Jupiter’s Atmosphere Dynamics Based on High-Resolution Spectroscopy with VLT/ESPRESSO
Abstract
:1. Introduction
2. Observations with VLT/ESPRESSO
3. Doppler Velocimetry with VLT/ESPRESSO
3.1. Projected Radial Velocities
3.1.1. De-Projection Coefficients
3.1.2. Instrumental Spectral Drift
3.1.3. Error Estimation
4. Results
Doppler Winds with VLT/ESPRESSO
5. Comparison with Previous Measurements
5.1. Cloud Tracking
5.2. Previous Doppler Velocimetry Results
5.3. Multiwavelength Comparison
Considerations on Altitude of Wind Velocity Tracers
5.4. Wind Component Entanglement
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fletcher, L.N.; Kaspi, Y.; Guillot, T.; Showman, A.P. How Well Do We Understand the Belt/Zone Circulation of Giant Planet Atmospheres. Space Sci. Rev. 2020, 216, 30. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A. Introduction to Planetary Atmospheres, 1st ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2011. [Google Scholar]
- Kaspi, Y.; Galanti, E.; Hubbard, W.B.; Stevenson, D.J.; Bolton, S.J.; Iess, L.; Guillot, T.; Bloxham, J.; Connerney, P.; Cao, H. Jupiter’s atmospheric jet streams extend thousands of kilometres deep. Nat. Lett. 2018, 555, 223–226. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, J.P.; Matson, L. An Overview of the Cassini mission. Il Nuovo Cimento 1992, 15, 1137–1147. [Google Scholar] [CrossRef]
- Hueso, R.; Sánchez-Lavega, A.; Rojas, J.F.; Simon, A.A.; Barry, T.; Río-Gaztelurrutia, T.; Antuñano, A.; Sayanagi, K.M.; Delcroix, M.; Fletcher, L.N. Saturn atmospheric dynamics one year after Cassini. Icarus 2020, 336, 113429. [Google Scholar] [CrossRef]
- West, R.A.; Baines, K.H.; Friedson, A.J.; Banfield, D.; Ragent, B.; Taylor, F.W. Jovian clouds and hazes. In Jupiter: The Planet, Satellites and Magnetosphere; Bagenal, F., Dowling, T., McKinnon, W., Eds.; Cambridge University Press: Cambridge, UK, 2007; p. 79. [Google Scholar]
- Vasavada, A.R.; Ingersoll, A.P.; Banfield, D.; Bell, M.; Gierasch, P.J.; Belton, M.J.S.; Orton, G.S.; Klaasen, K.P.; DeJong, E.; Breneman, H.H.; et al. Galileo imaging of Jupiter’s atmosphere: The great red spot, equatorial region, and white ovals. Icarus 1998, 135, 265–275. [Google Scholar] [CrossRef]
- Limaye, S.S. Jupiter: New estimates of the mean zonal flow at the cloud level. Icarus 1986, 65, 335–352. [Google Scholar] [CrossRef]
- Choi, D.S.; Showman, A.P. Power spectral analysis of Jupiter’s clouds and kinetic energy from Cassini. Icarus 2011, 216, 597–609. [Google Scholar] [CrossRef]
- Galperin, B.; Young, R.M.B.; Sukoriansky, S.; Dikovskaya, N.; Read, P.L.; Lancaster, A.J.; Armstrong, D. Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter. Icarus 2014, 229, 295–320. [Google Scholar] [CrossRef]
