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Abstract: In this work, the Friedmann–Robertson–Walker (FRW) Universe is considered a thermo-
dynamic system, where the cosmological constant generates the thermodynamic pressure. Using a
unified first law, we have determined the amount of energy dE crossing the apparent horizon. Since
heat is one of the forms of thermal energy, so the heat flows δQ through the apparent horizon =

amount of energy crossing the apparent horizon. Using the first law of thermodynamics, on the
apparent horizon, we found TdS = A(ρ + p)Hr̃hdt + Aρdr̃h where T, S, A, H, r̃h, ρ, p are respectively
the temperature, entropy, area, Hubble parameter, horizon radius, fluid density and pressure. Since
the apparent horizon is dynamical, so we have assumed that dr̃h cannot be zero in general, i.e., the
second term Aρdr̃h is non-zero on the apparent horizon. Using Friedmann equations with the unified
first law, we have obtained the modified entropy-area relation on the apparent horizon. In addition,
from the modified entropy-area relation, we have obtained modified Friedmann equations. From the
original Friedmann equations and also from modified Friedmann equations, we have obtained the
same entropy. We have derived the equations for the main thermodynamical quantise, such as tem-
perature, volume, mass, specific heat capacity, thermal expansion, isothermal compressibility, critical
temperature, critical volume, critical pressure and critical entropy. To determine the cooling/heating
nature of the FRW Universe, we have obtained the coefficient of Joule–Thomson expansion. Next,
we have discussed the heat engine phenomena of the thermodynamical FRW Universe. We have
considered the Carnot cycle and obtained its completed work. In addition, we studied the work
completed and the thermal efficiency of the new heat engine. Finally, we have obtained the thermal
efficiency of the Rankine cycle.

Keywords: universe; thermodynamics; entropy; heat engine

1. Introduction

In astrophysics, the thermodynamic properties of the black hole are extensively stud-
ied. It is related to the quantum aspects of spacetime geometry with classical thermo-
dynamic theory. The origin of this study started from the pioneering work of Hawking
and Bekenstein, who first proposed Hawking’s temperature and Bekenstein–Hawking
entropy [1,2], where entropy is related to area, and temperature is related to surface gravity.
Hawking and Page have proposed that the first-order phase transition occurs between
the Schwarzschild anti-de Sitter (AdS) black hole and the thermal AdS space [3]. Several
authors [4–8] have studied the geometry of AdS black hole thermodynamics. In the black
hole thermodynamic study, the thermodynamic pressure P arose from negative cosmo-
logical constant (Λ < 0). Thus, P = − Λ

8π [9–11]. The black hole horizon entropy and
cosmological horizon entropy [1,12] satisfy the same Bekenstein–Hawking entropy-area
relation S = A/4G, where A is the horizon surface area, and G is Newton’s gravitational
constant. For the AdS black hole, Johnson [13–15] has introduced the holographic heat
engine. For various types of AdS black holes, the heat engine phenomena have been dis-
cussed by several authors [16–19]. Heat engines for regular black holes have been studied
in [20–22]. Kaburaki and Okamoto [23] have studied the Carnot engine phenomena of Kerr
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black holes. Recently, for some kinds of AdS black holes [24–26], we have discussed the
thermodynamic nature, P-V criticality, Joule–Thomson expansion and also the work done
with efficiency for the Carnot and Rankine cycles of the heat engine.

As per the proposal of the dynamical (non-stationary) black hole thermodynamics
(on the trapping horizon) [27,28], Einstein’s field equations for spherical symmetric space-
time can be written in the form of “unified first law”. Similarly, the thermodynamic
proposal can be applied to the non-stationary spherically symmetric Friedmann–Robertson–
Walker (FRW) Universe on the apparent horizon (trapping horizon). In the black hole
thermodynamics, Jacobson [29] has investigated that the Einstein’s field equations may
be obtained from the entropy-area relation. Using the unified first law and entropy-
area relation on the apparent horizon, Cai et al. [30,31] have derived the Friedmann
equations for modified gravity theories like Gauss–Bonnet gravity, scalar-tensor theory, and
Lovelock gravity. Several authors [32–37] have studied the thermodynamic phenomena
and also obtained modified Friedmann equations from modified entropy-area relations in
the FRW Universe.

