On the Issue of Magnetic Monopoles in the Prospect of UHE Photon Searches
Abstract
:1. Introduction
2. Magnetic Monopoles and UHE Photons
2.1. Accelerated Monopoles and a Coincidence with the Highest Energies Observed for Cosmic Rays
2.2. Selected Mechanisms of Production of UHE Photons Associated with Magnetic Monopoles
3. A Magnetic Monopole. What Is It and Why Might It Not Exist?
3.1. Dirac Magnetic Monopole
3.2. Field-Theoretical Realization of Elementary Magnetic Monopoles
4. Staruszkiewicz Argument against the Existence of Magnetic Monopole
4.1. Spatial Infinity
4.2. Zero Frequency Electromagnetic Field and Electron’s Charge as a Quantum Object
4.3. Staruszkiewicz Argument
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
1 | Here, is the completely antisymmetric Levi–Civita pseudotensor; the indices are understood to be raised or lowered with the help of the Lorentz metric tensor; the dot sign denotes differentiation with respect to the proper time of a particle. |
2 | By Stokes’ theorem, the discussed flux integral over a closed surface can be recast as a volume integral identically vanishing on account of the structural identity satisfied by Maxwell fields. |
3 | The classical example of such a singular function is the angular phase of a complex function considered as a function on a plane: the line integral of the gradient field along a circle of any radius centered at is , whereas the corresponding ‘curl’ field vanishes outside the center and is not defined there in terms of the classical definition of derivatives. To interpret this in terms of Stokes’ theorem on the plane, one has either to assume that the plane is punctured at the center and there is no field in that plane, or that the plane is smooth and the curl field is a distribution supported entirely at the center. |
4 | Earlier, it was assumed that the phase difference between two points is definite, and therefore, this should hold in the limit of infinitesimally distant points. |
5 | It can be recalled that the nodal line of a is something different from the singularity line of the part of connected with the non-integrability of the phase of ; while the nodal line of a is physically objective (phase independent) characteristic of a in a given field, the latter singularity line can be deformed freely by means of smooth gauge transformations such that the endpoint of the singularity line remains fixed at the monopole position. |
6 | Here, , , and represent scalar products with signatures . |
7 | It is seen that and are both quadratic forms with signature ; thus, their difference is a quadratic form with signature , the same as the signature of arbitrary Maxwell Field (in a given inertial frame, the latter form can be written as a difference with a contribution from electric field and from magnetic field ). |
8 | Semi-classical calculations leading to equal rates at which electrically and magnetically charged black holes are being created made the authors conclude that duality is a symmetry of the quantum theory, but in a very non-obvious way [77]. |
References
- Greisen, K. End to the cosmic-ray spectrum? Phys. Rev. Lett. 1966, 16, 748. [Google Scholar] [CrossRef]
- Zatsepin, G.T.; Kuz’min, V.A. Upper Limit of the Spectrum of Cosmic Rays. Sov. J. Exp. Theor. Phys. Lett. 1966, 4, 78. [Google Scholar]
- Cronin, J. Summary of the workshop. Nucl. Phys. B-Proc. Suppl. 1992, 28, 213–225. [Google Scholar] [CrossRef]
- Yoshida, S.; Teshima, M. Energy Spectrum of Ultra-High Energy Cosmic Rays with Extra-Galactic Origin. Prog. Theor. Phys. 1993, 89, 833–845. [Google Scholar] [CrossRef]
- Fermi, E. On the Origin of the Cosmic Radiation. Phys. Rev. 1949, 75, 1169–1174. [Google Scholar] [CrossRef]
- Bell, A.R. The acceleration of cosmic rays in shock fronts–I. Mon. Not. R. Astron. Soc. 1978, 182, 147–156. [Google Scholar] [CrossRef]
- Gallant, Y.A.; Achterberg, A. Ultra-high-energy cosmic ray acceleration by relativistic blast waves. Mon. Not. R. Astron. Soc. 1999, 305, L6–L10. [Google Scholar] [CrossRef]
