Hunting Quantum Gravity with Analogs: The Case of High-Energy Particle Physics
Abstract
:1. Introduction
2. Accelerated Observers and near BH Horizon Observers
3. Hadron Production in High-Energy Collisions
3.1. Statistical Hadronization Model
3.2. Analog Gravity Interpretation of the SHM and the QCD Hawking–Unruh Radiation
- New particle creation is effectively 2D because it can be described in terms of the evolution in time of the hadronic strings, which are one-dimensional objects [68].
4. Thermal Component in the Transverse Momentum Spectra
4.1. High-Energy Hadronic Processes
4.2. Analog Gravity Interpretation of the Origin of the Thermal Component in the Transverse Momentum Spectra
5. Self-Organization and Self-Similarity
5.1. Hadronic Spectrum
5.2. Analog Gravity Interpretation of the Partitions of Integers for BH Self-Similarity
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | In fact, different physical systems, governed by different Hamiltonians, Lagrangians, and equations of motion (dynamics) may exhibit analog features, such as the emergence of some sort of horizon, as with the vast majority of cases used to probe the Hawking–Unruh phenomenon [1]. This is similar to taking a snapshot of the evolution of the analog system, precisely when this “looks like” the target system (or, we believe it should “look like” the target system). With this, we can study the behavior of the target system using the analog system at that particular stage of the evolution. It is much more important though to be able to keep going, even just a little bit. Namely, it is important that the evolution of the analog system is similar to the one of the target system, at least in certain conditions and within a limited range. When this happens, we have a much better analog that can furnish much more information on the target system (these are the analogs introduced in the famous Feynman lecture of electrostatics [4]). This is particularly important when one wants to face issues, such as black-hole (BH) evaporation, which is a phenomenon intimately associated with the dynamics of the gravitational field and something impossible to capture in a single “snapshot”. |
References
- Barceló, C.; Liberati, S.; Visser, M. Analogue Gravity. Living Rev. Relativ. 2005, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Muñoz de Nova, J.R.; Golubkov, K.; Kolobov, V.I.; Steinhauer, J. Observation of thermal Hawking radiation and its temperature in an analogue black hole. Nature 2019, 569, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Acquaviva, G.; Iorio, A.; Pais, P.; Smaldone, L. Hunting Quantum Gravity with Analogs: The case of graphene. Universe 2022, 8, 455. [Google Scholar] [CrossRef]
- Feynman, R.; Leighton, R.; Sands, M. The Feynman Lectures on Physics; Number v. 2 in Addison-Wesley World Student Series; Addison-Wesley: Reading, MA, USA, 1963. [Google Scholar]
- Kharzeev, D.; Tuchin, K. From color glass condensate to quark–gluon plasma through the event horizon. Nucl. Phys. A 2005, 753, 316–334. [Google Scholar] [CrossRef]
- Castorina, P.; Kharzeev, D.; Satz, H. Thermal hadronization and Hawking–Unruh radiation in QCD. Eur. Phys. J. C 2007, 52, 187. [Google Scholar] [CrossRef]
- Wald, R.M. Black hole entropy is the Noether charge. Phys. Rev. D 1993, 48, R3427–R3431. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Tajima, T. Testing Unruh Radiation with Ultraintense Lasers. Phys. Rev. Lett. 1999, 83, 256–259. [Google Scholar] [CrossRef]