- García-Melendo, E.; Arregi, J.; Rojas, J.F.; Hueso, R.; Barrado-Izagirre, N.; Gómez-Forrellad, J.M.; Pérez-Hoyos, S.; Sanz-Requena, J.F.; Sánchez-Lavega, A. Dynamics of Jupiter’s equatorial region at cloud top level from Cassini and HST images. Icarus 2011, 211, 1242–1257. [Google Scholar] [CrossRef]
- Porco, C.C.; West, R.; McEwen, A.; Del Genio, A.D.; Ingersoll, A.P.; Thomas, P.; Squyres, S.; Dones, L.; Murray, C.D.; Johnson, T.V. Cassini Imaging of Jupiter’s Atmosphere, Satellites, and Rings. Science 2003, 299, 1541. [Google Scholar] [CrossRef]
- Salyk, C.; Ingersoll, A.P.; Lorre, J.; Vasavada, A.; Del Genio, A.D. Interaction between eddies and mean flow in Jupiter’s atmosphere: Analysis of Cassini imaging data. Icarus 2006, 185, 430–442. [Google Scholar] [CrossRef]
- García-Melendo, E.; Sánchez-Lavega, A. A study of the stability of Jovian zonal winds from HST images: 1995–2000. Icarus 2001, 152, 316–330. [Google Scholar] [CrossRef]
- Hueso, R.; Sánchez-Lavega, A.; Iñurrigarro, P.; Rojas, J.F.; Pérez-Hoyos, S.; Mendikoa, I.; Gómez-Forrellad, J.M.; Go, C.; Peach, D.; Colas, F.; et al. Jupiter cloud morphology and zonal winds from ground-based observations before and during Juno’s first perijove. Geophys. Res. Lett. 2017, 44, 4669–4678. [Google Scholar] [CrossRef]
- Tollefson, J.; Wong, M.H.; de Pater, I.; Simon, A.A.; Orton, G.S.; Rogers, J.H.; Atreya, S.K.; Cosentino, R.G.; Januszewski, W.; Morales-Juberías, R.; et al. Changes in Jupiter’s zonal wind profile preceding and during the Juno mission. Icarus 2017, 296, 163–178. [Google Scholar] [CrossRef]
- Johnson, P.E.; Juberías-Morales, R.; Simon, A.; Gaulme, P.; Wong, M.H.; Cosentino, R.G. Longitudinal variability in Jupiter’s zonal winds derived from multi-wavelength HST observations. Planet. Space Sci. 2018, 155, 2–11. [Google Scholar] [CrossRef]
- Hansen, C.J.; Caplinger, M.A.; Ingersoll, A.; Ravine, M.A.; Jensen, E.; Bolton, S.; Orton, G. Junocam: Juno’s outreach camera. Space Sci. Rev. 2017, 243, 475–506. [Google Scholar] [CrossRef]
- Barrado-Izagirre, N.; Rojas, R.; Hueso, R.; Sánchez-Lavega, A.; Colas, F.; Dauvergne, J.L.; Peach, D.; IOPW Team. Jupiter’s zonal winds and their variability studied with small-sized telescopes. A&A 2013, 554, A74. [Google Scholar] [CrossRef]
- Mousis, O.; Hueso, R.; Beaulieu, J.-P.; Bouley, S.; Carry, B.; Colas, F.; Klotz, A.; Pellier, C.; Petit, J.-M.; Rousselot, P.; et al. Intrumental method for professional and amateur collaborations in planetary astronomy. Exp. Astron. 2014, 38, 91–191. [Google Scholar] [CrossRef]
