Probing Spacetime Foam with Extragalactic Sources of High-Energy Photons
Abstract
:1. Introduction
2. Quantum Foam Models
2.1. Fluctuations for Spacetime Foam Models Parameterized by
2.2. Cumulative Effects of Spacetime Fluctuations
2.3. Holographic Spacetime Foam
3. Using the Most Distant Extragalactic Sources to Probe Spacetime Foam
3.1. Spacetime Foam-Induced Phase Scrambling of Light
3.2. Looking for Halo Structures
4. Using Astronomical Image Archives across the Electromagnetic Spectrum
5. Other Results and Future Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wheeler, J.A. Relativity, Groups and Topology; DeWitt, B.S., DeWitt, C.M., Eds.; Gordon & Breach: New York, NY, USA, 1963; p. 315. [Google Scholar]
- Hawking, S.W.; Page, D.N.; Pope, C.N. Quantum Gravitational Bubbles. Nucl. Phys. 1980, 170, 283–306. [Google Scholar] [CrossRef]
- Ashtekar, A.; Rovelli, C.; Smolin, L. Weaving a Classical Geometry with Quantum Threads. Phys. Rev. Lett. 1992, 69, 237–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, Y.J. Selected Topics in Planck–Scale Physics. Mod. Phys. Lett. A 2003, 18, 1073–1097. [Google Scholar] [CrossRef] [Green Version]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; Freeman: San Francisco, CA, USA, 1973; p. 1190. [Google Scholar]
- Ng, Y.J.; van Dam, H. Measuring the Foaminess of Spacetime with Gravity-Wave Interferometers. Found. Phys. 2000, 30, 795–805. [Google Scholar] [CrossRef] [Green Version]
- Ng, Y.J. From Computation to Black Holes and Space-time Foam. Phys. Rev. Lett. 2001, 86, 2946. [Google Scholar] [CrossRef] [Green Version]
- ’t Hooft, G. Salamfestschrift; Ali, A., Ellis, J., Randjbar-Daemi, S., Eds.; World Scientific: Singapore, 1993; p. 284. [Google Scholar]
- Susskind, L. The World as a Hologram. J. Math. Phys. (N.Y.) 1995, 36, 6377–6396. [Google Scholar] [CrossRef] [Green Version]
- Maldacena, J. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252. [Google Scholar] [CrossRef]
- Gambini, R.; Pullin, J. Holography in Spherically Symmetric Loop Quantum Gravity. Int. J. Mod. Phys. D 2008, 17, 545–549. [Google Scholar] [CrossRef] [Green Version]
- Ng, Y.J.; Christiansen, W.A.; van Dam, H. Probing Planck-scale Physics with Extragalacic Sources? Astrophys. J. 2003, 591, L87–L90. [Google Scholar] [CrossRef]
- Christiansen, W.A.; Ng, Y.J.; van Dam, H. Probing Spacetime Foam with Extragalactic Sources. Phys. Rev. Lett. 2006, 96, 051301-1–051301-4. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G. Limits on the Measurability of Space-Time Distances in the Semi-Classical Approximation of Quantum Gravity. Mod. Phys. Lett. 1994, A9, 3415–3422. [Google Scholar] [CrossRef] [Green Version]
- Diosi, L.; Lukacs, B. Uncertainty of Space-time Geodesics. Phys. Lett. A 1989, 142, 331–334. [Google Scholar] [CrossRef]
- Amelino-Camlia, G. An Interferometric Gravitational Wave Detector as a Quantum-Gravity Apparatus. Nature 1999, 398, 216–218. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G.; Piran, T. Cosmic rays and TeV photons as probes of quantum properties of space–time. Phys. Lett. B 2001, 497, 2. [Google Scholar] [CrossRef] [Green Version]
- Ng, Y.J.; Lee, D.S.; Oh, M.C.; van Dam, H. Energy-momentum Uncertainties as Possible Origin of Threshold Anomalies in UHECR and TeV-gamma Events. Phys. Lett. B 2001, 507, 236. [Google Scholar] [CrossRef] [Green Version]
- Scully, S.T.; Stecker, F.W. Lorentz Invariance Violation and the Observed Spectrum of Ultrahigh Energy Cosmic Rays. Astropart. Phys. 2009, 31, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Torri, M.D.C.; Caccianiga, L.; di Matteo, A.; Maino, A.; Miramonti, L. Predictions of Ultra-High Energy Cosmic Ray Propagation in the Context of Homogeneously Modified Special Relativity. Symmetry 2020, 12, 1961. [Google Scholar] [CrossRef]
- Torri, M.D.C. Quantum gravity phenomenology induced in the propagation of UHECR, a kinematical solution in Finsler and generalized Finsler spacetime. Galaxies 2021, 9, 103. [Google Scholar] [CrossRef]
- Amelino-Camelia, G.; Ellis, J.; Mavromatos, N.E.; Nanopoulos, D.V.; Sarkar, S. Tests of Quantum Gravity from Observations of γ-Ray Bursts. Nature 1998, 393, 763–765. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, W.; Ng, Y.J.; Floyd, D.J.E.; Perlman, E.S. Limits on spacetime foam. Phys. Rev. D 2011, 83, 084003. [Google Scholar] [CrossRef] [Green Version]
- Ng, Y.J.; van Dam, H. Limit to Spacetime Measurement. Mod. Phys. Lett. A 1994, 9, 335–340. [Google Scholar]
- Ng, Y.J.; van Dam, H. Remarks on Gravitational Sources. Mod. Phys. Lett. A 1995, 10, 2801–2808. [Google Scholar] [CrossRef]
