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Abstract: Ultra-high energy (UHE) photons with energies exceeding 1018 eV can potentially be ob-
served. They are produced in various processes involving electrically charged particles. However,
more exotic scenarios are also possible. UHE photons could be emitted in encounters of massive
magnetically charged monopole-antimonopole pairs or in processes associated with monopoles accel-
erated to high energies, typically 1021 eV or beyond. Observing UHE photons can pose constraints
on the properties of magnetic monopoles. There are compelling theoretical reasons in favor of the
presence of magnetic monopoles in nature. The predicted observational signatures of these particles
are therefore searched for in dedicated experiments currently in operation. Despite these attempts,
magnetic monopoles have yet to be empirically proved. There are also theoretical reasons why
magnetic monopoles allowed by Dirac’s theory might not be realized in nature in the form of isolated
particles. Detection or non-detection of UHE photon signatures of magnetic monopoles would bring
us closer to solving this fascinating puzzle.

Keywords: magnetic monopole; zero frequency fields; quantum theory of the electric charge; charge
quantization; fine structure constant; ultra high energy photons; existence of magnetic monopoles

1. Introduction

The upper limit on the distance from which high-energy cosmic rays can travel is one
of the key predictions in cosmic ray physics [1,2]. Interactions with background radiation
result in significant energy loss for protons with energies greater than 5 × 1019 eV. These
particles are expected to travel only a few mega-parsecs before their energy falls below
the threshold for photoproduction. Similarly, if the cosmic ray particle is a heavier ion,
the interaction with background photons reduces its energy. Therefore, a truncation in
the cosmic ray spectrum known as the GZK limit is expected. Cosmic rays with energies
above 1020 eV, coming from sources at distances greater than a few dozens of mega-parsecs,
should be invisible due to the GZK limit [3,4]. The truncation of the cosmic ray spectrum
can also be a result of the properties of the sources themselves, not just due to the GZK
effect. It cannot be excluded that there are no mechanisms accelerating particles above
1020 eV. If the extension of detection capabilities would result in an increase in the observed
flux of cosmic radiation at the highest energies, this would then require consideration of
particle acceleration scenarios, which currently seem to be rather exotic.

Among possible sources of cosmic radiation of the highest energies, most promising
are those in the presence of very strong magnetic fields extending over long distances.
Second-order Fermi acceleration processes [5] occur in the presence of randomly moving
plasma clouds carrying magnetic fields through the interstellar medium. An electrically
charged particle can gain energy by repeatedly bouncing off plasma clouds. However, there
is a limit to the efficiency of the acceleration process. The particle must stay in a magnetic
field region for the acceleration to occur: if the particle’s energy increases too much, the
particle will escape from that region. The maximum energy gained is EF ≈ ZβceBL, where
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βc is the magnetic mirror’s velocity, B is the magnetic field strength, and L is the size of
the acceleration region. Particles can also be accelerated in shock fronts, bouncing back
and forth across the shock, and if shock waves are also present, the acceleration process
will be more efficient [6]. It was also shown [7,8] that it is possible to accelerate particles in
the vicinity of pulsars even to energies of 1021 eV. This is a debatable result. However, if
the accelerated particle is magnetically charged, the situation changes radically. Magnetic
monopoles could explain the production of particles of the highest energy even in the
region of our Galaxy.

As suggested in 1960 [9], a number of effects observed in air showers could be under-
stood if a fraction (about 10−14) of all primary cosmic ray particles were in form of magnetic
monopoles, at that time assumed to be point-like elementary magnetic charges predicted
by Dirac in 1931 [10]. The monopole idea is unavoidable when considering an electrically
charged quantum particle coupled to genuine Maxwell fields. There is an unobservable
singularity string emanating from the monopole position-point. The monopole mass re-
mains unspecified in Dirac’s theory. It was later discovered that a magnetic monopole can
be realized in terms of field-theoretical concepts. Topological magnetic monopoles emerge
in unified non-Abelian gauge field theories of interactions via a mechanism similar to that
of a monopole discovered independently by ’t Hooft [11] and Polyakov [12] in an SO(3)
realization of the Georgi–Glashow model [13]. The monopoles are spherically symmetric
massive spatially extended solitonic solutions without a singularity string. The solitons are
characterized by a topological charge–an integer describing the winding degree of a finite
energy mapping between the physical space domain and the field configuration domain.
In the low energy regime of Unified Theories of Interactions, the topological charge can
be reinterpreted in terms of magnetic charge of a U(1) gauge potential equivalent to one
of a genuine Maxwell theory. The resulting magnetic field is asymptotically equivalent
to that of Dirac’s monopole. The problem of the relationship of magnetic monopoles to
cosmic radiation of the highest energies consists essentially of two separate questions. The
first question is more experimental: could magnetic monopoles be responsible for the
production of UHE photons in the range of highest energies observed for cosmic rays? The
second question is more theoretical: do magnetic monopoles exist?

The acceleration of monopoles in magnetic fields would happen directly and efficiently;
no Fermi-type processes would be needed. Magnetic monopoles, so far hypothetical par-
ticles, could form in the dense matter of neutron stars [14]. Magnetic monopoles could
be produced and efficiently accelerated by neutron stars’ magnetic fields (especially if
they contain quark matter). Magnetic monopoles may also play a role in various astro-
physical processes, such as mechanisms that reduce magnetic fields in the interiors of
neutron stars [15]. Magnetic monopoles can be produced in strong magnetic fields via a
mechanism analogous to the Schwinger pair production mechanism, in which electrically
charged particles are created by tunelling through a barrier in an extremely strong electric
field [16]. By the duality of electromagnetic equations, magnetically charged particles are
also expected to be produced by tunneling in sufficiently strong magnetic fields. This
expectation is confirmed by rigorous semi-classical calculations of the rate of monopole
pair production in a constant magnetic field. In the case of point-like monopoles [17], the
resulting production rate bears resemblance to that of Schwinger for electron-positron pair
production, at least in the leading term. The rate of production in the case of non-point-
like ’t Hooft and Polyakov monopoles was calculated in [18]. It turns out that for heavy
monopoles, the required magnetic field for this process would exceed those in neutron
stars. However, extremely strong electromagnetic fields can be generated in high-energy
heavy-ion collisions, in which nuclei are accelerated to nearly the speed of light. Magnetic
fields are induced by electric currents of positively charged nuclei and are the largest com-
ponent of the electromagnetic field near the vicinity of the collision center. In Earth-based
laboratories, one can achieve energies of 200 GeV for Au+Au collisions (RHIC) and 2.76 TeV
for Pb+Pb collisions (LHC), giving rise to huge magnetic fields of 1018–1019 Gs and 1020 Gs,
respectively, as calculated in [19], exceeding the highest values known for astrophysical
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sources, such as 1015 Gs on the surfaces of magnetars [20]. Recently, the first search was
presented for finite-size monopoles created via the Schwinger mechanism. The search
was conducted by the MoEDAL experiment, designed specifically to see monopoles di-
rectly. The experiment observed Pb-Pb collisions producing strong magnetic fields in which
monopole-antimonopole pairs may be created via tunneling effect. The analysis of the data
based on a nonperturbative cross-section calculations allowed to place the (conservative)
lower mass limit of 75 GeV for magnetic charges between 1 and 3 Dirac charges produced
via the Schwinger mechanism [21]. It is clear that magnetic monopole signatures have
the potential to be detected and should be sought for. Several other experiments have
been carried out in the search for magnetic monopoles. Various upper limits have been
established so far: MACRO [22], Baikal neutrino telescope [23], Amanda-II Detector [24],
RICE [25], SLIM [26], ANITA II interferometer [27], IceCube detector [28], and Pierre Auger
Observatory [29]. The current state of magnetic monopole searches is discussed in [30].
The discussion on the theoretical and experimental status of magnetic monopoles and
the limits on monopole masses can be found in [14]. Recent advances in the theoretical
and experimental physics of magnetic monopoles are discussed in [31]. A comprehensive
review on various aspects of the theory of magnetic monopoles can be found in [32].

