Upper Limit on the Diffuse Radio Background from GZK Photon Observation
Abstract
:1. Introduction
2. Diffuse GZK Photon Flux Calculation
3. Expected Range of the GZK Photon Flux
4. EGRB Upper Limit Expected from UHECR Photon Observation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fixsen, D.J.; Kogut, A.; Levin, S.; Limon, M.; Lubin, P.; Mirel, P.; Seiffert, M.; Singal, J.; Wollack, E.; Villela, T.; et al. ARCADE 2 Measurement of the Extra-Galactic Sky Temperature at 3–90 GHz. Astrophys. J. 2011, 734, 5. [Google Scholar] [CrossRef]
- Dowell, J.; Taylor, G.B. The Radio Background Below 100 MHz. Astrophys. J. Lett. 2018, 858, L9. [Google Scholar] [CrossRef]
- Singal, J.; Haider, J.; Ajello, M.; Ballantyne, D.R.; Bunn, E.; Condon, J.; Dowell, J.; Fixsen, D.; Fornengo, N.; Harms, B.; et al. The Radio Synchrotron Background: Conference Summary and Report. Publ. Astron. Soc. Pac. 2018, 130, 036001. [Google Scholar] [CrossRef]
- Fraser, S.; Hektor, A.; Hutsi, G.; Kannike, K.; Marzo, C.; Marzola, L.; Spethmann, C.; Racioppi, A.; Raidal, M.; Vaskonen, V.; et al. The EDGES 21 cm Anomaly and Properties of Dark Matter. Phys. Lett. B 2018, 785, 159–164. [Google Scholar] [CrossRef]
- Pospelov, M.; Pradler, J.; Ruderman, J.T.; Urbano, A. Room for New Physics in the Rayleigh-Jeans Tail of the Cosmic Microwave Background. Phys. Rev. Lett. 2018, 121, 031103. [Google Scholar] [CrossRef]
- Jana, R.; Nath, B.B.; Biermann, P.L. Radio background and IGM heating due to Pop III supernova explosions. Mon. Not. Roy. Astron. Soc. 2019, 483, 5329–5333. [Google Scholar] [CrossRef]
- Brandenberger, R.; Cyr, B.; Shi, R. Constraints on Superconducting Cosmic Strings from the Global 21-cm Signal before Reionization. J. Cosmol. Astropart. Phys. 2019, 2019, 009. [Google Scholar] [CrossRef]
- Chianese, M.; Di Bari, P.; Farrag, K.; Samanta, R. Probing relic neutrino radiative decays with 21 cm cosmology. Phys. Lett. B 2019, 790, 64–70. [Google Scholar] [CrossRef]
- Lawson, K.; Zhitnitsky, A.R. The 21 cm absorption line and the axion quark nugget dark matter model. Phys. Dark Univ. 2019, 24, 100295. [Google Scholar] [CrossRef]
- Ewall-Wice, A.; Chang, T.C.; Lazio, J.; Dore, O.; Seiffert, M.; Monsalve, R.A. Modeling the Radio Background from the First Black Holes at Cosmic Dawn: Implications for the 21 cm Absorption Amplitude. Astrophys. J. 2018, 868, 63. [Google Scholar] [CrossRef]
- Ewall-Wice, A.; Chang, T.C.; Lazio, T.J.W. The Radio Scream from black holes at Cosmic Dawn: A semi-analytic model for the impact of radio-loud black holes on the 21 cm global signal. Mon. Not. Roy. Astron. Soc. 2020, 492, 6086–6104. [Google Scholar] [CrossRef]
- Mittal, S.; Kulkarni, G. Background of radio photons from primordial black holes. Mon. Not. Roy. Astron. Soc. 2022, 510, 4992–4997. [Google Scholar] [CrossRef]
- Krause, M.G.H.; Hardcastle, M.J. Can the Local Bubble explain the radio background? Mon. Not. Roy. Astron. Soc. 2021, 502, 2807–2814. [Google Scholar] [CrossRef]
- Bowman, J.D.; Rogers, A.E.E.; Monsalve, R.A.; Mozdzen, T.J.; Mahesh, N. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 2018, 555, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Holder, G. Enhanced global signal of neutral hydrogen due to excess radiation at cosmic dawn. Astrophys. J. Lett. 2018, 858, L17. [Google Scholar] [CrossRef]
