dayal, P.; Williams, C.C.; Wang, B.; Setton, D.J.; et al. UNCOVER spectroscopy confirms a surprising ubiquity of AGN in red galaxies at z>5. arXiv 2023, arXiv:2309.05714. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panda, S.; Marziani, P.; Czerny, B.; Rodríguez-Ardila, A.; Pozo Nuñez, F. Spectral Variability Studies in Active Galactic Nuclei: Exploring Continuum and Emission Line Regions in the Age of LSST and JWST. Universe 2023, 9, 492. https://doi.org/10.3390/universe9120492
Panda S, Marziani P, Czerny B, Rodríguez-Ardila A, Pozo Nuñez F. Spectral Variability Studies in Active Galactic Nuclei: Exploring Continuum and Emission Line Regions in the Age of LSST and JWST. Universe. 2023; 9(12):492. https://doi.org/10.3390/universe9120492
Chicago/Turabian StylePanda, Swayamtrupta, Paola Marziani, Bożena Czerny, Alberto Rodríguez-Ardila, and Francisco Pozo Nuñez. 2023. "Spectral Variability Studies in Active Galactic Nuclei: Exploring Continuum and Emission Line Regions in the Age of LSST and JWST" Universe 9, no. 12: 492. https://doi.org/10.3390/universe9120492
APA StylePanda, S., Marziani, P., Czerny, B., Rodríguez-Ardila, A., & Pozo Nuñez, F. (2023). Spectral Variability Studies in Active Galactic Nuclei: Exploring Continuum and Emission Line Regions in the Age of LSST and JWST. Universe, 9(12), 492. https://doi.org/10.3390/universe9120492