In the context of UHE photons, it is important to note that processes characterized
by photon emission from magnetic monopoles with the lowest nonzero magnetic charge
allowed by Dirac theory [10] will be enhanced by a factor of 4692 over similar processes
involving unit electronic charge [33]. Magnetic charges of monopoles realized in nature
can be n times greater than the allowable minimum, where n is an integer; hence, the
number 4692 can be still increased by a factor n2 (for example, n = 2 in a Schwinger field
theoretical model of monopoles [34]). In effect, one may expect radiation enhanced by
many orders of magnitude in processes in which magnetic monopoles take part. The highly
increased electromagnetic coupling with matter also implies strong ionizing properties
of magnetic monopoles, which is experimentally advantageous. Magnetic monopoles or
their electrically charged counterparts dyons are hoped to be found among highly ionizing
particles in the MoEDAL search experiment at the LHC [35].

It seems, however, that the highest energy scale of 1021 eV or more, exceeding the high-
est energies of 1020 eV observed so far for UHECR [36], can be ascribed to the interaction of
magnetic monopoles with magnetic fields in the astrophysical context in a universal way,
independently of the monopole mass (this issue will be discussed later). The possibility
to accelerate the monopole to extreme energies [9,37] or to have monopolia [38] present
in nature is very important in the context of detection of UHE photons. If an already
accelerated high energy monopole hits the regions where it interacts with matter, then
there will be emission of photons. Could this energy be then deposited in several or even 2
single UHE photons? The answer to this question seems affirmative, as discussed later. The
possibility to detect photons in cosmic radiation would be very promising. If monopoles
exist and are accelerated to decay, such high-energy photons should be a component of
cosmic radiation. However, a photon, through processes of pair creation, can ultimately
also give rise to charged particles of cosmic radiation of the highest energy. Observing
such photons can pose constraints on the properties of magnetic monopoles. UHE photons
with energies above 1019 eV can be detected with the Surface Detector array of the Pierre
Auger Observatory [39]. As suggested in [40,41], monopolia might be easier to detect than
free monopoles and could be discovered at the LHC. In this context, photon production by
monopole loops in photon fusion was studied in [42]; in particular, the cross-sections for
the annihilation of monopoles into two photons were calculated and discussed. Such loops
may manifest themselves in light-by-light scattering at the LHC [43] or future colliders [44].
Due to the very strong coupling between monopoles, monopole-antimonopole pairs (form-
ing monopolium neutral bound states rather than unbound free states due to the strong
coupling) may finally annihilate into highly energetic photons and thus be observed.

Before making any claims regarding the presence or absence of magnetic monopoles
in nature, it would be appropriate to note that this term refers to two classes of objects. The
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first class consists of elementary point-like magnetic monopoles described by Dirac [10],
resembling the Dirac electron more in structure than a composite particle. This is an ideal
mathematical construct that gives the reason for why any magnetic monopole that could
be realized as a physically existing particle must have its magnetic charge as an integer
multiple of some elementary magnetic charge e

2α (here, e is the electronic charge and α is
the fine structure constant). The second class consists of particular realizations of the ideal
elementary magnetic monopole within a field-theoretical framework characteristic of the
standard model of particles or other theories of unified interactions. These solitonic-like
particles resemble more the composite proton with a complicated internal structure rather
than the elementary electron. The classic example is provided by the magnetic monopole
of ’t Hooft and Polyakov [11,12]. This model will be shortly discussed in order to see the
conceptual difference between the elementary monopole and its physical realizations.

In the context of UHE photons produced in processes involving magnetic monopoles,
the present work addresses the theoretical question of the existence of a magnetic monopole
as an isolated particle with a non-zero multiple of elementary magnetic charge. It is
enough to focus on the elementary Dirac’s magnetic monopole for this purpose. The
problem of a particular field-theoretical realization of the magnetic monopole is different.
Although isolated magnetically charged solitonic configurations can be considered as
solutions in the standard model of particles, it might be that only magnetically neutral
configurations of magnetic monopoles are realized in nature (similarly, only color-neutral
quark configurations are observed in the form of isolated particles).

The arguments against the existence of magnetic monopoles are formulated within the
framework of the asymptotic (infrared) structure of the Maxwell theory and the principles
of quantum theory (unfortunately, this regime of electromagnetic field presents some
theoretical difficulties [45,46]). In Herdegen’s argument [47], the absence of magnetic
charges serves as the consistency condition for the possible unambiguous extension of the
definition of angular momentum to the typical situation where massive charged particles
or fields (such as described by Dirac or Klein–Gordon equations) are scattered from initial
to final free asymptotic states. This argument will not be discussed here. The present paper
focuses on Staruszkiewicz’s argument against the existence of magnetic monopoles [48].
This argument is an important part of quantum theory of the electric charge [49]. This is
an ‘emergent’ theory, separated from quantum electrodynamics by a nontrivial limit r→∞.
Except for explaining the quantization of electric charge in terms of a single universal
constant [50] (which is done independently of the concept of magnetic monopole), the
theory has a nontrivial dependence on the numerical value of the fine structure constant
α = e2

h̄c . In particular, this theory leads to mathematically critical spectra of α values
(however, it is not yet known if this theory also predicts the experimentally determined
value of α). In Dirac’s theory [10], the very presence of a single magnetic monopole leads to
quantization of electric charge; however, the value of the fine structure constant remains an
arbitrary parameter. In Dirac’ theory, the condition for quantization of electric charge is
topological in character, whereas in Staruszkiewicz’s theory, the quantization of electric
charge arises from a quantal eigenvalue problem.

2. Magnetic Monopoles and UHE Photons

In classical electrodynamics of Maxwell based on a single gauge potential four-vector,
there is no place for magnetic monopoles, and the reason for this is structural. Introduc-
ing magnetic monopoles is, nevertheless, still possible with only a slight modification
of the theory to account for topological changes introduced by considering quantum
charged systems. The Dirac monopole theory is introduced in the framework of ordinary
Maxwell theory where there is an analytical global correspondence in spacetime between
a gauge-invariant field strength bivector F and a single gauge potential A. Considering
the magnetic monopole within the Maxwell theory framework would be possible only
by allowing for braking this correspondence locally. In quantum mechanics, the phase of
quantum states is unobservable. This fact, in conjunction with Maxwell theory, led Dirac to
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discover that certain singularities in phase can manifest themselves as point-like magnetic
monopoles. The monopoles can be consistently considered on theoretical grounds, since
arbitrariness in quantum phase can be absorbed by the arbitrariness of gauge potential of
the electromagnetic field. This issue is addressed later in more detail.

2.1. Accelerated Monopoles and a Coincidence with the Highest Energies Observed for Cosmic Rays

In the sequel to his paper on magnetic monopole [10], Dirac investigated the general
problem of motion of electric and magnetic charges interacting electromagnetically with
each other [51]. Dirac assumed that the motion of a point magnetic charge g of mass m
in the electromagnetic field Fµν is described by an equation quite analogous to Lorentz’s
equation mẍµ = eẋνFµν(x) for the motion of a point electric charge e of mass m in the same

field. Namely, the equation reads: mẍµ = gẋνGµν(x), where Gµν ≡ 1
2 ε

αβ
µν Fαβ is dual to Fµν

(more explicitly, G01 = F23, G23 = −F01, and the other components are obtained by cyclic
permutations of indices 1, 2, 3).1 The field includes both external fields and the particle’s
own field, with singularities along its worldline that have to be appropriately avoided in
the process of solving the equations of motion.

From the forms of the two general equations, it is evident, in particular, that the
equation of motion for a magnetic monopole in an external magnetic field is mathematically
the same as the equation of motion for an electric charge in an external electric field
(similarly, we can expect circular motion of magnetic monopole in a uniform electric field
and the associated synchrotron emission). Owing to this correspondence, we can use
known textbook formulas for the motion of an electric charge in a uniform electric field to
obtain analogous results for the motion of a magnetic charge in a uniform magnetic field.
This will be useful for estimating the order of magnitude of energies that one can expect
for magnetic charges in the astrophysical context in large-scale ordered magnetic fields. In
such fields, the monopoles could be accelerated to very high energies if one assumes that
energy loss due to the interaction with the environment is not severe and can be neglected.
The energy loss in such a process is indeed negligible [37].