- Kachelriess, M.; Semikoz, D.V. Cosmic Ray Models. Prog. Part. Nucl. Phys. 2019, 109, 103710. [Google Scholar] [CrossRef]
- Greisen, K. End to the cosmic ray spectrum? Phys. Rev. Lett. 1966, 16, 748–750. [Google Scholar] [CrossRef]
- Zatsepin, G.T.; Kuzmin, V.A. Upper limit of the spectrum of cosmic rays. JETP Lett. 1966, 4, 78–80. [Google Scholar]
- Kuznetsov, M.Y.; Tinyakov, P.G. UHECR mass composition at highest energies from anisotropy of their arrival directions. J. Cosmol. Astropart. Phys. 2021, 2021, 065. [Google Scholar] [CrossRef]
- Coleman, A.; Eser, J.; Mayotte, E.; Sarazin, F.; Schröder, F.G.; Soldin, D.; Venters, T.M.; Aloisio, R.; Alvarez-Muniz, J.; Alves Batista, R.; et al. Ultra-High-Energy Cosmic Rays: The Intersection of the Cosmic and Energy Frontiers. arXiv 2022, arXiv:2205.05845. [Google Scholar]
- Bergman, D. Telescope Array Combined Fit to Cosmic Ray Spectrum and Composition. PoS 2021, ICRC2021, 338. [Google Scholar] [CrossRef]
- Aab, A.; et al. [Pierre Auger Collaboration] Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory. Phys. Rev. D 2017, 96, 122003. [Google Scholar] [CrossRef]
- Abbasi, R.U.; et al. [Telescope Array Collaboration] Mass composition of ultrahigh-energy cosmic rays with the Telescope Array Surface Detector data. Phys. Rev. D 2019, 99, 022002. [Google Scholar] [CrossRef]
- Abraham, J.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allison, P.; Alvarez, C.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; et al. An upper limit to the photon fraction in cosmic rays above 1019-eV from the Pierre Auger Observatory. Astropart. Phys. 2007, 27, 155–168. [Google Scholar] [CrossRef]
- Abbasi, R.U.; et al. [Telescope Array Collaboration] Search for point sources of ultra-high-energy photons with the Telescope Array surface detector. Mon. Not. Roy. Astron. Soc. 2020, 492, 3984–3993. [Google Scholar] [CrossRef]
- Savina, P.; et al. [The Pierre Auger Collaboration] A search for ultra-high-energy photons at the Pierre Auger Observatory exploiting air-shower universality. PoS 2021, ICRC2021, 373. [Google Scholar] [CrossRef]
- Rautenberg, J. Limits on ultra-high energy photons with the Pierre Auger Observatory. PoS 2021, ICRC2019, 398. [Google Scholar] [CrossRef]
- Gelmini, G.; Kalashev, O.E.; Semikoz, D.V. GZK photons as ultra high energy cosmic rays. J. Exp. Theor. Phys. 2008, 106, 1061–1082. [Google Scholar] [CrossRef]
- Gelmini, G.; Kalashev, O.E.; Semikoz, D.V. GZK Photons in the Minimal Ultrahigh Energy Cosmic Rays Model. Astropart. Phys. 2007, 28, 390–396. [Google Scholar] [CrossRef]
- Gelmini, G.B.; Kalashev, O.E.; Semikoz, D.V. GZK Photons Above 10-EeV. J. Cosmol. Astropart. Phys. 2007, 2007, 002. [Google Scholar] [CrossRef]
- Aab, A.; et al. [The Pierre Auger Collaboration] The Pierre Auger Observatory Upgrade-Preliminary Design Report. arXiv 2016, arXiv:1604.03637. [Google Scholar]
- Castellina, A. AugerPrime: The Pierre Auger Observatory Upgrade. EPJ Web Conf. 2019, 210, 06002. [Google Scholar] [CrossRef]
- Kalashev, O.E.; Kuzmin, V.A.; Semikoz, D.V. Top down models and extremely high-energy cosmic rays. arXiv 1999, arXiv:astro-ph/9911035. [Google Scholar]
- Kalashev, O.E.; Kuzmin, V.A.; Semikoz, D.V. Ultrahigh-energy cosmic rays. Propagation in the galaxy and anisotropy. Mod. Phys. Lett. A 2001, 16, 2505–2515. [Google Scholar] [CrossRef]