In the Universe model, Pilot [38] has studied the thermodynamic heat engine, and
Askin et al. [39] have discussed the heat engine phenomena in the Carnot cycle for poly-
tropic gas. The Carnot cycle in general relativity has been studied in [40]. Recently, we
have described the thermodynamic properties of the FRW Universe and its heat engine
phenomena with efficiency for Carnot cycle [41]. Motivated by the above-mentioned works,
here, we will study the unified first law and thermodynamics for the non-flat FRW Universe
in the presence of the cosmological constant. With the help of Einstein’s field equations,
we calculate the form of the entropy–area relation and show that the entropy-area rela-
tion can generate Einstein’s field equations. We discuss the thermodynamic quantities,
Joule–Thomson expansion, and some kinds of heat engines for the FRW Universe. The
organization of the work is as follows: In Section 2, we study the unified first law and, using
Friedmann equations, we find the form of entropy–area relation. In addition, using the
entropy-area relation, we determine the modified Friedmann equations. In Section 3, we
discuss some thermodynamic quantities and the coefficient of Joule–Thomson expansion.
In Section 4, we discuss the heat engine and also study the Carnot cycle as well as Rankine
cycle with their work done and efficiencies for the FRW Universe. Finally, in Section 5, we
conclude the whole work.

2. Construction of Entropy for the FRW Universe

In this section, we’ll study the unified first law for non-flat Friedmann–Robertson–
Walker (FRW) Universe and construct the entropy using the Friedmann equations. We
assume the line element for FRW Universe as

ds2 = −dt2 + a2(t)
[

dr2

1− kr2 + r2(dθ2 + sin2θdφ2)

]
(1)

where a(t) is the scale factor and k = 0,−1,+1. The Einstein–Hilbert action can be
considered in the form

S =
∫

d4x
√
−g
[

R− 2Λ
16πG

+ Lm

]
(2)

where R is the Ricci scalar, Λ is cosmological constant, G is the Newton’s gravitational
constant, Lm is the matter Lagrangian and g = det(gij) (choosing c = 1). For perfect fluid
source, the stress–energy tensor is Tij = (ρ + p)uiuj + pgij, where ρ and p are the energy
density and pressure of perfect fluid, respectively, where ui is the four velocity satisfying
the relation uiui = −1. Thus, the Friedmann equations are given by

H2 +
k
a2 =

8πG
3

ρ +
Λ
3

(3)
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and
Ḣ − k

a2 = −4πG(ρ + p) (4)

where H = ȧ/a is the Hubble parameter. From the continuity equation, we obtain

ρ̇ + 3H(ρ + p) = 0 (5)

which can also be found from the above Friedmann Equations (3) and (4).
Now the FRW metric (1) can be written in the form [42] ds2 = hijdxidxi + r̃2dΩ2

2 where

x0 = t, x1 = r, r̃ = a(t)r, and hij = diag(−1, a2

1−kr2 ). If the FRW universe can be considered
as a thermodynamical system, then its dynamical apparent horizon can be determined by
the relation hij ∂r̃

∂xi
∂r̃
∂xj = 0. Thus, the apparent horizon radius r̃h and its time derivative are

obtained as [28,42,43]

r̃h =
1√

H2 + k
a2

, ˙̃rh = −r̃3
h H
(

Ḣ − k
a2

)
. (6)

The surface gravity and the temperature on the apparent horizon for the FRW Universe
are obtained as [30]

κ = − 1
r̃h

(
1−

˙̃rh
2r̃h H

)
, T =

|κ|
2π

=
1

2πr̃h

(
1−

˙̃rh
2r̃h H

)
(7)

where h = det(hij). In particular, if the apparent horizon radius r̃h is remaining fixed within
a small time interval dt, then ˙̃rh � 2r̃h H. Thus, in this approximation, volume will not be
changed in it and hence we obtain [30] T ≈ 1

2πr̃h
.

