Analysis of Midrapidity Distributions of Identified Charged Particles in Pb + Pb Collisions at = 5.02 TeV Using Tsallis Distribution with Embedded Transverse Flow
Abstract
1. Introduction
2. Experimental Data and Models
3. Analysis and Results
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abelev, B. et al. [ALICE Collaboration] Centrality dependence of π, K, p production in Pb-Pb collisions at = 2.76 TeV. Phys. Rev. C 2013, 88, 044910. [Google Scholar] [CrossRef]
- Abelev, B. et al. [ALICE Collaboration] Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p-Pb Collisions at = 5.02 TeV. Phys. Lett. B 2014, 728, 25. [Google Scholar]
- Aamodt, K. et al. [ALICE Collaboration] Strange particle production in proton-proton collisions at (s)1/2 = 0.9 TeV with ALICE at the LHC. Eur. Phys. J. C 2011, 71, 1594. [Google Scholar] [CrossRef]
- Adam, J. et al. [ALICE Collaboration] Multi-strange baryon production in p-Pb collisions at = 5.02 TeV. Phys. Lett. B 2016, 758, 389. [Google Scholar] [CrossRef]
- Aamodt, K. et al. [ALICE Collaboration] Production of pions, kaons and protons in pp collisions at (s)1/2 = 900 GeV with ALICE at the LHC. Eur. Phys. J. C 2011, 71, 1655. [Google Scholar] [CrossRef]
- Adam, J. et al. [ALICE Collaboration] Production of K∗(892)0 and φ(1020) in p–Pb collisions at = 5.02 TeV. Eur. Phys. J. C 2016, 76, 245. [Google Scholar] [CrossRef]
- Adam, J. et al. [ALICE Collaboration] K∗(892)0 and φ(1020) meson production at high transverse momentum in pp and Pb-Pb collisions at = 2.76 TeV. Phys. Rev. C 2017, 95, 064606. [Google Scholar] [CrossRef]
- Adam, J. et al. [ALICE Collaboration] Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions. Nat. Phys. 2017, 13, 535. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Multiplicity dependence of light-flavor hadron production in pp collisions at (s)1/2 = 7 TeV. Phys. Rev. C 2019, 99, 024906. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Multiplicity dependence of (multi-)strange hadron production in proton-proton collisions at (s)1/2 = 13 TeV. Eur. Phys. J. C 2020, 80, 167. [Google Scholar]
- Acharya, S. et al. [ALICE Collaboration] Evidence of rescattering effect in Pb-Pb collisions at the LHC through production of K∗(892)0 and φ(1020) mesons. Phys. Lett. B 2020, 802, 135225. [Google Scholar]
- Acharya, S. et al. [ALICE Collaboration] Production of pions, kaons, (anti-)protons and φ mesons in Xe–Xe collisions at = 5.44 TeV. Eur. Phys. J. C 2021, 81, 584. [Google Scholar] [CrossRef]
- Khachatryan, V. et al. [CMS Collaboration] Strange particle production in pp collisions at (s)1/2 = 0.9 and 7 TeV. JHEP 2011, 5, 064. [Google Scholar] [CrossRef][Green Version]
- Adair, A. et al. [CMS Collaboration] Study of the inclusive production of charged pions, kaons, and protons in pp collisions at (s)1/2 =0.9, 2.76, and 7 TeV. Eur. Phys. J. C 2012, 72, 2164. [Google Scholar]