- Gonçalves, I.; Schmider, F.X.; Gaulme, P.; Morales-Juberías, R.; Guillot, T.; Rivet, J.; Appourchaux, T.; Boumier, P.; Jackiewicz, J.; Sato, B. First measurements of Jupiter’s zonal winds with visible imaging spectroscopy. Icarus 2019, 319, 795–811. [Google Scholar] [CrossRef]
- Gaulme, P.; Schmider, F.X.; Goncalves, I. Measuring planetary atmospheric dynamics with Doppler spectroscopy. A&A 2018, 617, A41. [Google Scholar] [CrossRef]
- Pepe, F.; Molaro, P.; Cristiani, S.; Rebolo, R.; Santos, N.C.; Dekker, H.; Mégevand, D.; Zerbi, F.M.; Cabral, A.; Di Marcantonio, P.; et al. ESPRESSO: The next European exoplanet hunter. Astron. Nachr. 2014, 335, 10–22. [Google Scholar] [CrossRef]
- Pepe, F.; Cristiani, S.; Rebolo, R.; Santos, N.C.; Dekker, H.; Cabral, A.; Di Marcantonio, P.; Figueira, P.; Lo Curto, G.; Lovis, C.; et al. ESPRESSO@VLT—On-sky performance and first results. A&A 2021, 645, A96. [Google Scholar] [CrossRef]
- Goncalves, R.; Machado, P.; Widemann, T.; Peralta, J.; Watanabe, S.; Yamazaki, A.; Satoh, T.; Takagi, M.; Ogohara, K.; Lee, Y.-J. Venus’ cloud top wind study: Coordinated Akatsuk/UVI with cloud tracking and TNG/HARPS-N with Doppler velocimetry observations. Icarus 2020, 335, 113418. [Google Scholar] [CrossRef]
- Machado, P.; Widemann, T.; Luz, D.; Peralta, J. Wind circulation regimes at Venus’ cloud tops: Ground-based Doppler velocimetry using CFHT/ESPaDOnS and comparison with simultaneous cloud tracking measurements using VEx/VIRTIS in February 2011. Icarus 2014, 243, 249–263. [Google Scholar] [CrossRef]
- Machado, P.; Widemann, T.; Peralta, J.; Goncalves, R.; Donati, J.-F.; Luz, D. Venus cloud-tracked and doppler velocimetry winds from CFHT/ESPaDOnS and Venus Express/VIRTIS in April 2014. Icarus 2017, 285, 8–26. [Google Scholar] [CrossRef]
- Widemann, T.; Lellouch, E.; Donati, J.-F. Venus Doppler winds at cloud tops observed with ESPaDOnS at CFHT. Planet. Space Sci. 2008, 56, 1320–1334. [Google Scholar] [CrossRef]
- Machado, P.; Luz, D.; Widemann, T.; Lellouch, E.; Witasse, O. Mapping zonal winds at Venus’s cloud tops from ground-based Doppler velocimetry. Icarus 2012, 221, 248–261. [Google Scholar] [CrossRef]
- Irwin, P. Giant Planets of Our Solar System, 2nd ed.; Springer-Praxis: Chichester, UK, 2009. [Google Scholar]
- Asay-Davis, X.S.; Marcus, P.S.; Wong, M.H.; de Pater, I. Changes in Jupiter’s zonal velocity between 1979 and 2008. Icarus 2010, 211, 1215–1232. [Google Scholar] [CrossRef]
- Jet Propulsion Laboratory. CalTech/NASA—Solar System Dynamics. Available online: https://ssd.jpl.nasa.gov/horizons/ (accessed on 15 November 2023).