Hayward proposed the unified first law as in the form [28,31,42,43] dE = AΨ + WdV,
where dE is the energy change inside the apparent horizon, A = 4πr̃2

h is the surface area
of the apparent horizon, V = 4π

3 r̃3
h is the volume inside the apparent horizon surface,

W = 1
2 (ρ− p) is the work density function and the energy flux is given by

Ψ = −1
2
(ρ + p)Hr̃dt +

1
2
(ρ + p)adr . (8)

Therefore, we obtain

AΨ + WdV = −A(ρ + p)Hr̃dt + Aρdr̃ . (9)

Since heat is one kind of thermal energy, the heat flow δQ through the apparent horizon
= amount of energy (dE) crosses the apparent horizon. Therefore, from (9), we obtain

δQ = dE = −A(ρ + p)Hr̃hdt + Aρdr̃h . (10)

It should be noted that Cai and Kim [30] have assumed δQ = −dE, and they have
assumed only the first term and ignored the second term Aρdr̃h in (10) on the apparent
horizon. Till now, these assumptions have been taken into account for all thermodynamical
studies. Since the apparent horizon is dynamical, thus dr̃h cannot be zero in general. Therefore,
we now consider all the terms of (10) for further study on the apparent horizon. The first law of
thermodynamics on the apparent horizon is δQ = TdS. Thus, from Equation (10), we obtain

TdS = −A(ρ + p)Hr̃hdt + Aρdr̃h. (11)

• Derivation of Entropy using Friedmann Equations:



Universe 2022, 8, 400 4 of 10

From Equations (3), (4) and (6), we obtain

ρ =
3

8πGr̃2
h
− Λ

8πG
, ρ + p =

˙̃rh

4πGr̃3
h H

. (12)

Putting the expressions (7) and (12) in (11), we obtain the entropy as

S =
A

4G
− ΛA2

32πG
+ S0 (13)

where S0 is an integration constant. We see that the entropy S depends on the cosmological
constant Λ. Putting Λ = 0 and S0 = 0, we obtain S = A/4G, which is similar to the form
of the black hole entropy on the horizon.

• Derivation of Modified Friedmann Equations Using Entropy:

For the FRW Universe in the presence of cosmological constant Λ, we choose the
entropy with the form S = A

4G −
ΛA2

32πG + S0 and the expression of the temperature has the
form (7); then, using the continuity Equation (5) with the Equations (6) and (11), we obtain
the differential equation:[

AG
(

ρ +
Λ

8πG

)
− 1

2

]
d
(

H2 +
k
a2

)
=

8πG
3

dρ. (14)

Integrating the above equation and after simplification, we obtain(
H2 +

k
a2

)
+ K

(
H2 +

k
a2

)3/2
=

8πG
3

ρ +
Λ
3

(15)

where K is an integration constant. Now, putting the expression of ρ in conservation
Equation (5), we obtain(

Ḣ − k
a2

)[
1 +

3K
2

(
H2 +

k
a2

)1/2
]
= −4πG(ρ + p) . (16)

Thus, from entropy S = A
4G −

ΛA2

32πG + S0, we obtain the modified Friedmann Equa-
tions (15) and (16). For K = 0, we can recover the original Friedmann Equations (3) and (4).
However, if we consider the two Equations (15) and (16), then, from Equation (11), we
may obtain the entropy in the form S = A

4G −
ΛA2

32πG + S0, where S0 is an integration con-
stant. This is independent of K. Thus, from original Friedmann Equations (3) and (4)
and also from modified Friedmann Equations (15) and (16), we obtain the same entropy
S = A

4G −
ΛA2

32πG + S0.