- Schützhold, R.; Schaller, G.; Habs, D. Signatures of the Unruh Effect from Electrons Accelerated by Ultrastrong Laser Fields. Phys. Rev. Lett. 2006, 97, 121302. [Google Scholar] [CrossRef]
- Schützhold, R.; Schaller, G.; Habs, D. Tabletop Creation of Entangled Multi-keV Photon Pairs and the Unruh Effect. Phys. Rev. Lett. 2008, 100, 091301. [Google Scholar] [CrossRef]
- Kim, C.M.; Kim, S.P. Unruh effect and Schwinger pair creation under extreme acceleration by ultraintense lasers. arXiv 2017. [Google Scholar] [CrossRef]
- O’Raifeartaigh, L.; Sreedhar, V. The Maximal Kinematical Invariance Group of Fluid Dynamics and Explosion–Implosion Duality. Ann. Phys. 2001, 293, 215–227. [Google Scholar] [CrossRef]
- Sreedhar, V.V.; Virmani, A. Maximal Kinematical Invariance Group of Fluid Dynamics and Applications. Universe 2022, 8, 319. [Google Scholar] [CrossRef]
- Drori, J.; Rosenberg, Y.; Bermudez, D.; Silberberg, Y.; Leonhardt, U. Observation of Stimulated Hawking Radiation in an Optical Analogue. Phys. Rev. Lett. 2019, 122, 010404. [Google Scholar] [CrossRef]
- Iorio, A. Weyl-gauge symmetry of graphene. Ann. Phys. 2011, 326, 1334–1353. [Google Scholar] [CrossRef]
- Iorio, A. Using Weyl symmetry to make graphene a real lab for fundamental physics. Eur. Phys. J. Plus 2012, 127, 156. [Google Scholar] [CrossRef]
- Iorio, A.; Lambiase, G. The Hawking–Unruh phenomenon on graphene. Phys. Lett. B 2012, 716, 334–337. [Google Scholar] [CrossRef]
- Iorio, A.; Lambiase, G. Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking effect, and all that. Phys. Rev. D 2014, 90, 025006. [Google Scholar] [CrossRef]
- Iorio, A. Curved spacetimes and curved graphene: A status report of the Weyl symmetry approach. Int. J. Mod. Phys. D 2015, 24, 1530013. [Google Scholar] [CrossRef]
- Iorio, A.; Pais, P. Revisiting the gauge fields of strained graphene. Phys. Rev. D 2015, 92, 125005. [Google Scholar] [CrossRef]
- Iorio, A.; Pais, P. (Anti-)de Sitter, Poincaré, Super symmetries, and the two Dirac points of graphene. Ann. Phys. 2018, 398, 265–286. [Google Scholar] [CrossRef] [Green Version]
- Iorio, A.; Pais, P. Generalized uncertainty principle in graphene. J. Phys. Conf. Ser. 2019, 1275, 012061. [Google Scholar] [CrossRef]
- Iorio, A.; Pais, P.; Elmashad, I.A.; Ali, A.F.; Faizal, M.; Abou-Salem, L.I. Generalized Dirac structure beyond the linear regime in graphene. Int. J. Mod. Phys. D 2018, 27, 1850080. [Google Scholar] [CrossRef]
- Ciappina, M.F.; Iorio, A.; Pais, P.; Zampeli, A. Torsion in quantum field theory through time-loops on Dirac materials. Phys. Rev. D 2020, 101, 036021. [Google Scholar] [CrossRef]
- Iorio, A.; Lambiase, G.; Pais, P.; Scardigli, F. Generalized uncertainty principle in three-dimensional gravity and the BTZ black hole. Phys. Rev. D 2020, 101, 105002. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D 1976, 14, 870–892. [Google Scholar] [CrossRef]
- Crispino, L.C.B.; Higuchi, A.; Matsas, G.E.A. The Unruh effect and its applications. Rev. Mod. Phys. 2008, 80, 787–838. [Google Scholar] [CrossRef]
- Guedes, T.L.M.; Kizmann, M.; Seletskiy, D.V.; Leitenstorfer, A.; Burkard, G.; Moskalenko, A.S. Spectra of Ultrabroadband Squeezed Pulses and the Finite-Time Unruh-Davies Effect. Phys. Rev. Lett. 2019, 122, 053604. [Google Scholar] [CrossRef]