- Luz, D.; Civeit, T.; Courtin, R.; Lebreton, J.-P.; Gautier, D.; Rannou, P.; Kaufer, A.; Witasse, O.; Lara, L.; Ferri, F. Characterization of zonal winds in the stratosphere of Titan with UVES. Icarus 2005, 179, 497–510. [Google Scholar] [CrossRef]
- Civeit, T.; Appourchaux, T.; Lebreton, J.P.; Luz, D.; Courtin, R.; Neiner, C.; Witasse, O.; Gautier, D. On measuring planetary winds using high-resolution spectroscopy in visible wavelengths. A&A 2005, 431, 1157–1166. [Google Scholar] [CrossRef]
- Luz, D.; Civeit, T.; Courtin, R.; Lebreton, J.-P.; Gautier, D.; Witasse, O.; Kaufer, A.; Ferri, F.; Lara, L.; Livengood, T. Characterization of zonal winds in the stratosphere of Titan with UVES: 2. Observations coordinated with the Huygens Probe entry. J. Geophys. Res. 2006, 111, E08S90. [Google Scholar] [CrossRef]
- Widemann, T.; Lellouch, E.; Campargue, A. New wind measurements in Venus’ lower mesosphere from visible spectroscopy. Planet. Space Sci. 2007, 55, 1741–1756. [Google Scholar] [CrossRef]
- Machado, P.; Widemann, T.; Peralta, J.; Gilli, G.; Espadinha, D.; Silva, J.E.; Brasil, F.; Ribeiro, J.; Goncalves, R. Venus Atmospheric Dynamics at Two Altitudes: Akatsuki and Venus Express Cloud Tracking, Ground-Based Doppler Observations and Comparison with Modelling. Atmosphere 2021, 12, 506. [Google Scholar] [CrossRef]
- Goncalves, R.; Machado, P.; Widemann, T.; Brasil, F.; Ribeiro, J. A wind study of Venus’ cloud top: New Doppler velocimetry observations. Atmosphere 2021, 12, 2. [Google Scholar] [CrossRef]
- Riddle, A.; Warwick, J. Redefinition of System III longitude. Icarus 1976, 27, 457–459. [Google Scholar] [CrossRef]
- Young, A. Is the Four-Day “rotation” of Venus illusory? Icarus 1975, 24, 1–10. [Google Scholar] [CrossRef]
- Hueso, R.; Legarreta, J.; Rojas, J.F.; Peralta, J.; Pérez-Hoyos, S.; del Río-Gaztelurrutia, T.; Sánchez-Lavega, A. The Planetary Laboratory for Image Analysis. Adv. Space Res. 2010, 46, 1120–1138. [Google Scholar] [CrossRef]
- Wong, M.; Simon, A.; Orton, G.; Pater, I.; Sayanagi, K. Hubble’s long-term OPAL (Outer Planet Atmospheres Legacy) program observes cloud activity on Uranus. In Proceedings of the 46th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 16–20 March 2015; LPI Contribution No. 1832. p. 2606. [Google Scholar]
- Simon, A.A.; Wong, M.; Orton, G. First results from the Hubble OPAL program: Jupiter in 2015. Astrophys. J. 2015, 812, 55. [Google Scholar] [CrossRef]
- Sánchez-Lavega, A.; Rojas, J.; Hueso, R.; Perez-Hoyos, S.; Bilbao, L.; Murga, G.; Ariño, J. PlanetCam UPV/EHU: A simultaneous visible and near infrared lucky-imaging camera to study solar system objects. In Proceedings of the SPIE Astronomical Telescopes + Instrumentation, Amsterdam, The Netherlands, 1–6 July 2012; Ground-Based and Airborne Instrumentation for Astronomy IV. Volume 8446, p. 84467X. [Google Scholar]