3. Thermodynamic Quantities

The usual Friedmann Equations (3) and (4) can generate the entropy in the form (13),
which has also been generated from modified Friedmann Equations (15) and (16). Thus,
we consider the entropy on the apparent horizon for both usual Friedmann equations and
modified Friedmann equations in the FRW Universe as given in (13). In the study of black
hole thermodynamics and FRW Universe [41], the cosmological constant Λ is treated as
thermodynamic pressure P, where P = − Λ

8πG and allows for a variable. Thus, using the
same consideration, the entropy expression (13) can be written as

S =
πr̃2

h
G
− 4π2r̃4

hP + S0. (17)
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Thus, the apparent horizon radius r̃h can be expressed as

r̃h =
1√

8πGP

[
1 +

(
1− 16G2P(S− S0)

) 1
2
] 1

2

(18)

where the entropy satisfies S < S0 +
1

16G2P . The expression of volume inside the apparent
horizon can be written as

V =
4πr̃3

h
3

=
1

6
√

8π G
3
2 P

3
2

[
1 +

(
1− 16G2P(S− S0)

) 1
2
] 3

2

. (19)

In addition, the expression of temperature (7) can be written as

T =

√
GP
2π

[
1 +

(
1− 16G2P(S− S0)

) 1
2
]− 1

2

. (20)

From Equation (12), we obtain the energy density and pressure of the fluid as

ρ =
3

8πGr̃2
h
− P = −P + 3P

[
1 +

(
1− 16G2P(S− S0)

) 1
2
]−1

(21)

and

p = − 1
8πGr̃2

h
+ P = P− P

[
1 +

(
1− 16G2P(S− S0)

) 1
2
]−1

. (22)

Thus, we can write P = 1
2 (ρ + 3p). The mass inside the region of apparent horizon

surface is M = ρV. Using Equations (3), (6) and (19), we obtain the mass

M =
1

6
√

8π G
1
2 P

3
2

[
2−

(
1− 16G2P(S− S0)

) 1
2
][

1 +
(

1− 16G2P(S− S0)
) 1

2
] 1

2

. (23)

The specific heat capacity for FRW Universe is obtained as [41]

CP = T
(

∂S
∂T

)
P
=

1
4G2P

(
1− 16G2P(S− S0)

) 1
2
[

1 +
(

1− 16G2P(S− S0)
) 1

2
]

. (24)

The coefficient of thermal expansion and isothermal compressibility are obtained
as [44]

α =
1
V

(
∂V
∂T

)
P
= −

√
18π

GP

[
1 +

(
1− 16G2P(S− S0)

) 1
2
] 1

2

(25)

and

κT = − 1
V

(
∂V
∂P

)
T
= − 3

2P
+

12G2(S− S0)
(
1− 16G2P(S− S0)

)− 1
2

1 + (1− 16G2P(S− S0))
1
2

. (26)

The minus sign indicates that, when the pressure increases, the volume always reduces.
Similar to the critical behavior of the AdS black hole, here we study the critical behavior

of the FRW Universe. The critical points can be found from the following conditions:(
∂P
∂r̃h

)
cr
= 0,

(
∂2P
∂r̃2

h

)
cr

= 0 . (27)

From these conditions, we obtain the following critical values of the thermody-
namic quantities:
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pcr = c1 −
1

8πGr̃2
cr

, Pcr = c1 = constant, (28)

Scr =
πr̃2

cr
2G
− 4c1π2r̃4

cr + S0, (29)

Vcr =
1

6
√

8π (c1G)
3
2

[
1 +

(
1− 16c1G2(Scr − S0)

) 1
2
] 3

2

, (30)

Tcr =

√
c1G
2π

[
1 +

(
1− 16c1G2(Scr − S0)

) 1
2
]− 1

2

. (31)

Now, we will study the Joule–Thomson expansion process [45,46], which describes the
temperature changes from a high-pressure region to a low-pressure region, provided
the enthalpy function (H) remains constant throughout the expansion scenario. The
Joule–Thomson coefficient can be defined as µ =

(
∂T
∂P

)
H

which describes the slope of
the isenthalpic curve [47]. The Joule–Thomson coefficient can be expressed as

µ =
1
CP

[
T
(

∂V
∂T

)
P
−V

]
(32)

or

µ =
1
S

[
P
(

∂V
∂P

)
H
+ 2V

]
. (33)

The sign of µ is important to determine the active role for the cooling or heating nature
of the Universe. The cooling nature occurs if µ > 0, while the heating nature occurs if
µ < 0. For the FRW Universe, the Joule–Thomson expansion coefficient is obtained as