- Smolyaninov, I.I. Giant Unruh effect in hyperbolic metamaterial waveguides. Opt. Lett. 2019, 44, 2224–2227. [Google Scholar] [CrossRef] [PubMed]
- Kalinski, M. Hawking radiation from Trojan states in muonic Hydrogen in strong laser field. Laser Phys. 2005, 15, 1357–1361. [Google Scholar]
- Recami, E.; Castorina, P. On quark confinement: Hadrons as «strong black holes». Lett. Al Nuovo Cimento (1971–1985) 1976, 15, 347–350. [Google Scholar] [CrossRef]
- Salam, A.; Strathdee, J. Confinement through tensor gauge fields. Phys. Rev. D 1978, 18, 4596–4609. [Google Scholar] [CrossRef]
- Di Giacomo, A. Understanding Color Confinement. EPJ Web Conf. 2014, 70, 00019. [Google Scholar] [CrossRef]
- Castorina, P.; Grumiller, D.; Iorio, A. Exact string black hole behind the hadronic Rindler horizon? Phys. Rev. D 2008, 77, 124034. [Google Scholar] [CrossRef]
- Parikh, M.K.; Wilczek, F. Hawking Radiation As Tunneling. Phys. Rev. Lett. 2000, 85, 5042–5045. [Google Scholar] [CrossRef] [PubMed]
- Vanzo, L.; Acquaviva, G.; Criscienzo, R.D. Tunnelling methods and Hawking’s radiation: Achievements and prospects. Class. Quantum Gravity 2011, 28, 183001. [Google Scholar] [CrossRef]
- Srednicki, M. Entropy and area. Phys. Rev. Lett. 1993, 71, 666–669. [Google Scholar] [CrossRef]
- Terashima, H. Entanglement entropy of the black hole horizon. Phys. Rev. D 2000, 61, 104016. [Google Scholar] [CrossRef]
- Iorio, A.; Lambiase, G.; Vitiello, G. Entangled quantum fields near the event horizon and entropy. Ann. Phys. 2004, 309, 151–165. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Hawking, S.W. Black hole explosions? Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Laflamme, R. Entropy of a Rindler wedge. Phys. Lett. B 1987, 196, 449–450. [Google Scholar] [CrossRef]
- Page, D.N. Information in black hole radiation. Phys. Rev. Lett. 1993, 71, 3743–3746. [Google Scholar] [CrossRef]
- Castorina, P.; Iorio, A.; Lanteri, D.; Lukeš, P. Gluon shadowing and nuclear entanglement entropy. Int. J. Mod. Phys. E 2021, 30, 2150010. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; Levin, E.M. Deep inelastic scattering as a probe of entanglement. Phys. Rev. D 2017, 95, 114008. [Google Scholar] [CrossRef]
- Parentani, R.; Massar, S. Schwinger mechanism, Unruh effect, and production of accelerated black holes. Phys. Rev. D 1997, 55, 3603–3613. [Google Scholar] [CrossRef]
- Gabriel, C.; Spindel, P. Quantum Charged Fields in (1+1) Rindler Space. Ann. Phys. 2000, 284, 263–335. [Google Scholar] [CrossRef]
- Narozhny, N.; Mur, V.; Fedotov, A. Pair creation by homogeneous electric field from the point of view of an accelerated observer. Phys. Lett. A 2003, 315, 169–174. [Google Scholar] [CrossRef]
- De Gill, A.; Singleton, D.; Akhmedova, V.; Pilling, T. A WKB-like approach to Unruh radiation. Am. J. Phys. 2010, 78, 685–691. [Google Scholar] [CrossRef]
- Becattini, F. A thermodynamical approach to hadron production ine+ e- collisions. Z. Für Phys. C Part. Fields 1995, 69, 485–492. [Google Scholar] [CrossRef]
- Cleymans, J.; Satz, H.; Suhonen, E.; Von Oertzen, D. Strangeness production in heavy ion collisions at finite baryon number density. Phys. Lett. B 1990, 242, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Andronic, A.; Braun-Munzinger, P.; Redlich, K.; Stachel, J. Decoding the phase structure of QCD via particle production at high energy. Nature 2018, 561, 321–330. [Google Scholar] [CrossRef]