- Kalashev, O.E.; Kido, E. Simulations of Ultra High Energy Cosmic Rays propagation. J. Exp. Theor. Phys. 2015, 120, 790–797. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Sigl, G. Origin and propagation of extremely high-energy cosmic rays. Phys. Rept. 2000, 327, 109–247. [Google Scholar] [CrossRef]
- Ivanov, D. Energy Spectrum Measured by the Telescope Array. PoS 2020, ICRC2019, 298. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. Astrophys. J. 2015, 799, 86. [Google Scholar] [CrossRef]
- Parente, G. The Search for Ultra-High Energy Neutrinos through Highly Inclined Air Showers in the Pierre Auger Observatory. J. Phys. Conf. Ser. 2021, 2156, 012095. [Google Scholar] [CrossRef]
- Aab, A.; et al. [The Pierre Auger Collaboration] Measurement of the cosmic-ray energy spectrum above 2.5×1018 eV using the Pierre Auger Observatory. Phys. Rev. D 2020, 102, 062005. [Google Scholar] [CrossRef]
- Ivanov, D.; Bergman, D.; Furlich, G.; Gonzalez, R.; Thomson, G.; Tsunesada, Y. Recent measurement of the Telescope Array energy spectrum and observation of the shoulder feature in the Northern Hemisphere. PoS 2021, ICRC2021, 341. [Google Scholar] [CrossRef]
- Tsunesada, Y.; Abbasi, R.; Abu-Zayyad, T.; Allen, M.; Arai, Y.; Arimura, R.; Barcikowski, E.; Belz, J.; Bergman, D.; Blake, S.; et al. Joint analysis of the energy spectrum of ultra-high-energy cosmic rays as measured at the Pierre Auger Observatory and the Telescope Array. PoS 2021, ICRC2021, 337. [Google Scholar] [CrossRef]
- Clark, T.A.; Brown, L.W.; Alexander, J.K. Spectrum of the Extra-galactic Background Radiation at Low Radio Frequencies. Nature 1970, 228, 847–849. [Google Scholar] [CrossRef]
- Protheroe, R.J.; Biermann, P.L. A New estimate of the extragalactic radio background and implications for ultrahigh-energy gamma-ray propagation. Astropart. Phys. 1996, 6, 45–54, Erratum in Astropart. Phys. 1997, 7, 181. [Google Scholar] [CrossRef]
- Abbasi, R.U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Arimura, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; et al. Constraints on the diffuse photon flux with energies above 1018 eV using the surface detector of the Telescope Array experiment. Astropart. Phys. 2019, 110, 8–14. [Google Scholar] [CrossRef]
- Kalashev, O.E.; et al. [Telescope Array Collaboration] Telescope Array search for EeV photons. PoS 2021, ICRC2021, 864. [Google Scholar] [CrossRef]
- Apel, W.D.; Arteaga-Velázquez, J.C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I.M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; et al. KASCADE-Grande Limits on the Isotropic Diffuse Gamma-Ray Flux between 100 TeV and 1 EeV. Astrophys. J. 2017, 848, 1. [Google Scholar] [CrossRef]
- Fomin, Y.A.; Kalmykov, N.N.; Karpikov, I.S.; Kulikov, G.V.; Kuznetsov, M.Y.; Rubtsov, G.I.; Sulakov, V.P.; Troitsky, S.V. Constraints on the flux of ∼(1016-1017.5) eV cosmic photons from the EAS-MSU muon data. Phys. Rev. D 2017, 95, 123011. [Google Scholar] [CrossRef]
- Garcia, A.A.; Bondarenko, K.; Boyarsky, A.; Nelson, D.; Pillepich, A.; Sokolenko, A. Ultra-high energy cosmic rays deflection by the Intergalactic Magnetic Field. arXiv 2021, arXiv:2101.07207. [Google Scholar]