µ =

√
G

8πP

[
1 +

(
1− 16G2P(S− S0)

) 1
2
]− 3

2
[

1 +

(
1− 8G2P(S− S0)

)
(1− 16G2P(S− S0))

1
2

]
. (34)

From the above expression, we observe that µ is always positive, so the cooling
process always occurs in the FRW Universe. If we put µ = 0 in (33), we obtain the inversion
pressure for the inversion curve, which is obtained as Pinv = 35

578G2(S−S0)
. In addition, if we

put µ = 0 in (33), the inversion temperature is obtained in the form

Tinv = V
(

∂T
∂V

)
P
= −

√
GPinv
18π

[
1 +

(
1− 16G2Pinv(S− S0)

) 1
2
]− 1

2

= − 1
12

√
7

17π(S− S0)
. (35)

4. Heat Engine

Now, we study the heat engine description for the FRW Universe. Physically, the heat
engine is a system where thermal energy transforms into mechanical energy. Here, we
will study the Carnot engine, new heat engine, and Rankine engine for the FRW Universe.
Classically, the Carnot engine is a heat engine in the theoretical thermodynamic cycle, and
the corresponding cycle is known as the Carnot cycle. Johnson [13] has introduced the
P-V diagram for the Carnot cycle to determine the work done. The temperatures of the
heat engine’s hot and cold regions are denoted by TH and TC, respectively. The net heat
that flows from stage 1 to stage 2 along the upper isotherm process is QH = TH4S1→2 =
TH(S2 − S1) and the exhausted heat that flows from stage 3 to stage 4 along the lower
isothermal process is QC = TC4S3→4 = TC(S3 − S4). Using the relation (19), the entropies
Si’s are related to the volumes Vi’s as

Vi =
1

6
√

8π G
3
2 P

3
2

i

[
1 +

(
1− 16G2Pi(Si − S0)

) 1
2
] 3

2

, i = 1, 2, 3, 4, (36)
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where Pi = 1
2 (ρi + 3pi), i = 1, 2, 3, 4. For the Carnot heat engine, total work done is

W = QH − QC. For the Carnot heat engine, the efficiency is ηCar =
W

QH
= 1− QC

QH
. Since,

for the Carnot cycle, V4 = V1 and V3 = V2, thus the maximum efficiency is obtained in
the form

(ηCar )max = 1 + 8G2P3
1 P

3
2

2 P
1
2

4 (S2 − S1)

(
1 +

(
1− 16G2P2(S2 − S0)

) 1
2
) 1

2

×
[{

P2
2 (P1 − P4)

(
1 +

(
1− 16G2P1(S1 − S0)

) 1
2
)
+ 8G2P1P2

2 P4(S1 − S0)

+P2
1 (P3 − P2)

(
1 +

(
1− 16G2P2(S2 − S0)

) 1
2
)
− 8G2P2

1 P2P3(S2 − S0)

}
(37)

×
{

P1 +
{

P2
1 − 16G2P1P2

4 (S1 − S0) + 2P4(P4 − P1)

×
(

1 +
(

1− 16G2P1(S1 − S0)
) 1

2
)} 1

2


1
2

−1

.

Here, we assume a new heat engine, which has two isobars and two isochores [13]. The
total work done along the isobars is given as W = 4P4→1 4V1→2 = (P1 − P4)(V2 − V1).
The net inflow of heat is given by

QH =
∫ T2

T1

CP(P1, T)dT

=
1

8πG

[
GP1

10π
(T5

2 − T5
1 )−

1
3
(T3

2 − T3
1 )

]
. (38)

In the FRW Universe, the thermal efficiency for the new heat engine is given by

ηNew =
W
QH

=
5G(P4 − P1)(T3

2 − T3
1 )

T3
1 T3

2
[
3GP1(T5

2 − T5
1 )− 10π(T3

2 − T3
1 )
] (39)

where Ti =
√

GPi
2π

[
1 +

(
1− 16G2Pi(Si − S0)

) 1
2

]− 1
2
, i = 1, 2.