- Letessier, J.; Rafelski, J.; Tounsi, A. Gluon production, cooling, and entropy in nuclear collisions. Phys. Rev. C 1994, 50, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Magas, V.; Satz, H. Conditions for confinement and freeze-out. Eur. Phys. J. C-Part. Fields 2003, 32, 115–119. [Google Scholar] [CrossRef]
- Cleymans, J.; Redlich, K. Unified Description of Freeze-Out Parameters in Relativistic Heavy Ion Collisions. Phys. Rev. Lett. 1998, 81, 5284–5286. [Google Scholar] [CrossRef]
- Braun-Munzinger, P.; Stachel, J. Particle ratios, equilibration and the QCD phase boundary. J. Phys. G Nucl. Part. Phys. 2002, 28, 1971–1976. [Google Scholar] [CrossRef]
- Cleymans, J.; Oeschler, H.; Redlich, K.; Wheaton, S. Transition from baryonic to mesonic freeze-out. Phys. Lett. B 2005, 615, 50–54. [Google Scholar] [CrossRef]
- Tawfik, A. Influence of strange quarks on the QCD phase diagram and chemical freeze-out. J. Phys. G Nucl. Part. Phys. 2005, 31, S1105–S1110. [Google Scholar] [CrossRef]
- Lüscher, M.; Münster, G.; Weisz, P. How thick are chromo-electric flux tubes? Nucl. Phys. B 1981, 180, 1–12. [Google Scholar] [CrossRef]
- Yndurain, F. The Theory of Quark and Gluon Interactions; Theoretical and Mathematical Physics, Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hagedorn, R. Statistical thermodynamics of strong interactions at high energies. Nuovo Cimento Suppl. 1965, 3, 147–186. [Google Scholar]
- Hagedorn, R. Thermodynamics of strong interactions. Cargese Lect. Phys. 1973, 6, 643–716. [Google Scholar]
- Castorina, P.; Iorio, A.; Satz, H. Hadron freeze-out and Unruh radiation. Int. J. Mod. Phys. E 2015, 24, 1550056. [Google Scholar] [CrossRef]
- Solodukhin, S.N. Entanglement Entropy of Black Holes. Living Rev. Relativ. 2011, 14, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castorina, P.; Iorio, A. Confinement horizon and QCD entropy. Int. J. Mod. Phys. A 2018, 33, 1850211. [Google Scholar] [CrossRef]
- Becattini, F.; Manninen, J.; Gaździcki, M. Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions. Phys. Rev. C 2006, 73, 044905. [Google Scholar] [CrossRef]
- Grumiller, D.; Kummer, W.; Vassilevich, D. Dilaton gravity in two dimensions. Phys. Rep. 2002, 369, 327–430. [Google Scholar] [CrossRef]
- Birmingham, D.; Gupta, K.S.; Sen, S. Near-horizon conformal structure of black holes. Phys. Lett. B 2001, 505, 191–196. [Google Scholar] [CrossRef]
- Becattini, F.; Castorina, P.; Manninen, J.; Satz, H. The thermal production of strange and nonstrange hadrons in e+ e- collisions. Eur. Phys. J. C 2008, 56, 493–510. [Google Scholar] [CrossRef]
- Becattini, F.; Castorina, P.; Milov, A.; Satz, H. A comparative analysis of statistical hadron production. Eur. Phys. J. C 2010, 66, 377–386. [Google Scholar] [CrossRef]
- Adam, J.; Adamová, D.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S.U.; Aiola, S.; et al. Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions. Nat. Phys. 2017, 13, 535–539. [Google Scholar] [CrossRef]
- Castorina, P.; Iorio, A.; Lanteri, D.; Satz, H.; Spousta, M. Universality in hadronic and nuclear collisions at high energy. Phys. Rev. C 2020, 101, 054902. [Google Scholar] [CrossRef]
- Bylinkin, A.A.; Kharzeev, D.E.; Rostovtsev, A.A. The origin of thermal component in the transverse momentum spectra in high energy hadronic processes. Int. J. Mod. Phys. E 2014, 23, 1450083. [Google Scholar] [CrossRef]