- Sigl, G.; Miniati, F.; Ensslin, T.A. Ultrahigh energy cosmic ray probes of large scale structure and magnetic fields. Phys. Rev. D 2004, 70, 043007. [Google Scholar] [CrossRef]
- Dolag, K.; Grasso, D.; Springel, V.; Tkachev, I. Constrained simulations of the magnetic field in the local Universe and the propagation of UHECRs. J. Cosmol. Astropart. Phys. 2005, 2005, 009. [Google Scholar] [CrossRef]
- Hackstein, S.; Vazza, F.; Brüggen, M.; Sigl, G.; Dundovic, A. Propagation of ultrahigh energy cosmic rays in extragalactic magnetic fields: A view from cosmological simulations. Mon. Not. Roy. Astron. Soc. 2016, 462, 3660–3671. [Google Scholar] [CrossRef]
- Hackstein, S.; Vazza, F.; Brüggen, M.; Sorce, J.G.; Gottlöber, S. Simulations of ultra-high Energy Cosmic Rays in the local Universe and the origin of Cosmic Magnetic Fields. Mon. Not. Roy. Astron. Soc. 2018, 475, 2519–2529. [Google Scholar] [CrossRef]
- Alves Batista, R.; Shin, M.S.; Devriendt, J.; Semikoz, D.; Sigl, G. Implications of strong intergalactic magnetic fields for ultrahigh-energy cosmic-ray astronomy. Phys. Rev. D 2017, 96, 023010. [Google Scholar] [CrossRef]
- Neronov, A.; Vovk, I. Evidence for Strong Extragalactic Magnetic Fields from Fermi Observations of TeV Blazars. Science 2010, 328, 73–75. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.M.; Vovk, I.; Neronov, A. Extragalactic magnetic fields constraints from simultaneous GeV–TeV observations of blazars. Astron. Astrophys. 2011, 529, A144. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; Bloom, E.D.; et al. The Search for Spatial Extension in High-latitude Sources Detected by the Fermi Large Area Telescope. Astrophys. J. Suppl. 2018, 237, 32. [Google Scholar] [CrossRef]
- Jedamzik, K.; Saveliev, A. Stringent Limit on Primordial Magnetic Fields from the Cosmic Microwave Background Radiation. Phys. Rev. Lett. 2019, 123, 021301. [Google Scholar] [CrossRef]
- Neronov, A.; Semikoz, D.; Kalashev, O. Limit on intergalactic magnetic field from ultra-high-energy cosmic ray hotspot in Perseus-Pisces region. arXiv 2021, arXiv:2112.08202. [Google Scholar]
- Neronov, A.; Semikoz, D.V. Extragalactic Very-High-Energy gamma-ray background. Astrophys. J. 2012, 757, 61. [Google Scholar] [CrossRef]
- Di Mauro, M.; Donato, F.; Lamanna, G.; Sanchez, D.A.; Serpico, P.D. Diffuse γ-ray emission from unresolved BL Lac objects. Astrophys. J. 2014, 786, 129. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. Resolving the Extragalactic γ-Ray Background above 50 GeV with the Fermi Large Area Telescope. Phys. Rev. Lett. 2016, 116, 151105. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gelmini, G.B.; Kalashev, O.; Semikoz, D. Upper Limit on the Diffuse Radio Background from GZK Photon Observation. Universe 2022, 8, 402. https://doi.org/10.3390/universe8080402
Gelmini GB, Kalashev O, Semikoz D. Upper Limit on the Diffuse Radio Background from GZK Photon Observation. Universe. 2022; 8(8):402. https://doi.org/10.3390/universe8080402
Chicago/Turabian StyleGelmini, Graciela B., Oleg Kalashev, and Dmitri Semikoz. 2022. "Upper Limit on the Diffuse Radio Background from GZK Photon Observation" Universe 8, no. 8: 402. https://doi.org/10.3390/universe8080402
APA StyleGelmini, G. B., Kalashev, O., & Semikoz, D. (2022). Upper Limit on the Diffuse Radio Background from GZK Photon Observation. Universe, 8(8), 402. https://doi.org/10.3390/universe8080402