For the purpose of an order of magnitude estimate needed here, it is enough to
consider the relativistic accelerated motion of a magnetic monopole in a uniform magnetic
field. To put the reference scales into the astrophysical context, we may consider pulsar
magnetospheres. In a first approximation, the magnetic field of a magnetosphere can be
described by a magnetic dipole. Owing to the size of magnetospheres, we can assume that
on a characteristic scale of Lo = 1 km, the dipolar field lines can be considered to be roughly
uniform. As for the characteristic scale of the magnetic field, one can choose Bo = 1012 Gs,
considerably lower than the maximum field strengths observed in magnetospheres. Now,
using the solution to a textbook problem for relativistic accelerated motion of an electric
charge in uniform electric field [52] and the equivalence with the motion of a magnetic
monopole in uniform magnetic field, one can see see that the minimum magnetic charge
predicted by Dirac’s theory g = e

2α gets accelerated to a Lorentz factor γ = 1 + eBL
2αmc after it

has traveled a distance L in uniform magnetic field B. Multiplying γ by the rest energy mc2

of the monopole, one obtains the total energy mc2 + Eacc, where Eacc =
eBLc

2α is the kinetic
energy acquired during the acceleration process. This can be compared with a similarly
looking formula for a quite unrelated Fermi shock acceleration mechanism of first order,
in which the energy gain is substantially, that is, 2βα∼β/68, times lower (β is the speed of
the shock front in units of c). Unlike electrons, for which synchrotron radiation in a strong
uniform magnetic field would be expected, the magnetic monopole can accelerate along a
straight line without emission of radiation. It is possible that the GZK cutoff will not be
important for very massive monopoles even though the magnetic monopole should couple
with matter eg

e2 = 1
2α ≈ 68 times stronger than electrically charged particles (the rest mass of

the monopole is estimated to be in the range from the electro-weak scale 102 GeV up to the
GUT scale 1016 GeV). The simple estimation of the energy gain could also be arrived at just
from dimensional analysis and may seem not a reliable one, for example, not taking into
account the energy loss due to possible multiple scattering during acceleration or other
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radiative processes (emission of electromagnetic radiation in general accelerated motion,
e.g., synchrotron radiation in electric fields). On the other hand, one cannot exclude that
much of the energy will be nevertheless carried by the monopole during its journey to the
observer. If somewhere in the universe such conditions exist as assumed above, and at
the same time there are no strong large-scale electric fields, it is possible to directly and
efficiently accelerate the monopole to extreme energies.

Remarkably, such obtained energy gain Eacc is independent of the invariant mass of
the accelerating monopole. For the adopted conservative scales Bo and Lo characteristic of
pulsar magnetospheres,

Eacc =
eBoLoc

2α
≈ 2.1 × 1021 eV for BoLo = 1017 Gs·cm = 3.2 × 104 µGs·pc.

This is a value coinciding with the highest energies observed so far for UHECR (with the
expected magnetic monopole mass of 100 GeV as for the electroweak unification energy
scale, the corresponding Lorentz factor would be γ ≈ 2 × 1010). To be more realistic, the
product BoLo of the characteristic scales should be corrected by a dimensionless factor
accounting for possible inhomogeneities of the field and local changes in the relative
directions of magnetic field and the velocity vectors along the monopole trajectory. A
similarly large scale of the product BoLo as for magnetospheres can be obtained in other
astrophysical contexts. Typical for a galaxy magnetic field of 2 µGs on a scale length
of 100 pc gives the acceleration energy in the interstellar medium of 1.3 × 1019 eV. For
other example sources, the estimates are the following: interplanetary space (50 µGs, 1 AU,
1.5 × 1013 eV); Sun-spots (103 Gs, 104 km, 2.1 × 1016 eV); white dwarfs (5 × 106 Gs, 104 km,
1020 eV); radio-galaxy lobes (10 µGs, 10 kpc, 6.3 × 1021 eV); clusters of galaxies (1 µGs,
100 kpc, 6.3 × 1021 eV); active galactic nuclei (104 Gs, 5 AU, 1.5 × 1022 eV); and intergalactic
medium (10−2 µGs, 3 Gpc, 1.9 × 1024 eV). The reference values for the BL product shown
here are estimated based on Figure 1 in [53]. Judging based on these calculations, it appears
that UHE values should be commonly attainable across the universe in processes involving
magnetic monopoles.

2.2. Selected Mechanisms of Production of UHE Photons Associated with Magnetic Monopoles

The acceleration energy Eacc discussed in the previous section could be released in
various processes dual to that associated with high-energy electrically charged particles.
The phenomenology is simple. The Lorentz transformation law of electric and magnetic
fields implies that the magnetic field B of an ultra-relativistic monopole ‘induces’ an electric
field of magnitude γcB (times a geometric factor of order unity irrelevant here) acting on
electrically charged constituents of the medium at rest. It follows that the electromagnetic
energy loss expected for a monopole with a unit magnetic charge g should be ge

e2 = 1
2α ∼ 68

times greater than for an ultra-relativistic unit electric charge of comparable invariant
mass and Lorentz factor γ (this order of magnitude argument derives from the reasoning
presented in [37]). If the accelerated magnetic monopole were to decay or annihilate with
another anti-partner or interact with charged particles, the released photon energy would
be of the order of 1021 eV or beyond if one recalls energy estimates of the previous section.
Furthermore, if the accelerated monopole decays, it will produce photons of sufficiently
high energy, which in turn can produce particle-antiparticle (e.g., proton, anti-proton)
pairs. It seems not unlikely that the emission of UHE photons from monopoles accelerated
to extremely high energy could occur near the Earth and be observed. The energy of a
monopole could be significantly reduced just as a result of the emission of UHE photons
even before reaching the Earth’s atmosphere, and perhaps even at very high altitudes
(e.g., in the van Allen belts), which would completely change the picture when it comes
to detection and identification of monopoles. Then, a set of atmospheric showers could
disperse perhaps over a big area (depending on the photon emission place). Even in the
absence of detection, observational limits on monopole properties could be set.
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Besides the acceleration processes, as sources of UHE photons, one can also consider
massive monopolia [38]. A bound state of a magnetic monopole and its anti-partner,
called monopolium, may be formed naturally in the universe and be easier to find than
single monopoles. If massive enough, the relict GUT monopolia with masses of 1016 GeV
produced in the very young universe may have survived up to the present in ultra-long-
lived metastable states [38]. The monopolia would then decay by emitting radiation in the
form of gluons, Z-bosons and photons, releasing a total energy of 2 × 1016 GeV in less than
10−38 s in the final annihilation stages. Such events, apart from the multitude of particles
visible as cosmic rays, may produce high-energy gamma radiation. The number of various
gluons, Z-bosons and photons produced in such an event in a given energy window can
be calculated (taking into account fragmentation to secondary products). One can still
expect, on average, several UHE photons with energy of 1019 eV or more, as follows from
diagrams 2 and 3 in [38]. Due to strong coupling between photons and monopoles, one can
also consider multi-photon annihilation process of monopole–antimonopole pairs or their
bounded state—monopolium—into 2n photons. Such decays were investigated in [54].

These short considerations above allow us to draw the conclusion that, if magnetic
monopoles are present in the Universe, not only should UHE values be accessible across
the universe, but this energy may also be released in the form of UHE photons. Given this,
it is rather surprising to learn that magnetic monopole searches so far have come up empty-
handed. Nevertheless, gravitational radiation was predicted by General Relativity theory.
This prediction was a mathematical construct following from the relativistic structure of
the gravitation theory. Scientists did not give up their trust in this prediction in light of
the theory’s prior success, its consistency and aesthetic appeal. It took almost a century to
reach sensitivity sufficient to detect gravitational waves. Would a similar scenario occur
with magnetic monopoles?