- Lellouch, E.; Goldstein, J.; Bougher, S.; Gabriel, P.; Rosenqvist, J. First absolute wind measurements in the middle atmosphere of Mars. Astrophys. J. 1991, 383, 401. [Google Scholar] [CrossRef]
- Moreno, R.; Lellouch, E.; Forget, F.; Encrenaz, T.; Guilloteau, S.; Millour, E. Wind measurements in Mars’ middle atmosphere: IRAM Plateau de Bure interferometric CO observations. Icarus 2009, 201, 549–563. [Google Scholar] [CrossRef]
- Kostiuk, T.; Fast, K.; Livengood, T.; Hewagama, T.; Goldstein, J.; Espenak, F.; Buhl, D. Direct measurement of winds on Titan. Geophys. Res. Lett. 2001, 28, 2361–2364. [Google Scholar] [CrossRef]
- Kostiuk, T.; Livengood, T.; Hewagama, T.; Sonnabend, G.; Fast, K.; Murakawa, K.; Tokunaga, A.; Annen, J.; Buhl, D.; Schmulling, F. Titan’s stratospheric zonal wind, temperature, and ethane abundance a year prior to Huygens insertion. Geophys. Res. Lett. 2005, 32, L22205. [Google Scholar] [CrossRef]
- Kostiuk, T.; Livengood, T.; Sonnabend, G.; Fast, K.; Hewagama, T.; Murakawa, K.; Tokunaga, A.; Annen, J.; Buhl, D.; Schmulling, F.; et al. Stratospheric global winds on Titan at the time of Huygens descent. Jrn. Geophys. Res. Planets 2006, 111, E07S03. [Google Scholar] [CrossRef]
- Kostiuk, T.; Hewagama, T.; Fast, K.; Livengood, T.; Annen, J.; Buhl, D.; Sonnabend, G.; Schmulling, F.; Delgado, J.; Achterberg, R. High spectral resolution infrared studies of Titan: Winds, temperature, and composition. Planet. Space Sci. 2010, 58, 1715–1723. [Google Scholar] [CrossRef]
- Li, L.; Ingersoll, A.; Vasavada, A.; Simon-Miller, A.; Del Genio, A.; Ewald, S.; Porco, C.; West, R. Vertical wind shear on Jupiter from Cassini images. Jrn. Geophys. Res. 2006, 111, E04004. [Google Scholar] [CrossRef]
- Braude, A.S.; Irwin, P.J.; Orton, G.S.; Fletcher, L.N. Colour and Tropospheric Cloud Structure of Jupiter from MUSE/VLT: Retrieving a Universal Chromophore. Icarus 2020, 338, 113589. [Google Scholar] [CrossRef]
- Dahl, E.K.; Chanover, N.J.; Orton, G.S.; Baines, K.H.; Sinclair, J.A.; Voelz, D.G.; Wijerathna, E.A.; Strycker, P.D.; Irwin, P.J. Vertical structure and color of Jovian latitudinal cloud bands during the Juno Era. Planet. Sci. J. 2021, 2, 16. [Google Scholar] [CrossRef]
- Simon-Miller, A.A.; Banfield, D.; Gierasch, P.J. Color and the Vertical Structure in Jupiter’s Belts, Zones and Weather Systems. Icarus 2001, 154, 459–474. [Google Scholar] [CrossRef]
- Carlson, R.W.; Baines, K.H.; Anderson, M.S.; Filacchione, G.; Simon, A.A. Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiter’s Great Red Spot. Icarus 2016, 274, 106–115. [Google Scholar] [CrossRef]
- Sromovsky, L.A.; Baines, K.H.; Fry, P.M.; Carlson, R.W. A possibly universal red chromophore for modeling color variations on Jupiter. Icarus 2017, 291, 232–244. [Google Scholar] [CrossRef]
- Irwin, P.C.J.; Teanby, N.A.; de Kok, R.; Fletcher, L.N.; Howett, C.J.A.; Tsang, C.C.C.; Wilson, C.F.; Calcutt, S.B.; Nixon, C.A.; Parrish, P.D. The NEMESIS planetary atmosphere radiative transfer and retrieval tool. J. Qt. Spec. Rad. Transfer. 2008, 109, 1136–1150. [Google Scholar] [CrossRef]