- Chatrchyan, S. et al. [CMS Collaboration] Study of the production of charged pions, kaons, and protons in pPb collisions at = 5.02 TeV. Eur. Phys. J. C 2014, 74, 2847. [Google Scholar] [CrossRef][Green Version]
- Adler, C. et al. [STAR Collaboration] Multiplicity distribution and spectra of negatively charged hadrons in Au+Au collisions at = 130 GeV. Phys. Rev. Lett. 2001, 87, 112303. [Google Scholar]
- Sirunyan, A.M. et al. [CMS Collaboration] Measurement of charged pion, kaon, and proton production in proton-proton collisions at (s)1/2 = 13 TeV. Phys. Rev. D 2017, 96, 112003. [Google Scholar] [CrossRef]
- Abelev, B.I. et al. [STAR Collaboration] Strange particle production in p+p collisions at (s)1/2 = 200 GeV. Phys. Rev. C 2007, 75, 064901. [Google Scholar]
- Adams, J. et al. [STAR Collaboration] Identified particle distributions in pp and Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 2004, 92, 112301. [Google Scholar]
- Adamczyk, L. et al. [STAR Collaboration] Bulk Properties of the Medium Produced in Relativistic Heavy-Ion Collisions from the Beam Energy Scan Program. Phys. Rev. C 2017, 96, 044904. [Google Scholar] [CrossRef]
- Braun-Munzinger, P.; Koch, V.; Schäfer, T.; Stachel, J. Properties of hot and dense matter from relativistic heavy ion collisions. Phys. Rept. 2016, 621, 76. [Google Scholar] [CrossRef]
- Burtebayev, N.; Fedosimova, A.; Lebedev, I.; Dmitriyeva, E.; Ibraimova, S.; Bondar, E.F. Fluctuations of Initial State and Event-by-Event Pseudo-Rapidity Correlations in High Energy Nuclear Collisions. Universe 2022, 8, 67. [Google Scholar] [CrossRef]
- Olimov, K.K.; Liu, F.-H.; Musaev, K.A.; Shodmonov, M.Z. Multiplicity Dependencies of Midrapidity Transverse Momentum Distributions of Identified Charged Particles in proton-proton Collisions at (s)1/2 = 7 TeV at the LHC. Universe 2022, 8, 174. [Google Scholar] [CrossRef]
- Olimov, K.K.; Liu, F.-H.; Musaev, K.A.; Olimov, K.; Shodmonov, M.Z.; Fedosimova, A.I.; Lebedev, I.A.; Kanokova, S.Z.; Tukhtaev, B.J.; Yuldashev, B.S. Study of midrapidity pt distributions of identified charged particles in Xe+Xe collisions at (snn)1/2 = 5.44 TeV using non-extensive Tsallis statistics with transverse flow. Mod. Phys. Lett. A 2022, 37, 2250095. [Google Scholar]
- Aad, G. et al. [ATLAS Collaboration] Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at = 2.76 TeV with the ATLAS Detector at the LHC. Phys. Rev. Lett. 2010, 105, 252303. [Google Scholar]
- Chatrchyan, S. et al. [CMS Collaboration] Jet momentum dependence of jet quenching in PbPb collisions at = 2.76 TeV. Phys. Lett. B. 2012, 712, 176. [Google Scholar]
- Adamczyk, L. et al. [STAR Collaboration] Dijet imbalance measurements in Au + Au and pp collisions at = 200 GeV at STAR. Phys. Rev. Lett. 2017, 119, 062301. [Google Scholar] [CrossRef]
- Adams, J. et al. [STAR Collaboration] Evidence from d + Au measurements for final state suppression of high pT hadrons in Au+Au collisions at RHIC. Phys. Rev. Lett. 2003, 91, 072304. [Google Scholar]