- Baker, O.K.; Kharzeev, D.E. Thermal radiation and entanglement in proton-proton collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. D 2018, 98, 054007. [Google Scholar] [CrossRef] [Green Version]
- Bylinkin, A.A.; Rostovtsev, A.A. Parametrization of the shape of hadron-production spectra in high-energy particle interactions. Phys. At. Nucl. 2012, 75, 999–1005. [Google Scholar] [CrossRef]
- Gribov, L.; Levin, E.; Ryskin, M. Semihard processes in QCD. Phys. Rep. 1983, 100, 1–150. [Google Scholar] [CrossRef]
- McLerran, L.; Venugopalan, R. Computing quark and gluon distribution functions for very large nuclei. Phys. Rev. D 1994, 49, 2233–2241. [Google Scholar] [CrossRef]
- McLerran, L.; Venugopalan, R. Gluon distribution functions for very large nuclei at small transverse momentum. Phys. Rev. D 1994, 49, 3352–3355. [Google Scholar] [CrossRef]
- Kharzeev, D.; Levin, E.; Tuchin, K. Multiparticle production and thermalization in high-energy QCD. Phys. Rev. C 2007, 75, 044903. [Google Scholar] [CrossRef]
- Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett. 1987, 59, 381–384. [Google Scholar] [CrossRef]
- Frautschi, S. Statistical Bootstrap Model of Hadrons. Phys. Rev. D 1971, 3, 2821–2834. [Google Scholar] [CrossRef]
- Nahm, W. Analytical solution of the statistical bootstrap model. Nucl. Phys. B 1972, 45, 525–553. [Google Scholar] [CrossRef]
- Hagedorn, R.; Rafelski, J. Analytic structure and explicit solution of an important implicit equation. Commun. Math. Phys. 1982, 83, 563–578. [Google Scholar] [CrossRef]
- Blanchard, P.; Fortunato, S.; Satz, H. The Hagedorn temperature and partition thermodynamics. Eur. Phys. J. C-Part. Fields 2004, 34, 361–366. [Google Scholar] [CrossRef]
- Zinn-Justin, J. Quantum Field Theory and Critical Phenomena; International series of monographs on physics; Clarendon Press: Oxford, UK, 2002. [Google Scholar]
- Harms, B.; Leblanc, Y. Statistical mechanics of black holes. Phys. Rev. D 1992, 46, 2334–2340. [Google Scholar] [CrossRef] [PubMed]
- Harms, B.; Leblanc, Y. Statistical mechanics of extended black objects. Phys. Rev. D 1993, 47, 2438–2445. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.H. Microcanonical statistics of black holes and the bootstrap condition. Phys. Rev. D 2000, 62, 043002. [Google Scholar] [CrossRef]
- Veneziano, G. The Hagedorn Spectrum and the Dual Resonance Model: An Old Love Affair. In Melting Hadrons, Boiling Quarks—From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN: With a Tribute to Rolf Hagedorn; Rafelski, J., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 69–74. [Google Scholar] [CrossRef]
- Susskind, L.; Thorlacius, L.; Uglum, J. The stretched horizon and black hole complementarity. Phys. Rev. D 1993, 48, 3743–3761. [Google Scholar] [CrossRef]
- Susskind, L.; Lindesay, J. An Introduction to Black Holes, Information and the String Theory Revolution; World Scientific: London, UK, 2004. [Google Scholar] [CrossRef]
- Cabibbo, N.; Parisi, G. Exponential hadronic spectrum and quark liberation. Phys. Lett. B 1975, 59, 67–69. [Google Scholar] [CrossRef]
- Castorina, P.; Iorio, A.; Smaldone, L. Quantum black holes, partition of integers and self-similarity. Mod. Phys. Lett. A 2022. [Google Scholar] [CrossRef]