Another thermodynamic cycle of a heat engine is the Rankine cycle [48,49], which
converts heat into mechanical work during phase transition. From the diagram of ref [49],
we observe that the working material starts from A to B for increasing temperature and
pressure. The working material goes from B to E, and a phase transition occurs between
these states from C to D due to constant temperature. After that, due to the temperature
reduction, the working material follows from E to F and returns to A by reducing its
volume. We now apply the same mechanism to the FRW Universe. From the first law
of thermodynamics, we obtain the change of enthalpy function dHP = TdS for constant
pressure (i.e., dP = 0). Thus, we obtain the enthalpy functionHP(S) =

∫
TdS for constant

pressure. Now, according to the formalism of Wei et al. [48,49], we write the efficiency for
the Rankine cycle of the heat engine for the FRW Universe as in the following form:

ηRan = 1− TA(SF − SA)

HPB
(SF)−HPB

(SA)

= 1− T1(S3 − S1)

HP2
(S3)−HP2

(S1)
(40)

where the subscripts A, B, F can be changed to 1, 2, 3, respectively. Thus, we obtain the
following form of efficiency for Rankine cycle as
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ηRan = 1− 12G2
√

P1P2 (S3 − S1)

[
1 +

(
1− 16G2P1(S1 − S0)

) 1
2
]− 1

2

×

[1 +
(

1− 16G2P2(S3 − S0)
) 1

2
] 1

2
[

2−
(

1− 16G2P2(S3 − S0)
) 1

2
]

(41)

−
[

1 +
(

1− 16G2P2(S1 − S0)
) 1

2
] 1

2
[

2−
(

1− 16G2P2(S1 − S0)
) 1

2
]−1

.

The efficiency for the Rankine cycle depends on the values of P1, P2, S0, S1 and S3.

5. Conclusions

We have considered the FRW model of the Universe, which can be treated as a
thermodynamical system. On the trapping (apparent) horizon, we have determined the
radius and temperature. Using the unified first law, we have determined the amount of
energy dE crossing the apparent horizon. Since heat is one of the forms of thermal energy,
thus the heat flow δQ through the apparent horizon = amount of energy crossing the
apparent horizon, i.e., δQ = dE. Using the first law of thermodynamics, on the apparent
horizon, we have found TdS = A(ρ + p)Hr̃hdt + Aρdr̃h. Cai et al. [30] have assumed
δQ = −dE instead of δQ = dE, and they have ignored the second term Aρdr̃h on the
apparent horizon. Since the apparent horizon is dynamical, we have assumed that dr̃h
cannot be zero. Using this consideration and Friedmann equations with the continuity
equation, we have determined the expression of entropy (on the apparent horizon) in the
form S = A

4G −
ΛA2

32πG + S0, which is the entropy-area relation. The second term occurs due
to the non-vanishing term of dr̃h. In particular, if the cosmological constant = 0, we can
recover the Bekenstein–Hawking entropy. Conversely, from the entropy-area relation, we
have obtained modified Friedmann equations. For K = 0, we can recover the original
Friedmann equations. If we consider dr̃h = 0 on the apparent horizon, then we can
recover the Bekenstein–Hawking entropy S = A

4G + S0. From original Friedmann equations
and also from modified Friedmann equations, we may obtain the same entropy. For the
thermodynamic study of the FRW Universe, the cosmological constant Λ is treated as
thermodynamical pressure P. In the thermodynamic system of the FRW Universe, we have
obtained the temperature and specific heat capacity. In addition, we have obtained the mass
inside the apparent horizon. We have determined the coefficient of thermal expansion and
isothermal compressibility. We found the critical values of entropy, temperature, volume,
and pressure. We have studied the coefficient µ for Joule–Thomson expansion in the FRW
Universe. We found µ > 0, which indicates that the FRW Universe produced a cooling
nature. The inversion pressure and inversion temperature have been obtained. Next, we
investigated the heat engine phenomena of the thermodynamical FRW Universe. For the
Carnot cycle, we have calculated the work done and the maximum efficiency. We have
also calculated the work done and the efficiency of a new heat engine. Finally, we have
determined the efficiency of the Rankine cycle in the heat engine for the FRW Universe.
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