- Aamodt, K. et al. [ALICE Collaboration] Suppression of Charged Particle Production at Large Transverse Momentum in Central Pb + Pb Collisions at = 2.76 TeV. Phys. Lett. B. 2011, 696, 30. [Google Scholar] [CrossRef]
- Chatrchyan, S. et al. [CMS Collaboration] Study of high-pT charged particle suppression in PbPb compared to pp collisions at = 2.76 TeV. Eur. Phys. J. C. 2012, 72, 1945. [Google Scholar]
- Sirunyan, A.M. et al. [CMS Collaboration] Measurement of prompt and nonprompt charmonium suppression in PbPb collisions at 5.02 TeV. Eur. Phys. J. C. 2018, 78, 509. [Google Scholar] [PubMed]
- Adamczyk, L. et al. [STAR Collaboration] Centrality and transverse momentum dependence of elliptic flow of multistrange hadrons and φ meson in Au+Au collisions at = 200 GeV. Phys. Rev. Lett. 2016, 116, 062301. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration] Scaling properties of azimuthal anisotropy in Au+Au and Cu+Cu collisions at = 200-GeV. Phys. Rev. Lett. 2007, 98, 162301. [Google Scholar]
- Huovinen, P.; Kolb, P.; Heinz, U.W.; Ruuskanen, P.; Voloshin, S. Radial and elliptic flow at RHIC: Further predictions. Phys. Lett. B 2001, 503, 58. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Anisotropic flow of identified particles in Pb + Pb collisions at = 5.02 TeV. JHEP 2018, 9, 006. [Google Scholar]
- Borsanyi, S.; Endrődi, G.; Fodor, Z.; Jakovác, A.; Katz, S.D.; Krieg, S.; Ratti, C.; Szabo, K.K. The QCD equation of state with dynamical quarks. JHEP 2010, 2010, 77. [Google Scholar]
- Borsanyi, S.; Fodor, Z.; Hoelbling, C.; Katz, S.D.; Krieg, S.; Szabo, K.K. Full result for the QCD equation of state with 2 + 1 flavors. Phys. Lett. B 2014, 730, 99. [Google Scholar] [CrossRef]
- Jiang, K.; Zhu, Y.; Liu, W.; Chen, H.; Li, C.; Ruan, L.; Tang, Z.; Xu, Z. Onset of radial flow in p+p collisions. Phys. Rev. C 2015, 91, 024910. [Google Scholar] [CrossRef]
- Bashir, I.; Bhat, R.A.; Uddin, S. Evidence of collective flow in p-p collisions at LHC. arXiv 2015, arXiv:1502.04185v2. [Google Scholar]
- Bashir, I.; Parra, R.A.; Bhat, R.A.; Uddin, S. Particle Transverse Momentum Distributions in p-p Collisions at (s)1/2=0.9 TeV. Adv. High Energy Phys. 2019, 2019, 8219567. [Google Scholar]
- Khuntia, A.; Sharma, H.; Tiwari, S.K.; Sahoo, R.; Cleymans, J. Radial flow and differential freeze-out in proton-proton collisions at (s)1/2=7 TeV at the LHC. Eur. Phys. J. A 2019, 3, 55. [Google Scholar]
- Csanád, M.; Csörgő, T.; Jiang, Z.-F.; Yang, C.-B. Initial energy density of (s)1/2 = 7 and 8 TeV p-p collisions at LHC. Universe 2017, 3, 9. [Google Scholar] [CrossRef]
- Jiang, Z.F.; Csanad, M.; Kasza, G.; Yang, C.B.; Csorgo, T. Pseudorapidity and initial energy densities in p+p and heavy-ion collisions at RHIC and LHC. Acta Phys. Pol. Proc. Suppl. 2019, 12, 261. [Google Scholar] [CrossRef]