- Blasi, P.; Epstein, R.I.; Olinto, A.V. Ultra–High-Energy Cosmic Rays from Young Neutron Star Winds. Astrophys. J. 2000, 533, L123–L126. [Google Scholar] [CrossRef]
- Porter, N.A. The Dirac monopole as a constituent of primary cosmic radiation. Nuovo Cimento (Italy) Divid. Nuovo Cimento A Nuovo Cimento B 1960, 10, 958. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Character 1931, 133, 60–72. [Google Scholar] [CrossRef]
- Hooft, G. Magnetic monopoles in unified gauge theories. Nucl. Phys. B 1974, 79, 276–284. [Google Scholar] [CrossRef]
- Polyakov, A.M. Particle Spectrum in Quantum Field Theory. JETP Lett. 1974, 20, 194–195. [Google Scholar]
- Georgi, H.; Glashow, S.L. Spontaneously Broken Gauge Symmetry and Elementary Particle Masses. Phys. Rev. D 1972, 6, 2977–2982. [Google Scholar] [CrossRef]
- Milton, K.A. Theoretical and experimental status of magnetic monopoles. Rep. Prog. Phys. 2006, 69, 1637–1711. [Google Scholar] [CrossRef]
- Harvey, J.A. Magnetic monopoles in neutron stars. Nucl. Phys. B 1984, 236, 255–268. [Google Scholar] [CrossRef]
- Schwinger, J. On Gauge Invariance and Vacuum Polarization. Phys. Rev. 1951, 82, 664–679. [Google Scholar] [CrossRef]
- Affleck, I.K.; Manton, N.S. Monopole pair production in a magnetic field. Nucl. Phys. B 1982, 194, 38–64. [Google Scholar] [CrossRef]
- Ho, D.L.J.; Rajantie, A. Instanton solution for Schwinger production of ’t Hooft-Polyakov monopoles. Phys. Rev. D 2021, 103, 115033. [Google Scholar] [CrossRef]
- Huang, X.G. Electromagnetic fields and anomalous transports in heavy-ion collisions—A pedagogical review. Rep. Prog. Phys. 2016, 79, 076302. [Google Scholar] [CrossRef]
- Kaspi, V.M.; Beloborodov, A.M. Magnetars. Annu. Rev. Astron. Astrophys. 2017, 55, 261–301. [Google Scholar] [CrossRef]
- Acharya, B.; Alexandre, J.; Benes, P.; Bergmann, B.; Bertolucci, S.; Bevan, A.; Branzas, H.; Burian, P.; Campbell, M.; Cho, Y.M.; et al. Search for magnetic monopoles produced via the Schwinger mechanism. Nature 2022, 602, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, M.; Collaboration, T.M. Final results of magnetic monopole searches with the MACRO experiment. Eur. Phys. J. C-Part. Fields 2002, 25, 511–522. [Google Scholar] [CrossRef]
- Aynutdinov, V.; Balkanov, V.; Belolaptikov, I.; Budnev, N.; Bezrkov, L.; Borschev, D.; Chensky, A.; Danilchenko, I.; Davidov, Y.; Djikibaev, Z.A.; et al. Search for relativistic magnetic monopoles with the Baikal neutrino telescope NT200. In Proceedings of the 29th International Cosmic Ray Conference (ICRC29), Pune, India, 3–10 August 2005; Volume 9, p. 203. [Google Scholar]
- Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; et al. Search for relativistic magnetic monopoles with the AMANDA-II neutrino telescope. Eur. Phys. J. C 2010, 69, 361–378. [Google Scholar] [CrossRef]
- Hogan, D.P.; Besson, D.Z.; Ralston, J.P.; Kravchenko, I.; Seckel, D. Relativistic magnetic monopole flux constraints from RICE. Phys. Rev. D 2008, 78, 075031. [Google Scholar] [CrossRef]
- Balestra, S.; Cecchini, S.; Cozzi, M.D.; Errico, M.; Fabbri, F.; Giacomelli, G.A.; Giacomelli, R.; Giorgini, M.; Kumar, A.; Manzoor, S.; et al. Magnetic monopole search at high altitude with the SLIM experiment. Eur. Phys. J. C 2008, 55, 57–63. [Google Scholar] [CrossRef]
- Detrixhe, M.; Besson, D.; Gorham, P.W.; Allison, P.; Baughmann, B.; Beatty, J.J.; Belov, K.; Bevan, S.; Binns, W.R.; Chen, C.; et al. Ultrarelativistic magnetic monopole search with the ANITA-II balloon-borne radio interferometer. Phys. Rev. D 2011, 83, 023513. [Google Scholar] [CrossRef]
- Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; et al. Search for relativistic magnetic monopoles with IceCube. Phys. Rev. D 2013, 87, 022001. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; et al. Search for ultrarelativistic magnetic monopoles with the Pierre Auger observatory. Phys. Rev. D 2016, 94, 082002. [Google Scholar] [CrossRef]
