General Thermodynamic Properties of FRW Universe and Heat Engine
Abstract
:1. Introduction
2. Construction of Entropy for the FRW Universe
- Derivation of Entropy using Friedmann Equations:
- Derivation of Modified Friedmann Equations Using Entropy:
3. Thermodynamic Quantities
4. Heat Engine
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Entropy spectrum of the apparent horizon of Vaidya black holes via adiabatic invariance. Phys. Rev. D 1973, 7, 2333. [Google Scholar] [CrossRef]
- Hawking, S.W.; Page, D.N. Thermodynamics of Black Holes in anti-De Sitter Space. Commun. Math. Phys. 1983, 87, 577. [Google Scholar] [CrossRef]
- Kastor, D.; Ray, S.; Traschen, J. Enthalpy and the Mechanics of AdS Black Holes. Class. Quant. Grav. 2009, 26, 195011. [Google Scholar] [CrossRef]
- Wei, S.-W.; Liu, Y.-X. Critical phenomena and thermodynamic geometry of charged Gauss-Bonnet AdS black holes. Phys. Rev. D 2013, 87, 044014. [Google Scholar] [CrossRef]
- Zhang, J.-L.; Cai, R.-G.; Yu, H. Phase transition and thermodynamical geometry of Reissner-Nordstom-AdS black holes in extended phase space. Phys. Rev. D 2015, 91, 044028. [Google Scholar] [CrossRef]
- Wei, S.-W.; Man, Q.-T.; Yu, H. Thermodynamic Geometry of Charged AdS Black Hole Surrounded by Quintessence. Commun. Theor. Phys. 2018, 69, 173. [Google Scholar] [CrossRef]
- Wang, P.; Wu, H.; Yang, H. Thermodynamic Geometry of AdS Black Holes and Black Holes in a Cavity. Eur. Phys. J. C 2020, 80, 216. [Google Scholar] [CrossRef]
- Cvetic, M.; Gibbons, G.W.; Kubiznak, D.; Pope, C.N. Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume. Phys. Rev. D 2011, 84, 024037. [Google Scholar] [CrossRef]
- Kubiznak, D.; Mann, R.B. P-V criticality of charged AdS black holes. J. High Energy Phys. 2012, 1207, 33. [Google Scholar] [CrossRef]
- Kubiznak, D.; Mann, R.B.; Teo, M. Black hole chemistry: Thermodynamics with Lambda. Class. Quant. Grav. 2017, 34, 063001. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hawking, S.W. Cosmological Event Horizons, Thermodynamics, and Particle Creation. Phys. Rev. D 1977, 15, 2738. [Google Scholar] [CrossRef]
- Johnson, C.V. Holographic Heat Engines. Class. Quant. Grav. 2014, 31, 205002. [Google Scholar] [CrossRef]
- Johnson, C.V. Gauss-Bonnet black holes and holographic heat engines beyond large N. Class. Quant. Grav. 2016, 33, 215009. [Google Scholar] [CrossRef]
- Johnson, C.V. Taub-Bolt heat engines. Class. Quant. Grav. 2018, 35, 045001. [Google Scholar] [CrossRef]
- Hennigar, R.A.; McCarthy, F.; Ballon, A.; Mann, R.B. Holographic heat engines: General considerations and rotating black holes. Class. Quant. Grav. 2017, 34, 175005. [Google Scholar] [CrossRef]
- Mo, J.-X.; Li, G.-Q. Holographic heat engine within the framework of massive gravity. J. High Energy Phys. 2018, 1805, 122. [Google Scholar] [CrossRef]
- Johnson, C.V.; Rosso, F. Holographic Heat Engines, Entanglement Entropy, and Renormalization Group Flow. Class. Quant. Grav. 2019, 36, 015019. [Google Scholar] [CrossRef]
- Ghaffarnejad, H.; Yaraie, E.; Farsam, M.; Bamba, K. Hairy black holes and holographic heat engine. Nucl. Phys. B 2020, 952, 114941. [Google Scholar] [CrossRef]
- Guo, S.; Jiang, Q.Q.; Pu, J. Heat engine efficiency of the Hayward-AdS black hole. Mod. Phys. Lett. A 2021, 36, 2150108. [Google Scholar] [CrossRef]
- Rajani, K.V.; Rizwan, C.L.A.; Kumara, A.N.; Vaid, D.; Ajith, K.M. Regular Bardeen AdS black hole as a heat engine. Nucl. Phys. B 2020, 960, 115166. [Google Scholar] [CrossRef]
- Ye, R.; Zheng, J.; Chen, J.; Wang, Y.P.-V. Criticality and heat engine efficiency for Bardeen Einstein-Gauss-Bonnet AdS black hole. Commun. Theor. Phys. 2020, 72, 035401. [Google Scholar] [CrossRef]
- Kaburaki, O.; Okamoto, O. Kerr black holes as a Carnot engine. Phys. Rev. D 1991, 43, 340. [Google Scholar] [CrossRef] [PubMed]
- Debnath, U.; Pourhassan, B. Modified cosmic Chaplygin AdS black hole. Mod. Phys. Lett. A 2022, 37, 2250085. [Google Scholar] [CrossRef]
- Debnath, U. Thermodynamic Black Hole with Modified Chaplygin Gas as a Heat Engine. Eur. Phys. J. Plus 2020, 135, 424. [Google Scholar] [CrossRef]