- Tripathy, S.; Bisht, A.; Sahoo, R.; Khuntia, A.; Salvan, M.P. Event shape and multiplicity dependence of freeze-out scenario and system thermodynamics in proton + proton collisions at (s)1/2 = 13 TeV using PYTHIA8. Adv. High Energy Phys. 2021, 2021, 8822524. [Google Scholar] [CrossRef]
- Baker, O.K.; Kharzeev, D.E. Thermal radiation and entanglement in proton-proton collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. D 2018, 98, 054007. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; Levin, E.M. Deep inelastic scattering as a probe of entanglement. Phys. Rev. D 2017, 95, 114008. [Google Scholar] [CrossRef]
- Bergers, J.; Floerchinger, S.; Venugopalan, R. Dynamics of entanglement in expanding quantum fields. JHEP 2018, 4, 145. [Google Scholar] [CrossRef]
- Bergers, J.; Floerchinger, S.; Venugopalan, R. Thermal excitation spectrum from entanglement in an expanding quantum string. Phys. Lett. B 2018, 778, 442. [Google Scholar] [CrossRef]
- Olimov, K.K.; Liu, F.-H.; Musaev, K.A.; Olimov, K.; Tuktaev, B.J.; Yuldashev, B.S.; Saidkhanov, N.S.; Umarov, K.I.; Gulamov, K.G. Multiplicity dependencies of midrapidity transverse momentum spectra of identified charged particles in p+p collisions at (s)1/2=13 TeV at LHC. Int. J. Mod. Phys. A 2021, 36, 2150149. [Google Scholar] [CrossRef]
- Braun-Munzinger, P.; Redlich, K.; Stachel, J. Particle production in heavy ion collisions. In Quark Gluon Plasma 3; Hwa, R.C., Wang, X.-N., Eds.; World Scientific Publishing: Singapore, 2004. [Google Scholar]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J. Hadron production in central nucleus-nucleus collisions at chemical freezeout. Nucl. Phys. A 2006, 772, 167. [Google Scholar] [CrossRef]
- Becattini, F.; Manninen, J.; Gazdzicki, M. Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions. Phys. Rev. C 2006, 73, 044905. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Stachel, J. Thermal hadron production in relativistic nuclear collisions: The Hadron mass spectrum, the horn, and the QCD phase transition. Phys. Lett. B 2009, 673, 142. [Google Scholar] [CrossRef]
- Stachel, J.; Andronic, A.; Braun-Munzinger, P.; Redlich, K. Confronting LHC data with the statistical hadronization model. J. Phys. Conf. Ser. 2014, 509, 012019. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, Y.-Q.; Liu, F.-H.; Olimov, K.K. An Energy Independent Scaling of Transverse Momentum Spectra of Direct (Prompt) Photons from Two-Body Processes in High-Energy Proton–Proton Collisions. Ann. Phys. 2022, 534, 2100567. [Google Scholar] [CrossRef]
- Schnedermann, E.; Sollfrank, J.; Heinz, U. Thermal phenomenology of hadrons from 200 A GeV S+S collisions. Phys. Rev. C 1993, 48, 2462. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S. et al. [ALICE Collaboration] Production of charged pions, kaons and (anti-)protons in Pb-Pb and inelastic pp collisions at = 5.02 TeV. Phys. Rev. C 2020, 101, 044907. [Google Scholar]