- Giacomelli, G.; Patrizii, L. Magnetic monopole searches. In Non-Accelerator Astroparticle Physics; World Scientific: Singapore, 2005; pp. 129–142. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Mitsou, V.A. Magnetic monopoles revisited: Models and searches at colliders and in the Cosmos. Int. J. Mod. Phys. A 2020, 35, 2030012. [Google Scholar] [CrossRef]
- Shnir, Y.M. Magnetic Monopoles; Text and Monographs in Physics; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar] [CrossRef]
- Dooher, J. Transition Radiation from Magnetic Monopoles. Phys. Rev. D 1971, 3, 2652–2660. [Google Scholar] [CrossRef]
- Schwinger, J. Magnetic Charge and Quantum Field Theory. Phys. Rev. 1966, 144, 1087–1093. [Google Scholar] [CrossRef]
- Mitsou, V. MoEDAL, MAPP and future endeavours. In Proceedings of the 7th Symposium on Prospects in the Physics of Discrete Symmetries, DISCRETE 2020–2021—PoS(DISCRETE2020-2021), Bergen, Norway, 29 November–3 December 2021; Volume 405, p. 017. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.; Albury, J.M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Anastasi, G.A.; et al. Features of the Energy Spectrum of Cosmic Rays above 2.5 × 1018 eV Using the Pierre Auger Observatory. Phys. Rev. Lett. 2020, 125, 121106. [Google Scholar] [CrossRef] [PubMed]
- Kephart, T.W.; Weiler, T.J. Magnetic monopoles as the highest energy cosmic ray primaries. Astropart. Phys. 1996, 4, 271–279. [Google Scholar] [CrossRef]
- Hill, C.T. Monopolonium. Nucl. Phys. B 1983, 224, 469–490. [Google Scholar] [CrossRef]
- Bleve, C. Updates on the neutrino and photon limits from the Pierre Auger Observatory. PoS 2016, 236, 1103. [Google Scholar] [CrossRef]
- Epele, L.N.; Fanchiotti, H.; García Canal, C.A.; Vento, V. Monopolium: The key to monopoles. Eur. Phys. J. C 2008, 56, 87–95. [Google Scholar] [CrossRef]
- Epele, L.N.; Fanchiotti, H.; García Canal, C.A.; Vento, V. Monopolium production from photon fusion at the Large Hadron Collider. Eur. Phys. J. C 2009, 62, 587–592. [Google Scholar] [CrossRef]
- Epele, L.N.; Fanchiotti, H.; García Canal, C.A.; Mitsou, V.A.; Vento, V. Looking for magnetic monopoles at LHC with diphoton events. Eur. Phys. J. Plus 2012, 127, 60. [Google Scholar] [CrossRef]
- Ellis, J.; Mavromatos, N.E.; You, T. Light-by-Light Scattering Constraint on Born-Infeld Theory. Phys. Rev. Lett. 2017, 118, 261802. [Google Scholar] [CrossRef]
- Ellis, J.; Mavromatos, N.E.; Roloff, P.; You, T. Light-by-light scattering at future e+e− colliders. Eur. Phys. J. C 2022, 82, 634. [Google Scholar] [CrossRef]
- Gervais, J.L.; Zwanziger, D. Derivation from first principles of the infrared structure of quantum electrodynamics. Phys. Lett. B 1980, 94, 389–393. [Google Scholar] [CrossRef]
- Herdegen, A. Infrared limit in external field scattering. J. Math. Phys. 2012, 53, 052306. [Google Scholar] [CrossRef]
- Herdegen, A. Angular momentum in electrodynamics and an argument against the existence of magnetic monopoles. J. Phys. A Math. Gen. 1993, 26, L449–L455. [Google Scholar] [CrossRef]
- Staruszkiewicz, A.J. Quantum Mechanics of the Electric Charge. In Quantum Coherence And Reality: In Celebration of the 60th Birthday of Yakir Aharonov; Anandan, J.S., Safko, J.L., Eds.; World Scientific: Singapore, 1994; pp. 90–94. [Google Scholar] [CrossRef]
- Staruszkiewicz, A. Quantum mechanics of phase and charge and quantization of the coulomb field. Ann. Phys. 1989, 190, 354–372. [Google Scholar] [CrossRef]
- Staruszkiewicz, A. Quantum mechanics of the electric charge. Acta Phys. Pol. Ser. B 1998, 29, 929–936. [Google Scholar]
- Dirac, P.A.M. The Theory of Magnetic Poles. Phys. Rev. 1948, 74, 817–830. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1980. [Google Scholar]
- Hillas, A.M. The Origin of Ultra-High-Energy Cosmic Rays. Annu. Rev. Astron. Astrophys. 1984, 22, 425–444. [Google Scholar] [CrossRef]
- Fanchiotti, H.; García Canal, C.A.; Vento, V. Multiphoton annihilation of monopolium. Int. J. Mod. Phys. A 2017, 32, 1750202. [Google Scholar] [CrossRef]
- Ellis, J. Unification and supersymmetry. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1983, 310, 279–292. [Google Scholar] [CrossRef]