3. A Magnetic Monopole. What Is It and Why Might It Not Exist?

A magnetic monopole of Dirac is a structureless point-particle with undefined mass
which resembles more a point-like electron than a composite proton. The monopole is
described in the framework of Abelian Maxwell field theory in the presence of electrically
charged quantum states. The proton is not a purely electromagnetic particle, and its field-
theoretical electrically charged models are considered. The magnetic monopole might be
realized in nature as an extended particle more similar to the proton than to the electron.
Such particles can be described in terms of non-Abelian gauge field theory as magnetically
charged solitons. It is important to understand the difference between these two kinds of
magnetic monopoles.

3.1. Dirac Magnetic Monopole

The electric charge of isolated particles is always an integer multiple of elementary
charge e, and there is no explanation for this quantization within the framework of the
standard model of particles [55]. Particles quite unconnected with each other, such as
protons (a large composite particle) and electrons (a point-like particle), have equal absolute
values of electric charge (defined in terms of Gauss integral formula over a sphere of infinite
radius) with the observational accuracy 10−21 [56]. In relativistic quantum theory, the
elementary charge corresponds to a pure number α ≡ e2

h̄c independent of units chosen (with
a currently recommended value of α−1 = 137.035999084(21) [57]).

In his work on Quantized Singularities in the Electromagnetic Field [10], Dirac put forward
an idea concerned with the reason for the existence of a smallest electric charge e, known to
exist experimentally. Although it could be understood why electric charges of elementary
particles can be mathematically equal (for example, if a magnetic pole exists, then electric
charges must be integer multiples of some elementary charge, as follows from Dirac’s
formula), it is not known why α corresponding to the reference electron’s charge has
precisely this value and how it could be computed. For a pure number of this kind, one
needs an explanation. This number must have to be named andconstructed algorithmically,
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say by identifying it with a unique convergent series, like it is for the π. It is known that the
set of numbers that can be named are of measure zero in the set of all possible numbers on
the real axis. It may be that there is not a mathematical structure that could be used to name
α; then nobody will ever be able to compute α and one will have to relay on α’s arbitrary
experimental value. Dirac was looking for some explanation of this value. This problem
remains still unsolved. According to Dirac, this problem is perhaps the most fundamental
unsolved problem of physics. Dirac expressed his doubt whether any really big progress
would be made in understanding the fundamentals of physics until this problem has been
solved [58].

Dirac starts his exposition of magnetic monopole theory [10] with the observation that
the phase of a normalized wave function ψ can be globally changed by an arbitrary additive
constant. The phase of ψ at a particular point is thus not definite. Only the phase difference
between any two points is definite. The difference need not be independent of the curve
connecting these points unless the points are close enough to each other. A change in phase
may occur around a closed curve. Dirac deduced from his analysis of various observables
that, in order for this not to give rise to ambiguity, the change in phase around any closed
curve must be the same for all ψs (leaving aside the role of representation). This universality
implies that the phase increase between any given pair of points along a particle’s worldline
xµ connecting these points will be determined solely by the ambient electromagnetic field
Aµ and the worldline and thus through the line integral e

h̄c
´

Aµdxµ evaluated along that
worldline. Hence, the total increase in phase, ∆Φ ≡ e

h̄c
¸

Aνdxν, around a closed path will
be nonzero for a non-integrable phase, as already stated. In view of the Bohm–Aharonov
effect [59], it is clear that only the phase factor exp (i∆Φ) and not ∆Φ alone is physically
meaningful [60]. By Stokes’ theorem applied to a continuously differentiable Aµ, the ∆Φ
could be recast as a surface flux integral e

2h̄c
˜

Fµνdxµ ∧ dxν evaluated over any surface
stretched across the closed curve. For a genuine Maxwell field, the ∆Φ will vanish in the
limit when the closed curve gets shrunk to a point, even if the integration surface were to
close and remain finite in that limit.2 However, for a closed spatial surface Σ as perceived
in some inertial reference frame, the surface integral defines the total magnetic flux through
Σ (which must be zero).

Therefore, in order to stay within the Maxwell theory framework and allow for a
nonzero magnetic charge, it is necessary that Aµ be somehow singular. The singularity
might reside in a gradient contribution κµ ≡ ∂µκ from a function κ for which the integrability
condition requiring ∂νκµ = ∂µκν everywhere (equivalent here to Schwarz’ theorem for a
twice continuously differentiable function) is violated.3 This singularity could arise because
of considering a qualitatively more complicated system than merely the field alone, that is,
a quantum particle interacting with a field. Dirac showed that non-integrable derivatives
κµ such as those originating from the indefinite quantum phase component κ are of this
kind and can be consistently reinterpreted in terms of electromagnetic field.

Namely, Dirac identified the κ responsible for the change in phase around any closed
curve by noticing that any wave-function ψ can be represented as a product ψ = ψ̃ exp(iκ).
Here, ψ̃ is normalized and has a definite phase, while exp(iκ) involves the indefinite part
of the phase, however, with definite derivatives κµ ≡ ∂µκ.4 Furthermore, for all wave
functions and their linear combinations with constant coefficients to acquire the same
change ∆Φ along a given closed path, it suffices that κµs of different ψs will differ between
each other by the gradient of a smooth function (this means that it is allowed to change κ in
each instance of ψ by adding an arbitrary smooth function). Now, one can suppose that ψ is
a state of a particle in free motion for which the indefiniteness of phase occurs. Acting with
the quantum momentum operator p̂µ = ih̄∂µ , one can see that (eiκ p̂µe−iκ)ψ = ( p̂µ+h̄κµ)ψ,
which means that the classical four-momenta pµ and p̃µ corresponding to the respective
states ψ and ψ̃ are related by p̃µ = pµ + h̄κµ, and so the definite phase state ψ̃ corresponds
to the motion of charge −e in the electromagnetic potential Aµ = − h̄c

e κµ. Since for an
indefinite phase the integrability condition ∂νκµ = ∂µκν is violated somewhere, there must
be an effective electromagnetic field Fµν present. A similar calculation for a state ψ in a
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non-vanishing field leads to gauge transformation relations between momenta and between
potentials, in agreement with Weyl’s Principle of Gauge Invariance [61]. This is the way
that Dirac consistently incorporated indefiniteness of phase into the framework of ordinary
quantum theory of charged particles in the presence of Maxwell fields. This can be regarded
as the first essential step in the construction of magnetic monopoles by Dirac.

The second essential step in Dirac’s construction starts with noticing that a wave
function ψ is not changed when its phase gets increased by 2πn, with n being an integer.
This implies that the difference between total increments in the phases of different wave
functions around a loop will also be integer multiples of 2π in general, including the
special case discussed earlier when n = 0. However, by the continuity of wave functions
as solutions of wave equations, this is not so when a loop is sufficiently small, in which
case the total increment is only due to the encompassed flux, which also must be small
and vanishing in the limit of the stretched surface (and thus also the loop) being shrunk
to a point. However, there is one exception possible at nodal points where a given ψ
vanishes, and so the phase of ψ cannot be defined. The locus of nodal points forms a line as
perceived in space, because a vanishing complex valued function provides two independent
scalar constraints involving four spacetime coordinates. Hence, the total change in phase
around a small loop encircling the nodal line of ψ will be equal to an integer multiple
of 2π (depending on the particular ψ considered) plus a universal contribution from the
flux through a surface stretched on that small loop. The flux contribution in this case is
universal for all ψs, irrespective of whether a particular ψ has or has not a nodal line passing
through the considered surface. Then, Dirac recalls the standard network of closed small
loops argument to conclude that this result will be similar for any large closed curve—now
the nodal line of a continuous ψ can pass several times through a large surface stretched
on the closed curve, therefore the integer multiple of 2π, now being a sum 2πΣini, takes
into account the respective positive and negative integer contributions, while the flux
integral is now taken over that large surface. The final step is to close the considered
surface and to see that for any closed surface Σ—that is, one without a boundary closed
curve—the sum 2πΣini must be proportional to the total magnetic flux 4πΦB through Σ
(with a proportionality factor implied by the formula defining the contribution from the
non-integrable phase κ to the electromagnetic potential Aµ, as discussed earlier), namely

2πΣini+
e

h̄c
· 4πΦB = 0, ΦB≡

1
4π
· 1

2

‹
Σ

Fµνdxµ ∧ dxν.