- Abelev, B.I. et al. [STAR Collaboration] Systematic measurements of identified particle spectra in pp, d+Au, and Au+Au collisions at the STAR detector. Phys. Rev. C 2009, 79, 034909. [Google Scholar] [CrossRef]
- Abelev, B.I. et al. [STAR Collaboration] Identified particle production, azimuthal anisotropy, and interferometry measurements in Au+Au collisions at = 9.2 GeV. Phys. Rev. C 2010, 81, 024911. [Google Scholar]
- Tang, Z.B.; Xu, Y.; Ruan, L.; van Buren, G.; Wang, F.; Xu, Z. Spectra and radial flow in relativistic heavy ion collisions with Tsallis statistics in a blast-wave description. Phys. Rev. C 2009, 79, 051901. [Google Scholar] [CrossRef]
- Lao, H.L.; Lao, H.-L.; Liu, F.-H.; Lacey, R.A. Extracting kinetic freeze-out temperature and radial flow velocity from an improved Tsallis distribution. Eur. Phys. J. A 2017, 53, 44. [Google Scholar] [CrossRef]
- Khandai, P.K.; Sett, P.; Shukla, P.; Singh, V. System size dependence of hadron pT spectra in p+p and Au+Au collisions at = 200 GeV. J. Phys. G 2014, 41, 025105. [Google Scholar] [CrossRef]
- Olimov, K.K.; Kanokova, S.Z.; Olimov, A.K.; Umarov, K.I.; Tukhtaev, B.J.; Gulamov, K.G.; Yuldashev, B.S.; Lutpullaev, S.L.; Saidkhanov, N.S.; Olimov, K.; et al. Combined analysis of midrapidity transverse momentum spectra of the charged pions and kaons, protons and antiprotons in p+p and Pb + Pb collisions at (snn)1/2 = 2.76 and 5.02 TeV at the LHC. Mod. Phys. Lett. A 2020, 35, 2050237. [Google Scholar] [CrossRef]
- Olimov, K.K.; Kanokova, S.Z.; Olimov, K.; Gulamov, K.G.; Yuldashev, B.S.; Lutpullaev, S.L.; Umarov, F.Y. Average transverse expansion velocities and global freeze-out temperatures in central Cu+Cu, Au+Au, and Pb + Pb collisions at high energies at RHIC and LHC. Mod. Phys. Lett. A 2020, 35, 2050115. [Google Scholar]
- Zhang, X.; Liu, F.; Olimov, K.K. A systematic analysis of transverse momentum spectra of J/ψ mesons in high energy collisions. Int. J. Mod. Phys. E 2021, 30, 2150051. [Google Scholar] [CrossRef]
- Li, L.; Liu, F.; Olimov, K.K. Excitation Functions of Tsallis-Like Parameters in High-Energy Nucleus–Nucleus Collisions. Entropy 2021, 23, 478. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, F.; Olimov, K.K. Initial-State Temperature of Light Meson Emission Source From Squared Momentum Transfer Spectra in High-Energy Collisions. Front. Phys. 2021, 9, 792039. [Google Scholar] [CrossRef]
- Karsch, F.; Laermann, E. Thermodynamics and in-medium hadron properties from lattice QCD. In Quark-Gluon Plasma 3; Hwa, R.C., Wang, X.-N., Eds.; World Scientific: Singapore, 2004. [Google Scholar]
- Bazavov, A. et al. [HotQCD Collaboration] The chiral and deconfinement aspects of the QCD transition. Phys. Rev. D 2012, 85, 054503. [Google Scholar] [CrossRef]