(1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|
Date | Time (UT) | (°) | Ang.Diam. (″) | Sub-Obs.Lat (°) | Air Mass |
21/22 July | 23:03–04:20 | 7.7 | 45.92 | −3.05 | 1.003–1.254 |
(1) | (2) | (3) | (4) |
---|---|---|---|
Seq. Number | Location | Time Interval (UT) | Position Order |
(1) | Equator | 00:18–01:02 | 1-5-6-7-1-2-3-4 |
(2) | S Lat 10 | 01:06–02:28 | 9-36-33-34-1-37-38 |
(3) | N Lat 10 | 02:33–03:01 | 1-13-24-25-21-22 |
(4) | N Lat 15 | 03:05–03:17 | 14-31-28 |
(5) | S Lat 15 | 03:20–03:43 | 1-42-43-39-10 |
(6) | S Lat 15–20 | 03:47–04:20 | 48-49-45-46-11-40 |
(1) | (2) | (3) | (1) | (2) | (3) |
---|---|---|---|---|---|
Position | Position | ||||
1 | 0 | 0 | 26 | −15.92 | 10.53 |
2 | 5.24 | 0 | 27 | 5.24 | 15.92 |
3 | 10.53 | 0 | 28 | 10.53 | 15.92 |
4 | 15.92 | 0 | 29 | 15.92 | 15.92 |
5 | −5.24 | 0 | 30 | −5.24 | 15.92 |
6 | −10.53 | 0 | 31 | −10.53 | 15.92 |
7 | −15.92 | 0 | 32 | −15.92 | 15.92 |
8 | 0 | −5.24 | 33 | 5.24 | −10.53 |
9 | 0 | −10.53 | 34 | 10.53 | −10.53 |
10 | 0 | −15.92 | 35 | 15.92 | −10.53 |
11 | 0 | −21.45 | 36 | −5.24 | −10.53 |
12 | 0 | 5.24 | 37 | −10.53 | −10.53 |
13 | 0 | 10.53 | 38 | −15.92 | −10.53 |
14 | 0 | 15.92 | 39 | 5.24 | −15.92 |
15 | 5.24 | −4.59 | 40 | 10.53 | −15.92 |
16 | 10.53 | −4.59 | 41 | 15.92 | −15.92 |
17 | 15.92 | −4.59 | 42 | −5.24 | −15.92 |
18 | −5.24 | −4.59 | 43 | −10.53 | −15.92 |
19 | −10.53 | −4.59 | 44 | −15.92 | −15.92 |
20 | −15.92 | −4.59 | 45 | 5.24 | −21.45 |
21 | 5.24 | 10.53 | 46 | 10.53 | −21.45 |
22 | 10.53 | 10.53 | 47 | 15.92 | −21.45 |
23 | 15.92 | 10.53 | 48 | −5.24 | −21.45 |
24 | −5.24 | 10.53 | 49 | −10.53 | −21.45 |
25 | −10.53 | 10.53 | 50 | −15.92 | −21.45 |
(1) | (2) | (3) |
---|---|---|
Latitude () | Doppler Wind (m.s ) | Error (m.s ) |
0 | 119.30 | 9.07 |
10 | 99.43 | 10.1 |
−10 | 52.49 | 6.65 |
15 | −16.8 | 9.17 |
−15 | −18.4 | 13.36 |
−21 | 33.2 | 16.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, P.; Silva, J.E.; Brasil, F.; Ribeiro, J.; Gonçalves, R.; Silva, M. Jupiter’s Atmosphere Dynamics Based on High-Resolution Spectroscopy with VLT/ESPRESSO. Universe 2023, 9, 491. https://doi.org/10.3390/universe9120491
Machado P, Silva JE, Brasil F, Ribeiro J, Gonçalves R, Silva M. Jupiter’s Atmosphere Dynamics Based on High-Resolution Spectroscopy with VLT/ESPRESSO. Universe. 2023; 9(12):491. https://doi.org/10.3390/universe9120491
Chicago/Turabian StyleMachado, Pedro, José E. Silva, Francisco Brasil, José Ribeiro, Ruben Gonçalves, and Miguel Silva. 2023. "Jupiter’s Atmosphere Dynamics Based on High-Resolution Spectroscopy with VLT/ESPRESSO" Universe 9, no. 12: 491. https://doi.org/10.3390/universe9120491
APA StyleMachado, P., Silva, J. E., Brasil, F., Ribeiro, J., Gonçalves, R., & Silva, M. (2023). Jupiter’s Atmosphere Dynamics Based on High-Resolution Spectroscopy with VLT/ESPRESSO. Universe, 9(12), 491. https://doi.org/10.3390/universe9120491