- Salecker, H.; Wigner, E.P. Quantum Limitations of the Measurement of Space-Time Distances. Phys. Rev. 1958, 109, 571–577. [Google Scholar] [CrossRef]
- Karolyhazy, F. Gravitation and Quantum Mechanics of Macroscopic Objects. Il Nuovo Cimento 1966, A42, 390–402. [Google Scholar] [CrossRef]
- Sasakura, N. An Uncertainty Relation of Space-Time. Prog. Theor. Phys. 1999, 102, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Lieu, R.; Hillman, L.W. The Phase Coherence of Light from Extragalactic Sources—Direct Evidence Against First Order Planck Scale Fluctuations in Time and Space. Astrophys. J. 2003, 585, L77–L80. [Google Scholar] [CrossRef]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. VI. Cosmological Parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Bennett, C.L.; Larson, D.; Weiland, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results. Astrophys. J. Supp. 2013, 208, 20. [Google Scholar] [CrossRef] [Green Version]
- Perlman, E.S.; Rappaport, S.A.; Christiansen, W.A.; Ng, Y.J.; DeVore, J.; Pooley, D. New Constraints on Quantum Gravity from X-Ray and Gamma-Ray Observations. Astrophys. J. 2015, 805, 10. [Google Scholar] [CrossRef] [Green Version]
- Perlman, E.S.; Ng, Y.J.; Floyd, D.J.E.; Christiansen, W.A. Using Observations of Distant Quasars to Constrain Quantum Gravity. Astron. Astrophys. 2011, 535, L9. [Google Scholar] [CrossRef] [Green Version]
- Perlman, E.S.; Stocke, J.T.; Carilli, C.L.; Sugiho, M.; Tashiro, M.; Madejski, G.; Wang, Q.D.; Conway, J. The Apparent Host Galaxy of PKS 1413+135: HST, ASCA and VLBA Observations. Astrophys. J. 2002, 124, 2401–2412. [Google Scholar]
- Abdollahi, S.; Acero, F.; Ackerman, M.; Ajello, M.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. Fermi Large Area Telescope Fourth Source Catalog. Ap. J. Supp. 2020, 247, 33. [Google Scholar] [CrossRef] [Green Version]
- Welcome to TeVCat! Available online: http://tevcat.uchicago.edu (accessed on 1 May 2022).
- Dwek, E.; Krennrich, F. The extragalactic background light and the gamma-ray opacity of the universe. Astropart. Phys. 2013, 2013, 112. [Google Scholar] [CrossRef] [Green Version]
- Stecker, F.W.; Scully, S.T.; Malkan, M.A. An Empirical Determination of the Intergalactic Background Light from UV to FIR Wavelengths using FIR Deep Galaxy Surveys and the Gamma-ray Opacity of the Universe. Astrophys. J. 2016, 827, 6. [Google Scholar] [CrossRef] [Green Version]
- Plaga, R. Detecting intergalactic magnetic fields using time delays in pulses of γ-rays. Nature 1995, 374, 430. [Google Scholar] [CrossRef]
- Batista, R.A.; Saveliev, A. The Gamma-Ray Window to Intergalactic Magnetism. arXiv 2021, arXiv:2105.12020. [Google Scholar]
- GRAVITY Collaboration; Sturm, E.; Dexter, J.; Pfuhl, O.; Stock, M.R.; Davies, R.I.; Lutz, D.; Clenet, Y.; Eckart, A.; Eisenhauer, F.; et al. Spatially resolved rotation of the broad-line region of a quasar at sub-parsec scale. Nature 2018, 7773, 657. [Google Scholar]
- Uttley, P.; den Hartog, R.; Bambi, C.; Barret, D.; Bianchi, S.; Bursa, M.; Cappi, M.; Casella, P.; Cash, W.; Costantini, E.; et al. The high energy Universe at ultra-high resolution: The power and promise of X-ray interferometry. SPIE Proc. 2021, 51, 1081. [Google Scholar] [CrossRef]
- Hawking, S.W. Information Preservation and Weather Forecasting for Black Holes. arXiv 2014, arXiv:1401.5761. [Google Scholar]
- Mersini-Houghton, L. Backreaction of Hawking radiation on a gravitationally collapsing star I: Black holes? Phys. Lett. B 2014, 738, 61. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, S.M.; Aiello, L.; Ejlli, A.; Griffiths, W.L.; James, A.L.; Dooley, K.L.; Grote, H. An Experiment for Observing Quantum Gravity Phenomena Using Twin Table-top 3D Interferometers. Class. Quantum Grav. 2021, 38, 085008. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, Y.J.; Perlman, E.S. Probing Spacetime Foam with Extragalactic Sources of High-Energy Photons. Universe 2022, 8, 382. https://doi.org/10.3390/universe8070382
Ng YJ, Perlman ES. Probing Spacetime Foam with Extragalactic Sources of High-Energy Photons. Universe. 2022; 8(7):382. https://doi.org/10.3390/universe8070382
Chicago/Turabian StyleNg, Y. Jack, and Eric S. Perlman. 2022. "Probing Spacetime Foam with Extragalactic Sources of High-Energy Photons" Universe 8, no. 7: 382. https://doi.org/10.3390/universe8070382
APA StyleNg, Y. J., & Perlman, E. S. (2022). Probing Spacetime Foam with Extragalactic Sources of High-Energy Photons. Universe, 8(7), 382. https://doi.org/10.3390/universe8070382