- Busza, W.; Rajagopal, K.; Van der Schee, W. Heavy Ion Collisions: The Big Picture, and the Big Questions. Ann. Rev. Nucl. Part. Sci. 2018, 68, 339. [Google Scholar] [CrossRef]
- Tsallis, C. Enthusiasm and Skepticism: Two Pillars of Science—A Nonextensive Statistics Case. Physics 2022, 4, 609. [Google Scholar] [CrossRef]
- Rocha, L.Q.; Megías, E.; Trevisan, L.A.; Olimov, K.K.; Liu, F.; Deppman, A. Nonextensive Statistics in High Energy Collisions. Physics 2022, 4, 659–671. [Google Scholar] [CrossRef]
- Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Statist. Phys. 1988, 52, 479. [Google Scholar] [CrossRef]
- Tsallis, C. Nonadditive entropy: The concept and its use. Eur. Phys. J. A 2009, 40, 257. [Google Scholar] [CrossRef]
- Cleymans, J.; Worku, D. The Tsallis distribution in proton–proton collisions at (s)1/2 = 0.9 TeV at the LHC. J. Phys. G 2012, 39, 025006. [Google Scholar]
- Sena, I.; Deppman, A. Systematic analysis of pT -distributions in p+p collisions. Eur. Phys. J. A 2013, 49, 17. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration] Measurement of neutral mesons in p+p collisions at (s)1/2 = 200 GeV and scaling properties of hadron production. Phys. Rev. D 2011, 83, 052004. [Google Scholar]
- Khandai, P.K.; Sett, P.; Shukla, P.; Singh, V. Hadron spectra in p+p collisions at RHIC and LHC energies. Int. J. Mod. Phys. A 2013, 28, 1350066. [Google Scholar] [CrossRef]
- Wong, C.Y.; Wilk, G. Tsallis Fits to pT Spectra for pp Collisions at LHC. Acta Phys. Polon. B 2012, 43, 2047. [Google Scholar] [CrossRef]
- Cleymans, J.; Lykasov, G.I.; Parvan, A.S.; Sorin, A.S.; Teryaev, O.V.; Worku, D. Systematic properties of the Tsallis Distribution: Energy Dependence of Parameters in High-Energy p-p Collisions. Phys. Lett. B 2013, 723, 351. [Google Scholar] [CrossRef]
- Cleymans, J. On the Use of the Tsallis Distribution at LHC Energies. J. Phys. Conf. Ser. 2017, 779, 012079. [Google Scholar] [CrossRef]
- Zheng, H.; Zhu, L. Comparing the Tsallis Distribution with and without Thermodynamical Description in p-p Collisions. Adv. High Energy Phys. 2016, 2016, 9632126. [Google Scholar] [CrossRef]
- Bíró, G.; Barnaföldi, G.G.; Biró, T.S.; Ürmössy, K.; Takács, Á. Systematic Analysis of the Non-Extensive Statistical Approach in High Energy Particle Collisions—Experiment vs. Theory. Entropy 2017, 19, 88. [Google Scholar] [CrossRef]
- Wilk, G.; Wlodarczyk, Z. Interpretation of the Nonextensivity Parameter q in Some Applications of Tsallis Statistics and Lévy Distributions. Phys. Rev. Lett. 2000, 84, 2770. [Google Scholar] [CrossRef] [PubMed]
- Olimov, K.K.; Iqbal, A.; Masood, S. Systematic analysis of midrapidity transverse momentum spectra of identified charged particles in p + p collisions at (s)1/2 = 2.76, 5.02, and 7 TeV at the LHC. Int. J. Mod. Phys. A 2020, 35, 2050167. [Google Scholar]