The ΦB is by definition the total magnetic charge enclosed within Σ. Since the flux in a
given field must be the same irrespective of the particular ψ being considered in that field,
the result of the summation in Σini must be universal too (although the set of integers ni
may be different for different ψs), and so it can be denoted by some unique integer. If the
integer is nonzero, it means that the nodal line of a given ψ ends at some point inside the
considered closed surface. Moreover, since the closed surface can be made infinitesimally
small, one can infer that this point must be the point of origin for nodal lines of all ψs
(although the lines may be different for different ψ’).5 At the position of the point, there is a
magnetic monopole present with magnetic charge gn connected with the electric charge e
through Dirac’s simple formula

gn = ng, g =
h̄c
2e

, n = 0,±1,±2, . . . (1)

with an integer n characterizing the nodal lines ending at the monopole position. There is
opposite singular magnetic flux along the string-like nodal line, compensating the flux of
the magnetic charge through the spherical surface encompassing that charge. The singular
flux could be potentially detected by means of the Bohm–Aharonov effect. However,
since the corresponding change in phase is an integer multiple of 2π, it has no effect on a
quantum particle in the field of the string. The above relation between the smallest magnetic
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and electric charges g and e ensures that the string attached to the magnetic monopole is
unobservable. Therefore, the Dirac monopole acts as a genuine magnetic charge.

The presence of the nodal line (called Dirac string) emanating from the magnetic
monopole position is associated with a singularity line of the gauge potential. In Carte-
sian coordinates in Minkowski spacetime, the static field of a Dirac magnetic monopole
can be described by the gauge potential A = g xdy−ydx

r(r+z) (with r =
√

x2 + y2 + z2 and
to the extent of a constant dimensional factor), which is singular on a straight semi-
line z = −r 6 0 (x = 0 = y). The corresponding gauge-invariant field F ≡ dA reads
F = g xdy∧dz+ydz∧dx+zdx∧dy

r3 and is singular only at the center r = 0 (the position of the
magnetic monopole). The form A is indeterminate up to the total derivative of a scalar
field. Another possible gauge transformed form, A′ = A−2gdφ = −g xdy−ydx

r(r−z) , where
φ = arctan(y/x), is singular on the straight semi-line r = z > 0 (x = 0 = y), while F
remains the same (note that the scalar field used to generate the gauge transformation is
not smooth). It is seen that the singularity line of the gauge potential could be altered by
means of singular gauge transformations such that the end-point stays fixed at the center,
and so the singularity line of the gauge potential has no physical meaning.

The elementary flux of a magnetic monopole can be obtained in a more straightforward
way using the non-integrability of the angular variable. This was presented on the occasion
of introducing Dirac’s electric monopole [62] whose charge is determined by means of
improper gauge transformation on a null plane. Although the electromagnetic potential
Aµ is not gauge-invariant, the sum e

c Aµ + ∂µS, where S is the phase of a quantum charged
system, is gauge-invariant: e

c δAµ + ∂µδS = 0, where the δ symbol denotes the change
acquired after performing a gauge transformation (not necessarily infinitesimal). Now,
performing an improper gauge transformation −δS/h̄ = φ ≡ arctan y/x, which leads to
the allowable 2πh̄ increase in the phase round a closed loop (here, encircling the z axis), it
follows that e

h̄c δAµ = ∂µφ, and hence g ≡ 1
4π

¸
δAµdxµ = h̄c

2e as expected for the elementary
magnetic charge.

There is also an interesting result due to Jackiw [63], which shows that it is feasi-
ble to introduce the Dirac magnetic monopole in a gauge-invariant manner without the
singular electromagnetic four-vector potential. Jackiw’s construction relays on the non-
commutativity of kinematical momenta in the Lorentz–Heisenberg system defined by
brackets: [ri, rj] = 0, [ri, π j] = ih̄δij, [πi, π j] = i eh̄

c Bkε
ij

k and a Hamiltonian H = 1
2m πiπi.

The corresponding equations of motion make sense for any (not necessarily source-free)
magnetic vector Bi, however, with violated Jacobi identity εijk[π

i, [π j, πk]] = 2eh̄2

c ∂kBk 6= 0
implying non-associativity in the composition of three finite translations in the presence
of magnetic sources. To regain associativity required by the usual quantum formalism, a
condition must be imposed on the total flux of magnetic field emerging out of a tetrahedron
formed from a composition of the arbitrary three translation vectors. The condition appears
equivalent to Dirac’s formula for magnetic charge (1). Importantly, Jackiw’s construction
demonstrates that quantal magnetic sources must be structureless point particles [64]. This
observation points to some essential difference between an elementary Dirac’s monopole
and field-theoretical realizations of magnetic monopoles discussed in the next subsection.

Finally, it should be remarked that using the Dirac formula, one can predict a much
stronger coupling constant for a magnetic monopole–photon system than that for an
electron–photon system. Given an electric charge in accelerated motion, various radia-
tion formulas are obtained in terms of the Liénard–Wiechert potential method and then
improved by QED corrections. According to the Dirac Formula (1), the interaction force
between two quanta of magnetic monopoles is ∼4692 times stronger than the interaction
between two elementary electric charges. Hence, the emission amplitudes in the leading
order are expected to be (g/e)2 = (n/2α)2∼4692n2 times greater in the case of a magnetic
charge than analogous amplitudes for electric charges. Roughly speaking, this conclusion is
reached by recoursing to a symmetry of Maxwell equations, thus replacing in the formulas
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the electric charge with magnetic charge and the Faraday tensor Fµν with its dual 1
2 εµναβFµν

(modulo some subtleties not important here); see [33].

3.2. Field-Theoretical Realization of Elementary Magnetic Monopoles

The purpose of this section is to illustrate the difference between the elementary
point-like magnetic monopole of Dirac and topological magnetic monopoles which are
field-theoretical realizations of the elementary monopole.

To obtain a field-theoretical realization of a Dirac magnetic monopole, a general
unifying compact gauge group is chosen. It is such that it could be spontaneously broken
down to the symmetry group of the Standard Model U(3) × U(2) × U(1) so that the
electromagnetic field could emerge. The SU(5) grand unified theory [65] is an example in
which monopoles arise [66]. Topologically nontrivial solutions are interpreted as magnetic
monopoles, whose charge appropriately identified with the topological charge of a given
finite-energy field configuration becomes naturally quantized [67]. Such solutions are
static non-point-like and massive soliton lumps with finite width scale, and the matter
field quickly fades away with the distance. Asymptotically, only the part of the system is
dominant, which is mathematically equivalent to the magnetic field of an isolated point
pole but without a string characteristic of Dirac monopole. Predicted masses of magnetic
monopoles within such theories vary by orders of magnitude and can be as high as 1016 GeV
for super-massive monopoles, which might have appeared in high abundance in the early
Universe before or after the inflation epoque and survive to the present [67,68].

In 1974, ’t Hooft [11] and Polyakov [12] found a stable monopole solution in a Yang–
Mills–Higgs system with an SO(3) gauge group and an isovector field, which is the simplest
model in which magnetic monopoles appear (see [69]). Their construction (which avoids the
introduction of Dirac’s string) could be repeated for any group-valued gauge field for which
the ordinary U(1) gauge as a subgroup can be defined equivalent to the gauge symmetry
group of electromagnetism (see, for example, a construction for general non-commutative
gauge fields [60]). The construction will be sketched below for completeness.