- Mukhanov, V.F. Are black holes quantized? Sov. J. Exp. Theor. Phys. Lett. 1986, 44, 63–66. [Google Scholar]
- Bekenstein, J.D.; Mukhanov, V. Spectroscopy of the quantum black hole. Phys. Lett. B 1995, 360, 7–12. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Quantum Black Holes as Atoms. In Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories; World Scientific: London, UK, 1999; p. 92. [Google Scholar]
- Wheeler, J. Information, Physics, Quantum: The Search for Links; Pamphlets on Physics, Physics Department, Princeton University: Princeton, NJ, USA, 1989. [Google Scholar]
- Kiefer, C. Aspects of Quantum Black Holes. J. Physics: Conf. Ser. 2020, 1612, 012017. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Rovelli, C.; Press, C.U.; Landshoff, P.; Nelson, D.; Sciama, D.; Weinberg, S. Quantum Gravity; Cambridge Monographs on Mathematical Physics, Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Acquaviva, G.; Iorio, A.; Scholtz, M. On the implications of the Bekenstein bound for black hole evaporation. Ann. Phys. 2017, 387, 317–333. [Google Scholar] [CrossRef]
- Iorio, A. Two arguments for more fundamental building blocks. J. Phys. Conf. Ser. 2019, 1275, 012013. [Google Scholar] [CrossRef]
- Acquaviva, G.; Iorio, A.; Smaldone, L. Bekenstein bound from the Pauli principle. Phys. Rev. D 2020, 102, 106002. [Google Scholar] [CrossRef]
- Kaul, R.K.; Majumdar, P. Logarithmic Correction to the Bekenstein-Hawking Entropy. Phys. Rev. Lett. 2000, 84, 5255–5257. [Google Scholar] [CrossRef]
- Gupta, K.S.; Sen, S. Further evidence for the conformal structure of a Schwarzschild black hole in an algebraic approach. Phys. Lett. B 2002, 526, 121–126. [Google Scholar] [CrossRef]
- Ghosh, A.; Mitra, P. Log correction to the black hole area law. Phys. Rev. D 2005, 71, 027502. [Google Scholar] [CrossRef]
- Majhi, A.; Majumdar, P. `Quantum hairs’ and entropy of the quantum isolated horizon from Chern–Simons theory. Class. Quantum Gravity 2014, 31, 195003. [Google Scholar] [CrossRef]
- Singleton, D.; Vagenas, E.C.; Zhu, T. Self-similarity, conservation of entropy/bits and the black hole information puzzle. J. High Energy Phys. 2014, 2014, 74. [Google Scholar] [CrossRef]
- Ong, Y.C. GUP-corrected black hole thermodynamics and the maximum force conjecture. Phys. Lett. B 2018, 785, 217–220. [Google Scholar] [CrossRef]
- Lloyd, S. Ultimate physical limits to computation. Nature 2000, 406, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Feng, L.; Zhang, Z.; Chin, C. Quantum simulation of Unruh radiation. Nat. Phys. 2019, 15, 785–789. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castorina, P.; Iorio, A.; Satz, H. Hunting Quantum Gravity with Analogs: The Case of High-Energy Particle Physics. Universe 2022, 8, 482. https://doi.org/10.3390/universe8090482
Castorina P, Iorio A, Satz H. Hunting Quantum Gravity with Analogs: The Case of High-Energy Particle Physics. Universe. 2022; 8(9):482. https://doi.org/10.3390/universe8090482
Chicago/Turabian StyleCastorina, Paolo, Alfredo Iorio, and Helmut Satz. 2022. "Hunting Quantum Gravity with Analogs: The Case of High-Energy Particle Physics" Universe 8, no. 9: 482. https://doi.org/10.3390/universe8090482
APA StyleCastorina, P., Iorio, A., & Satz, H. (2022). Hunting Quantum Gravity with Analogs: The Case of High-Energy Particle Physics. Universe, 8(9), 482. https://doi.org/10.3390/universe8090482