- Aamodt, K. et al. [ALICE Collaboration] The ALICE experiment at the CERN LHC. JINST 2008, 3, S08002. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] Centrality Determination in Heavy Ion Collisions. CERN Report ALICE-PUBLIC-2018-011. Available online: https://cds.cern.ch/record/2636623 (accessed on 1 June 2022).
- Tsallis, C.; Mendes, R.S.; Plastino, A.R. The role of constraints within generalized nonextensive statistics. Phys. A 1998, 261, 534. [Google Scholar] [CrossRef]
- Biro, T.S.; Purcsel, G.; Ürmössy, K. Non-extensive approach to quark matter. Eur. Phys. J. A 2009, 40, 325. [Google Scholar] [CrossRef]
- Afanasiev, S. et al. [NA49 Collaboration] Energy dependence of pion and kaon production in central Pb + Pb collisions. Phys. Rev. C 2002, 66, 054902. [Google Scholar]
- Anticic, T. et al. [NA49 Collaboration] Energy and centrality dependence of deuteron and proton production in Pb + Pb collisions at relativistic energies. Phys. Rev. C 2004, 69, 024902. [Google Scholar]
- Alt, C. et al. [NA49 Collaboration] Energy and centrality dependence of ¯p and p production and the Λ/¯p ratio in Pb + Pb collisions between 20 A GeV and 158 A GeV. Phys. Rev. C 2006, 73, 044910. [Google Scholar] [CrossRef]
- Alt, C. et al. [NA49 Collaboration] Pion and kaon production in central Pb + Pb collisions at 20 A and 30 A GeV: Evidence for the onset of deconfinement. Phys. Rev. C 2008, 77, 024903. [Google Scholar] [CrossRef]
- Cleymans, J.; Oeschler, H.; Redlich, K.; Wheaton, S. The thermal model and the transition from baryonic to mesonic freeze-out. Eur. Phys. J. A 2006, 29, 119. [Google Scholar] [CrossRef][Green Version]
- Biro, G.; Barnaföldi, G.G.; Biro, T.S.; Shen, K. Mass hierarchy and energy scaling of the Tsallis—Pareto parameters in hadron productions at RHIC and LHC energies. EPJ Web Conf. 2018, 171, 14008. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Yassin, H.; Elyazeed, E.R.A. Particle Yields and Ratios within Equilibrium and Non-Equilibrium Statistics. Europhys. Lett. 2019, 126, 41001. [Google Scholar] [CrossRef]
- Yassin, H.; Elyazeed, E.R.A.; Tawfik, A.N. Transverse momentum spectra of strange hadrons within extensive and nonextensive statistics. Phys. Scr. 2020, 95, 075305. [Google Scholar] [CrossRef]
- Tawfik, A.N.; Yassin, H.; Yassin, H.; Yassin, H. Extensive/nonextensive statistics for pT distributions of various charged particles produced in p + p and A + A collisions in a wide range of energies. arXiv 2019, arXiv:1905.12756v2. [Google Scholar]
Centr. | ||
---|---|---|
0–5% | 383 ± 11 | 1943 ± 56 |
5–10% | 331 ± 10 | 1587 ± 47 |
10–20% | 262 ± 7 | 1180 ± 31 |
20–30% | 188 ± 5 | 786 ± 20 |
30–40% | 131 ± 4 | 512 ± 15 |
40–50% | 87 ± 4 | 318 ± 12 |
50–60% | 54 ± 3 | 183 ± 8 |
60–70% | 31 ± 2 | 96 ± 6 |
70–80% | 16 ± 2 | 45 ± 3 |
80–90% | 7 ± 1 | 18 ± 2 |
Centrality | T0 (MeV) | |||||
---|---|---|---|---|---|---|
0–5% | 1.088 ± 0.002 | 1.086 ± 0.002 | 1.088 ± 0.002 | 80 ± 3 | 0.60 ± 0.01 | 296/98 |
5–10% | 1.093 ± 0.002 | 1.088 ± 0.002 | 1.090 ± 0.002 | 79 ± 3 | 0.59 ± 0.01 | 301/98 |