One starts with a gauge fields theory with some matter field forming a closed coupled
system described by some Lagrangian density. The classic example in this respect consid-
ered is a non-Abelian model with a compact covering group because it has a spherically
symmetric monopole as a solution. The model belongs to the class of Georgi–Glashow
non-Abelian models introduced to describe the hierarchy of particles’ masses emerging
under spontaneously broken gauge symmetry [13]. Assuming an SO(3) local gauge group
for the illustration in the simplest case, the respective Lagrangian density is a linear com-
bination of three parts: the Yang–Mills term ∝Fa

µνFµν
a , the matter field term ∝DµΨaDµΨa

(involving coupling to Yang–Mills fields through a covariant derivative D), and the po-
tential term for a triplet of matter scalar fields ∝λ(ΨaΨa − ρ2)2. Here, the summation is
understood with respect to both kinds of indices separately, and ρ, λ are fixed constants.
The covariant derivative acting on Ψa is defined as DµΨa = ∂µΨa + g̃εa

bc Ab
µΨc, while

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + g̃εa

bc Ab
µ Ac

ν. Here, Aa is the connection field (gauge potential), Fa

is the associated curvature (gauge field strength) and Ψ is a (vector-valued) isovector
Higgs field. From these group-valued fields, one can construct a Maxwell-like field based
on ’t Hooft [11] definition Fµν ≡ na(Fa

µν − g̃−1εa
bcDµnbDνnc), invariant with respect to

SU(2) gauge symmetry. Now, the divergence of the dual field F?µν ≡ 1
2 εµναβFαβ (which

would be vanishing identically for an ordinary Maxwell field) is non-vanishing and reads
1
2 εµναβ∂νFαβ = −4πg̃−1 Jµ where Jµ ≡ 1

8π εµναβεabc∂νna∂αnb∂βnc is a conserved topologi-
cal current, ∂µ Jµ = 0. Here, na ≡ Ψa

√
ΨbΨb

is a unit director of the Higgs field. With this
current, one can associate a topological charge that can be calculated, similarly as for ordi-
nary electric charge, from a volume integral of the time component of the current density:
Q =

´
J0d3x. In particular, in the static field case, the definition of Q with the expression for

J0 substituted to the volume integral, in terms of topology, is simply the winding number—
a degree or index of the mapping ~x→~n(~x) between physical space and the domain of finite
energy static fields. Such defined Q attains only integer values. However, by analogy with
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Maxwell fields, we can write the 0 component of the above divergence of the dual static
field as ~∇~B = 4πg̃−1 J0, which upon integration gives the total flux of the magnetic field,
and in this way, one obtains the associated magnetic charge gQ = Qg̃−1 of a soliton solution
(in the static case F0i = 0. Thus, there is no corresponding electric field).

The lowest energy static field in the sector Q = 1 was found by ’t Hooft and Polyakov.
The particular form of this solution is not important here. It suffices to say that the solution
describes a spatially extended finite energy stable soliton concentrated about the origin.
The associated magnetic field of the ’t Hooft tensor Fµν asymptotically overlaps with that
of a point magnetic monopole. In effect, one can identify the solution as a monopole
with magnetic charge g̃−1 and finite mass. If the ’t Hooft tensor is to be interpreted
as a genuine Maxwell field, the coupling constant g̃ must be proportional to e. Now,
the dimensional analysis shows that one must have g̃ = e

h̄c = α
e . Hence, the quantum

of magnetic charge in this model is g = e
α , which is twice the value obtained by Dirac.

Additionally, in Schwinger’s quantum field theory of electric and magnetic charges [34],
magnetic monopoles have charges twice the Dirac value. Schwinger made a comment
on this discrepancy by saying that space-reflection considerations in his model require an
infinite discontinuity line rather than the semi-infinite line appearing in Dirac’s theory. He
gave several arguments to support his more restrictive value for the quantum of magnetic
charge [34]. However, ’t Hooft points out that the Dirac quantization condition is fully
restored in the Georgi–Glashow model when one considers isospin 1/2 representations of
the group SU(2) [11].

4. Staruszkiewicz Argument against the Existence of Magnetic Monopole

The argument against the existence of a magnetic monopole is rooted in the infrared
or zero-frequency regime of electromagnetic fields. This regime is natural to consider since
the information about electric and magnetic charges is encoded in the asymptotic part of
the electromagnetic field that must decrease slowly enough in order to introduce a non-zero
contribution to the Gauss flux integral (large distances mean low frequencies). By solving
the bremsstrahlung radiation field, it also becomes clear that asymptotic electromagnetic
fields, which are emitted when a charge Q changes its four-velocity, are localized entirely
outside the light cone. It is therefore clear that spatial infinity must play the central role in
the quantum theory of the electric charge. Staruszkiewicz formulated such a theory [49],
and its structure turns out to depend in a nontrivial way on the numerical value of the fine
structure constant α.

As an important part of his theory, Staruszkiewicz gave a simple argument against the
existence of magnetic monopoles. The argument was first proposed in an essay in honour
of Yakir Aharonov [48], then mentioned in [70–72]. The argument will be described in what
follows. However, first one has to understand the residual structure of the electromagnetic
field at the spatial infinity that carries the information about electric and magnetic charges.
The structure of such fields has been described by Alexander and Bergmann [73]. It turns
out that this structure can be equivalently described by two independent noninteracting
scalar massless fields living on 2 + 1 dimensional deSitter spacetime.

4.1. Spatial Infinity

The outer part of the light cone (sufficient to investigate the spatial infinity) can be
covered with the (hyper)spherical coordinates

x0 = χ sinh (ψ), ~x = χ cosh (ψ) ·~n(θ, φ),

with χ being the spatial coordinate (0 < χ <+∞), ψ the time-like coordinate (−∞ < ψ <+∞),
and a unit vector~n is parameterized with ordinary spherical angles 0 6 θ 6 π, 0 6 φ < 2π.
A time-like de Sitter hyperboloid ~x2 − (x0)2 = χ2 (with χ regarded as a constant pa-
rameter) is a simple-connected three-dimensional curved spacetime with constant Ricci
curvature R = 6/χ2. For considering asymptotic fields (fields in the limit χ→+∞) or
scale-independent fields, one can instead consider the unit hyperboloid ~x2 − (x0)2 = 1 as
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representing spatial infinity outside the light cone [74]. The intrinsic metric on the unit de
Sitter hyperboloid is diagonal when expressed in the adopted coordinates:

gik≡χ−2η(∂ix, ∂jx) = diag[−1, cosh2(ψ), cosh2(ψ) sin2 θ], i, j = 1, 2, 3.

It can be regarded as defining the metric of the spatial infinity. It is seen that spatial infinity
is homeomorphic and isometric to the unit hyperboloid [73]. The coordinate ψ plays the
role of time, while spaces of constant time are unit two-spheres parameterized with θ, φ.
The spatial infinity is the spacetime scene for asymptotic Maxwell fields and for their
quantization. It is important to observe that spatial infinity has a well-defined Cauchy
surface, which is a feature desirable in the quantum field theoretical context.

4.2. Zero Frequency Electromagnetic Field and Electron’s Charge as a Quantum Object

The information on charges are encoded in the asymptotic part of the electromagnetic
field that decreases slowly enough (this is reminiscent of the Gauss integral formula for the
total charge—as one can say, the electric charge resides at spatial infinity [71]). Described in
terms of the electromagnetic gauge potential Aµ(x), this part is homogeneous of degree −1,
depending on the direction of the radius vector x in a Lorentzian reference frame distin-
guished by the homogeneity property. Hence, the asymptotic field is effectively a function
defined on the deSitter hyperboloid described earlier. The asymptotic part can be extracted
from any field by taking the Gervais–Zwanziger limit Aµ(x)→ limλ→+∞ λAµ(λx) [45]
(leaving invariant fields Aµ homogeneous of degree −1). Fields Aµ of this homogeneity
still exhibit a residual gauge freedom: Aµ→Aµ + ∂µΦ, where Φ is a function homogeneous
of degree 0, since then xµ∂µΦ(x) = 0 as follows from the Euler theorem on homogeneous
functions. The asymptotic free fields satisfying the wave equation �Aµ = 0 can be called
zero frequency fields. One can see this by performing the Gervais–Zwanziger limit on a
representation of Aµ as an integral of Fourier amplitudes over some invariant volume on
the light cone of null wave-vectors. In this limit, the integral reduces to an integral of the
limiting Fourier amplitudes effectively localized on the tip of the light cone. In terms of
the field tensor Fµν, if the limit limλ→+∞ λ2Fµν(λx) exists and is non-zero, the field has a
zero-frequency part; otherwise, if the limit is vanishing, there is no zero-frequency part
in Fµν. It should be noted that being a zero-frequency field is a Lorentz-invariant feature,
while a non-zero frequency wave can be Doppler-shifted to an arbitrary frequency wave.
These two regimes of electromagnetic radiation are qualitatively different.