- Bressi, G.; Carugno, G.; Della Valle, F.; Galeazzi, G.; Ruoso, G.; Sartori, G. Testing the neutrality of matter by acoustic means in a spherical resonator. Phys. Rev. A 2011, 83, 052101. [Google Scholar] [CrossRef]
- Tiesinga, E.; Mohr, P.J.; Newell, D.B.; Taylor, B.N. CODATA recommended values of the fundamental physical constants: 2018. Rev. Mod. Phys. 2021, 93, 025010. [Google Scholar] [CrossRef]
- Dirac, P.A.M. The monopole concept. Int. J. Theor. Phys. 1978, 17, 235–247. [Google Scholar] [CrossRef]
- Aharonov, Y.; Bohm, D. Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev. 1959, 115, 485–491. [Google Scholar] [CrossRef]
- Wu, T.T.; Yang, C.N. Concept of nonintegrable phase factors and global formulation of gauge fields. Phys. Rev. D 1975, 12, 3845–3857. [Google Scholar] [CrossRef]
- Weyl, H. Elektron und Gravitation. I. Z. Phys. 1929, 56, 330–352. [Google Scholar] [CrossRef]
- Staruszkiewicz, A. Dirac’s electric monopole. Acta Phys. Polonica B 1984, 15, 945–948. [Google Scholar]
- Jackiw, R. Three-Cocycle in Mathematics and Physics. Phys. Rev. Lett. 1985, 54, 159–162. [Google Scholar] [CrossRef]
- Jackiw, R.W. Dirac’s Magnetic Monopoles (Again). In Proceedings of the Dirac Centennial Symposium Florida State University, Tallahassee, FL, USA, 6–7 December 2002; pp. 137–143. [Google Scholar] [CrossRef]
- Georgi, H.; Glashow, S.L. Unity of All Elementary-Particle Forces. Phys. Rev. Lett. 1974, 32, 438–441. [Google Scholar] [CrossRef]
- Scott, D. Monopoles in a grand unified theory based on SU(5). Nucl. Phys. B 1980, 171, 95–108. [Google Scholar] [CrossRef]
- Weinberg, S. The Quantum Theory of Fields. Vol. 2: Modern Applications; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Preskill, J. Magnetic monopoles. Annu. Rev. Nucl. Part. Sci. 1984, 34, 461–530. [Google Scholar] [CrossRef]
- Witten, E. Dyons of charge eθ/2π. Phys. Lett. B 1979, 86, 283–287. [Google Scholar] [CrossRef]
- Staruszkiewicz, A. On the quantal nature of the Coulomb field. Banach Cent. Publ. 1997, 41, 257–262. [Google Scholar] [CrossRef]
- Mazur, P.O.; Staruszkiewicz, A. On the Theta Term in Electrodynamics. arXiv 1998, arXiv:hep-th/9809205. [Google Scholar]
- Staruszkiewicz, A. Quantum Mechanics of the Electric Charge. In New Developments in Quantum Field Theory; Damgaard, P.H., Jurkiewicz, J., Eds.; Springer: Boston, MA, USA, 2002; pp. 179–185. [Google Scholar] [CrossRef]
- Alexander, M.; Bergmann, P.G. Electrodynamics at spatial infinity. Found. Phys. 1984, 14, 925–951. [Google Scholar] [CrossRef]
- Sommers, P. The geometry of the gravitational field at spacelike infinity. J. Math. Phys. 1978, 19, 549–554. [Google Scholar] [CrossRef]
- Berestetskii, V.; Pitaevskii, L.; Lifshitz, E. Quantum Electrodynamics: Volume 4; Number v. 4; Elsevier Science: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Staruszkiewicz, A. Quantum Mechanics of the Electric Charge and its Connection with the Problem of Interpretation of Quantum Mechanics. In Non-Locality and Modality; Placek, T., Butterfield, J., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 75–79. [Google Scholar] [CrossRef]
- Hawking, S.W.; Ross, S.F. Duality between electric and magnetic black holes. Phys. Rev. D 1995, 52, 5865–5876. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bratek, Ł.; Jałocha, J. On the Issue of Magnetic Monopoles in the Prospect of UHE Photon Searches. Universe 2022, 8, 422. https://doi.org/10.3390/universe8080422
Bratek Ł, Jałocha J. On the Issue of Magnetic Monopoles in the Prospect of UHE Photon Searches. Universe. 2022; 8(8):422. https://doi.org/10.3390/universe8080422
Chicago/Turabian StyleBratek, Łukasz, and Joanna Jałocha. 2022. "On the Issue of Magnetic Monopoles in the Prospect of UHE Photon Searches" Universe 8, no. 8: 422. https://doi.org/10.3390/universe8080422
APA StyleBratek, Ł., & Jałocha, J. (2022). On the Issue of Magnetic Monopoles in the Prospect of UHE Photon Searches. Universe, 8(8), 422. https://doi.org/10.3390/universe8080422