10–20% | 1.096 ± 0.002 | 1.093 ± 0.002 | 1.092 ± 0.002 | 79 ± 3 | 0.58 ± 0.01 | 270/98 |
20–30% | 1.102 ± 0.002 | 1.098 ± 0.002 | 1.095 ± 0.002 | 77 ± 2 | 0.57 ± 0.01 | 216/98 |
30–40% | 1.108 ± 0.002 | 1.106 ± 0.002 | 1.098 ± 0.002 | 77 ± 2 | 0.53 ± 0.01 | 167/98 |
40–50% | 1.117 ± 0.002 | 1.114 ± 0.002 | 1.100 ± 0.001 | 76 ± 2 | 0.49 ± 0.01 | 116/98 |
50–60% | 1.124 ± 0.001 | 1.121 ± 0.001 | 1.107 ± 0.001 | 78 ± 2 | 0.43 ± 0.01 | 72/98 |
60–70% | 1.131 ± 0.001 | 1.131 ± 0.001 | 1.112 ± 0.001 | 82 ± 2 | 0.33 ± 0.01 | 31/98 |
70–80% | 1.136 ± 0.001 | 1.139 ± 0.001 | 1.116 ± 0.001 | 87 ± 2 | 0.22 ± 0.01 | 20/98 |
80–90% | 1.142 ± 0.001 | 1.146 ± 0.001 | 1.118 ± 0.001 | 86 ± 3 | 0.14 ± 0.02 | 21/98 |
Centrality | T0 (MeV) | |||||
---|---|---|---|---|---|---|
0–5% | 1.083 ± 0.003 | 1.079 ± 0.004 | 1.085 ± 0.003 | 119 ± 4 | 0.59 ± 0.01 | 268/98 |
5–10% | 1.089 ± 0.003 | 1.082 ± 0.004 | 1.087 ± 0.003 | 117 ± 4 | 0.59 ± 0.01 | 271/98 |
10–20% | 1.093 ± 0.003 | 1.088 ± 0.003 | 1.090 ± 0.003 | 118 ± 4 | 0.58 ± 0.01 | 243/98 |
20–30% | 1.102 ± 0.003 | 1.095 ± 0.003 | 1.093 ± 0.002 | 117 ± 4 | 0.56 ± 0.01 | 193/98 |
30–40% | 1.110 ± 0.003 | 1.106 ± 0.003 | 1.097 ± 0.002 | 117 ± 3 | 0.53 ± 0.01 | 150/98 |
40–50% | 1.122 ± 0.002 | 1.117 ± 0.003 | 1.101 ± 0.002 | 117 ± 3 | 0.48 ± 0.01 | 102/98 |
50–60% | 1.132 ± 0.002 | 1.128 ± 0.002 | 1.109 ± 0.002 | 120 ± 3 | 0.41 ± 0.01 | 62/98 |
60–70% | 1.141 ± 0.002 | 1.142 ± 0.002 | 1.115 ± 0.001 | 129 ± 3 | 0.32 ± 0.01 | 15/98 |
70–80% | 1.148 ± 0.002 | 1.153 ± 0.002 | 1.120 ± 0.001 | 138 ± 3 | 0.20 ± 0.01 | 15/98 |
80–90% | 1.157 ± 0.002 | 1.164 ± 0.002 | 1.123 ± 0.002 | 137 ± 5 | 0.12 ± 0.02 | 18/98 |
Fitting Function | Parameter Values | |
---|---|---|
Equation (6) | A = 0.143 ± 0.025 α = 0.252 ± 0.033 | 159/8 |
Equation (7) | A1 = 0.052 ± 0.007 α1 = 0.532 ± 0.034 A2 = 0.282 ± 0.022 α2 = 0.129 ± 0.014 | 6/6 |
Fitting Function | Parameter Values | |
---|---|---|
Equation (8) | A = 0.130 ± 0.026 α = 0.211 ± 0.030 | 177/8 |
Equation (9) | A1 = 0.038 ± 0.006 α1 = 0.468 ± 0.032 A2 = 0.274 ± 0.024 α2 = 0.105 ± 0.012 | 7/6 |
Quantity | 24 | ||
---|---|---|---|
44 ± 5 | 71 ± 7 | 1.61 ± 0.24 | |
158 ± 20 | 251 ± 20 | 1.59 ± 0.24 | |
0.44 ± 0.02 | 0.46 ± 0.03 | 1.07 ± 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olimov, K.K.; Liu, F.-H.; Fedosimova, A.I.; Lebedev, I.A.; Deppman, A.; Musaev, K.A.; Shodmonov, M.Z.; Tukhtaev, B.J.
Analysis of Midrapidity
Olimov KK, Liu F-H, Fedosimova AI, Lebedev IA, Deppman A, Musaev KA, Shodmonov MZ, Tukhtaev BJ.
Analysis of Midrapidity
Olimov, Khusniddin K., Fu-Hu Liu, Anastasiya I. Fedosimova, Igor A. Lebedev, Airton Deppman, Kobil A. Musaev, Maratbek Z. Shodmonov, and Boburbek J. Tukhtaev.
2022. "Analysis of Midrapidity
Olimov, K. K., Liu, F.-H., Fedosimova, A. I., Lebedev, I. A., Deppman, A., Musaev, K. A., Shodmonov, M. Z., & Tukhtaev, B. J.
(2022). Analysis of Midrapidity