When an electric charge is scattered, the radiation field can be complicated. However,
the zero-frequency asymptotic part of the field, which can be extracted from the total
radiation field by taking the Gervais–Zwanziger limit, is quite simple. It is equivalent to
one emitted by an electric charge that abruptly changes its four-velocity at the point of
scattering in the origin of the coordinate system, and which before and after being scattered
remains in inertial motion, respectively, with four-velocity uµ and wµ. Finding the radiation
field emitted in such a process is a standard problem in classical electrodynamics. The
result is such that the field vanishes both in the past light cone and in the future light cone
and is non-vanishing only outside the light cone. The radiation field can be described
as a difference of two Coulomb fields, one at rest with respect to observer uµ and the
other at rest with respect to observer wµ. It is now clear that in any scattering process, the
emitted zero-frequency field is universal and determined only by the initial and the final
four-velocity, uµ at t = −∞ and wµ at t = +∞. It is now also clear that although the amount
of time available for the zero-frequency field at the spatial infinity is infinite, it is limited
by the opening of the light cone, |x0| < |~x|, because the zero-frequency radiation field is
nonzero only outside the light cone.

This property of a zero-frequency radiation field is perfectly tailored to understand
why the elementary charge is a quantum object. Berestetskii, Lifshitz, and Pitaevskii
criterion, 〈~E2〉 � h̄c/(c∆t)4 [75], allows to decide if an electromagnetic field averaged over
a time interval ∆t can be treated as classical. A static field would therefore be always
classical, as concluded in [75]. This conclusion is paradoxical in view of the quantization
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of electric charges (a remark on this subject in a more philosophical context was made
in [76], where the resolution of this paradox, presented for the first time in [70], is recalled).
This conclusion is true, for example, when it comes to solving the Dirac equation for the
hydrogen atom—one considers quantum states of the electron in a classical Coulomb field
of the proton, and one obtains good agreement of the predicted frequencies of emission
lines with those observed. However, in the case of the zero-frequency field emitted in
a scattering process, the criterion must be used carefully. The radiation field in a given
reference frame is a Coulomb field q/r2 times some kinematic factor which can be made
to be of order 1 by a suitable choice of the velocity change [70]. For a Coulomb field of
charge q = ne: 〈~E2〉 = n2e2/r4 and, by substituting c∆t = 2r to this inequality (which is the
available averaging time at the spatial infinity from the opening of the light cone argument
discussed earlier), it follows that the field will be classical if n�

√
h̄c

4e ≈
1
4

√
137 ≈ 2.93. This

observation was made in [70]. It means that the Coulomb field ceases to be classical in
the neighborhood of spatial infinity [76]. It also means that electric charges of the order of
elementary charge e (as determined upon application of the Gauss law) are not classical;
in particular, the electron’s charge is a genuine quantum object. If the value of the fine
structure constant was substantially larger, one would not obtain such a sensible inequality.
With this observation, it becomes clear how it is possible that the Coulomb field of a proton
in the quantum theory of the hydrogen atom is purely classical object, while its amplitude
determined by the proton’s electric charge is quantized and involves the Planck constant at
the same time.

4.3. Staruszkiewicz Argument

It is an experimentally established fact that all electrically charged particles observed
in nature are massive. This means that electrically charged currents of these particles
are confined to the future and past light cone, and quantum amplitudes are faded out
exponentially at large distances by nonzero masses of the particles. From this, one can
draw a physical conclusion that the classical electromagnetic field Fµν at the spatial infinity
is totally free. Additionally, it must be homogeneous of degree −2 at spatial infinity if
it is to carry an electric charge. Namely, Fµν(λx) = λ−2Fµν(x) for all positive λ and for
(x0)2 − ~x.~x→−∞. Such a field has two degrees of freedom described by scalar functions
e(x) and m(x) satisfying the two equations

xµFµα = ∂α[−exµ Aµ(x)]≡∂αe(x), and
1
2

ε
µν

αβ xβFµν = ∂αm(x). (2)

The first equation is proved in [48] by a simple calculation assuming that Aµ(λx) = λ−1 Aµ(x)
for each positive λ and using the Euler theorem on homogeneous functions, here implying
xν∂ν Aµ(x) = −Aµ(x). Besides the vector xµFµν, out of the field tensor and position vector,
one can construct in Minkowski spacetime another independent vector linear in the field:
ε

µν
αβ xβFµν (more precisely, a pseudo-vector). Again, this vector can be shown to be

a gradient. This can be proved using the notation of calculus of antisymmetric forms.
Consider a 1-form ω ≡ 1

2 ε
µν

αβ xβFµνdxα. Then, the Maxwell equation ∂µFµν = 0 and the
homogeneity condition xα∂αFµν = −2Fµν suffice to show that ?(dω) = 0, where ? denotes
the Hodge star operator. This means that 0 = ?(0) = ?(?(dω)) = −dω. Thus, ω is an exact
1-form; that is, there is a scalar 0-form m such that ω = dm ≡ (∂µm)dxµ. Furthermore,
the divergence of left sides of the vector Equation (2) vanishes for arbitrary free Maxwell
fields; hence, scalars e and m must satisfy d’Alembert equations ∂µ∂µe = 0 and ∂µ∂µm = 0
and be homogeneous of degree 0 (the latter property is seen directly from Equation (2): on
multiplying both sides of each equation by xα, the left hand sides are identically zero, while
on the right hand sides one is left with the Euler scaling operator xα∂α acting on functions e
and m). Equation (2) together summarize in the four-dimensional notation the structure of
electromagnetic fields at spatial infinity [72]. The structure of these fields was described by
Alexander and Bergmann [73], who investigated electrodynamics at spatial infinity.
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Once some solutions are given, the scalars e and m determine the physical field Fµν

completely—the vector Equation (2) can be solved for Fµν(x) in a purely algebraic way. To
give an example, one can consider the Coulomb field of a point charge e in inertial motion
with four-velocity uµ. For this field, e(x) = e (ux)/

√
(ux)2 − (xx)(uu) and m(x) = 0. The

field, which is described by Aµ(x) = euµ

(
(ux)2 − (xx)(uu)

)−1/2 in the Lorentz gauge
∂µ Aµ = 0, is homogeneous of degree −1, while the corresponding Faraday antisymmetric

tensor Fµν = e
(
uµxν − uνxµ

)(
(ux)2 − (xx)(uu)

)−3/2 is homogeneous of degree −2.6

For general fields Fµν(x) homogeneous of degree −2, scalars e(x) and m(x) (homo-
geneous of degree zero) can be regarded as arbitrary functions defined over the unit de
Sitter hyperboloid. They are effectively functions of ψ, θ and φ only (independent of χ and
satisfying the d’Alembert equations in this curved 2 + 1D de Sitter spacetime) and thus
are straightforwardly extendable to functions defined in whole outer part of the light cone.
The Lagrangian density −FµνFµνd4x expressed in terms of such fields becomes a difference
of two identical Lagrangian densities [48,49] 7

−FµνFµνd4x = 2
dχ

χ
cosh2(ψ) sin(θ)dψdθdφ

(
gik∂ie∂ke−gik∂im∂km

)
. (3)

Disregarding the factor dχ/χ, both Lagrangian densities are identical to one for a free
massless scalar field on the 2 + 1D de Sitter spacetime. The scalars e and m appear to be
completely independent fields, Lorentz-invariantly separated from each other. The action
integral for this system regarded as confined to the de Sitter unit hyperboloidH1 can be
defined to be

S[e,m] = C
ˆ
H1

(
gik∂ie∂ke−gik∂im∂km

)√
−gd3ξ.