- Debnath, U. The General Class of Accelerating, Rotating and Charged Plebanski-Demianski Black Holes as Heat Engine. arXiv 2020, arXiv:2006.02920. [Google Scholar] [CrossRef]
- Hayward, S.A. General laws of black hole dynamics. Phys. Rev. D 1994, 49, 6467. [Google Scholar] [CrossRef]
- Hayward, S.A. Unified first law of black hole dynamics and relativistic thermodynamics. Class. Quant. Grav. 1998, 15, 3147. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260. [Google Scholar] [CrossRef]
- Cai, R.G.; Kim, S.P. First, Law of Thermodynamics and Friedmann Equations of Friedmann–Robertson–Walker Universe. J. High Energy Phys. 2005, 502, 50. [Google Scholar] [CrossRef]
- Cai, R.-G.; Cao, L.-M. Unified first law and thermodynamics of apparent horizon in FRW universe. Phys. Rev. D 2007, 75, 064008. [Google Scholar] [CrossRef]
- Akbar, M.; Cai, R.-G. Friedmann equations of FRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics. Phys. Lett. B 2006, 635, 7. [Google Scholar] [CrossRef]
- Akbar, M.; Cai, R.-G. Thermodynamic Behavior of Field Equations for f(R) Gravity. Phys. Lett. B 2007, 648, 243. [Google Scholar] [CrossRef]
- Cai, R.-G.; Cao, L.-M.; Hu, Y.-P. Corrected Entropy-Area Relation and Modified Friedmann Equations. J. High Energy Phys. 2008, 0808, 090. [Google Scholar] [CrossRef]
- Liu, B.; Dai, Y.-C.; Hu, X.-R.; Deng, J.-B. The Friedmann equation in modified entropy-area relation from entropy force. Mod. Phys. Lett. A 2011, 26, 489. [Google Scholar] [CrossRef]
- Sheykhi, A. Modified Friedmann Equations from Tsallis Entropy. Phys. Lett. B 2018, 785, 118. [Google Scholar] [CrossRef]
- Saridakis, E.N. Modified cosmology through spacetime thermodynamics and Barrow horizon entropy. J. Cosmol. Astropart. Phys. 2020, 2020, 031. [Google Scholar] [CrossRef]
- Pilot, C. Modeling Cosmic Expansion, and Possible Inflation, as a Thermodynamic Heat Engine. Z. Naturforschung A (ZNA) 2019, 74, 153. [Google Scholar] [CrossRef]
- Askin, M.; Salti, M.; Aydogdu, O. Polytropic Carnot heat engine. Mod. Phys. Lett. A 2019, 34, 1950197. [Google Scholar] [CrossRef]
- Ebert, R.; Gobel, R. Carnot cycles in general relativity. Gen. Rel. Grav. 1973, 4, 375. [Google Scholar] [CrossRef]
- Debnath, U. Thermodynamics of FRW Universe: Heat Engine. Phys. Lett. B 2020, 810, 135807. [Google Scholar] [CrossRef]
- Bak, D.; Rey, S.J. Cosmic holography+. Class. Quant. Grav. 2000, 17, L83. [Google Scholar] [CrossRef]
- Hayward, S.A.; Mukohyama, S.; Ashworth, M.C. Dynamic black hole entropy. Phys. Lett. A 1999, 256, 347. [Google Scholar] [CrossRef]
- Caceres, E.; Nguyen, P.H.; Pedraza, J.F. Holographic entanglement entropy and the extended phase structure of STU black holes. J. High Energy Phys. 2015, 1509, 184. [Google Scholar] [CrossRef]
- Winterbone, D.E. Advanced Thermodynamics for Engineers, 1st ed.; Butterworth-Heinemann: Oxford, UK, 1997. [Google Scholar]
- Johnston, D.C. Advances in Thermodynamics of the van der Waals Fluid; Morgan & Claypool: San Rafael, CA, USA, 2014. [Google Scholar]
- Okcu, O.; Aydiner, E. Joule–Thomson expansion of the charged AdS black holes. Eur. Phys. J. C 2017, 77, 24. [Google Scholar] [CrossRef]
- Wei, S.-W.; Liu, Y.-X. Implementing black hole as efficient power plant. Commun. Theor. Phys. 2019, 71, 711. [Google Scholar] [CrossRef]
- Wei, S.-W.; Liu, Y.-X. Charged AdS black hole heat engines. Nucl. Phys. B 2019, 946, 114700. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debnath, U. General Thermodynamic Properties of FRW Universe and Heat Engine. Universe 2022, 8, 400. https://doi.org/10.3390/universe8080400
Debnath U. General Thermodynamic Properties of FRW Universe and Heat Engine. Universe. 2022; 8(8):400. https://doi.org/10.3390/universe8080400
Chicago/Turabian StyleDebnath, Ujjal. 2022. "General Thermodynamic Properties of FRW Universe and Heat Engine" Universe 8, no. 8: 400. https://doi.org/10.3390/universe8080400
APA StyleDebnath, U. (2022). General Thermodynamic Properties of FRW Universe and Heat Engine. Universe, 8(8), 400. https://doi.org/10.3390/universe8080400