Here, gik is the metric tensor in arbitrary intrinsic coordinates ξ0, ξ1, ξ2 onH1 (it is assumed
that g00 > 0); C is a positive dimensional constant introducing the correct absolute physical
scale of the action integral. The function e is called the electric part, while the function m is
called the magnetic part of the field. In order to clarify the use of these names in simple
terms, one may recall that in Equation (2), the electric function arises from Maxwell’s
tensor Fµν, and the magnetic function arises in the same way from the dual Maxwell

tensor 1
2 ε

αβ
µν Fαβ; in particular, the magnetic function is vanishing for the Coulomb field

considered earlier. It is evident that the fields e and m enter the Lagrangian density on
quite the same footing. Both the fields satisfy the free wave equation on H1. The only
difference lies in the opposite sign in front of the quadratic forms gik∂ie∂ke and gik∂im∂km,
and this difference, although not harmless classically, is crucial when one wants to perform
a quantization of that system.

Before proceeding further, a remark should be made concerning this sign difference.
The overall sign of an action integral is not a matter of convention and cannot be changed
arbitrarily. It is known that the duality operation is a symmetry of classical electromag-
netism with electric and magnetic charges. The symmetry is very useful in the practice of
performing calculations and making some predictions in this theory. However, the sign of
the Maxwell action integral gets reversed when magnetic fields are replaced with electric
fields. As pointed out by Hawking and Ross [77] on the occasion of investigating electrically
and magnetically charged black holes, the duality symmetry of the classical equations does
not imply that it is a symmetry of the quantum theory, as the action is not invariant under duality.8

If the sign of the action integral was not important, there would be no essential difference
between electric and magnetic functions of the asymptotic electromagnetic fields, and so e

and m would be present in the theory on the same footing.
The difference in sign of the electric and magnetic parts mentioned above is essential

and has physical consequences—the wrong sign implies the existence of negative norm
states not belonging to the framework of quantum mechanics. Namely, upon quantization,
only one of the quadratic forms in the above action integral would lead to a positive definite
inner product. The one with the opposite definite inner product, introducing negative
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norm states, should be considered as non-physical and therefore should be rejected. A
Lagrangian density with a correct sign is that which introduces a field with a positive
kinetic term (that is, the one involving partial derivatives of the field with respect to the
time-like variable—for example, ψ in the discussed spherical coordinates on H1). It is
seen that the kinetic term involving e in the above action integral is positive, while the
kinetic term involving m is negative. Therefore, Staruszkiewicz concludes that at the spatial
infinity, the part of the electromagnetic field with the incorrect sign should be absent, which
is achieved by putting m = 0. This statement can be rephrased by saying that magnetic
monopoles should not exist.

As shown in [71], this conclusion is not changed when the original Maxwell Lagrangian
is extended by adding to − 1

16π FµνFµν the CP-symmetry violating Θ term ΘεαβµνFαβFµν

involving the second independent invariant of the electromagnetic field. By adding the Θ
term, one cannot change the signature of the quadratic form in (3). Indeed, the extended
Lagrangian density, when expressed in terms of new electric and magnetic functions e′

and m′, attains the same quadratic form as in Equation (3), in which e and m have been
replaced with e′ and m′ (the new and old sets of functions are related to each other as
follows: e′ = e cosh υ − m sinh υ and m′ = e sinh υ + m cosh υ, where sinh (2υ) = 8πΘ. One
can see from this that the part with the negative kinetic term is increased with respect to
the case without the Θ term). Therefore, the argument against magnetic monopoles still
holds with the extended Lagrangian. Now, one should assume m′ = 0 to ensure that upon
quantization, the negative norm states do not arise. Witten showed that field-theoretical
realizations of magnetic monopoles in CP-violating theories with the theta mechanism
would not be electrically neutral and would carry even non-rational fractions of electric
charge Q = e(n − ϑ

2π ), depending on vacuum angle parameter ϑ introduced by the Θ
term [69]. On the other hand, in the framework of Staruszkiewicz theory [49], it can be
shown that electric charge must be quantized in units of electronic charge [48]. Thus
non-existence of magnetic monopoles is compatible with electric charge quantization [71].

5. Conclusions

Ultra-high energy (UHE) photons with energies exceeding 1018 eV could be detected
by Earth-based observatories. UHE photons are produced in various processes in which
electrically charged particles take part. However, more exotic processes are also possible.
There are compelling theoretical premises in favor of the existence of isolated magnetic
monopoles, especially when it comes to realisation of the monopoles in the framework
of non-Abelian gauge fields. UHE photons could be produced in encounters of mas-
sive magnetically charged monopole-antimonopole pairs or in processes associated with
monopoles accelerated to high energies, typically 1021 eV or beyond. Observing UHE
photons can pose constraints on the properties of magnetic monopoles. The predicted
observational signatures of these particles are being sought in many dedicated experiments
currently in operation. Currently, no magnetic monopoles have been found despite many
attempts to detect them. Neither intermediate mass monopoles below the GUT scale that
could be produced in accelerators nor monopoles that should exist in the universe and
produce observable signatures have been observed. Monopole masses predicted by the
field-theoretical realizations of magnetic monopoles are apparently too high, which might
explain the negative experimental evidence for magnetic monopoles so far. However, there
is another possibility. There have been formulated arguments for why magnetic monopoles
allowed by Dirac’s theory might not be realized in nature [47,48]. In particular, Staruszkie-
wicz’s argument against magnetic monopoles is an important part of his quantum theory
of the electric charge [49]. This argument invokes the positivity of the norm in Hilbert
space. This positivity is violated by quantum states of the magnetic part of zero-frequency
fields. If these arguments could not be refuted, one would have to conclude that, while
isolated magnetically charged solitonic configurations can be considered as solutions in
the standard model of particles, only magnetically neutral configurations of magnetic
monopoles could be realized in nature.
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Notes
1 Here, ε is the completely antisymmetric Levi–Civita pseudotensor; the indices are understood to be raised or lowered with the

help of the Lorentz metric tensor; the dot sign denotes differentiation with respect to the proper time of a particle.
2 By Stokes’ theorem, the discussed flux integral over a closed surface can be recast as a volume integral

˝
∂αFµνdxα ∧dxµ ∧dxν ≡ 0

identically vanishing on account of the structural identity ∂αFµν + ∂µFνα + ∂νFαµ ≡ 0 satisfied by Maxwell fields.
3 The classical example of such a singular function is the angular phase φ = arctan(y/x) of a complex function exp (iφ) considered

as a function on a plane: the line integral of the gradient field [∂xφ, ∂yφ] along a circle of any radius centered at x = y = 0 is 2π,
whereas the corresponding ‘curl’ field ∂xwy − ∂ywx vanishes outside the center and is not defined there in terms of the classical
definition of derivatives. To interpret this in terms of Stokes’ theorem on the plane, one has either to assume that the plane is
punctured at the center and there is no field in that plane, or that the plane is smooth and the curl field is a distribution supported
entirely at the center.

4 Earlier, it was assumed that the phase difference between two points is definite, and therefore, this should hold in the limit of
infinitesimally distant points.

5 It can be recalled that the nodal line of a ψ is something different from the singularity line of the part of Aµ connected with the
non-integrability of the phase of ψ; while the nodal line of a ψ is physically objective (phase independent) characteristic of a ψ in
a given field, the latter singularity line can be deformed freely by means of smooth gauge transformations such that the endpoint
of the singularity line remains fixed at the monopole position.

6 Here, (xx), (xu), and (uu) represent scalar products with signatures (+,−,−,−).
7 It is seen that gik∂ie∂ke and gik∂im∂km are both quadratic forms with signature (+,−,−); thus, their difference is a quadratic

form with signature (+,+,+,−,−,−), the same as the signature of arbitrary Maxwell Field F2
01 + F2

02 + F2
03 − F2

23 − F2
31 − F2

12 (in
a given inertial frame, the latter form can be written as a difference ~E.~E−~H.~H with a contribution from electric field ~E and from
magnetic field ~H).

8 Semi-classical calculations leading to equal rates at which electrically and magnetically charged black holes are being created
made the authors conclude that duality is a symmetry of the quantum theory, but in a very non-obvious way [77].
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