Anisotropic Multiverse with Varying c and G and Study of Its Thermodynamics
Abstract
:1. Introduction
2. Anisotropic Model of the Universe
3. Singularities
4. Regularizing Strong Singularity with Varying
4.1. Regularizing Big Bang Singularity: Sine Model
4.2. Regularizing Big Bang and Big Rip Singularities: Tangent Model
5. Thermodynamics in the Multiverse
5.1. Thermodynamics for Varying c
5.2. Thermodynamics for Varying G
5.3. Thermodynamics for Varying c and G
6. Discussions and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carr, B. (Ed.) Universe or Multiverse; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Gibbons, G.W.; Hawking, S.W.; Siklos, S.T.C. (Eds.) Natural Inflation; The Very Early Universe Cambridge University Press: Cambridge, UK, 1983; p. 251. [Google Scholar]
- Vilenkin, A. Birth of inflationary universes. Phys. Rev. D 1983, 27, 2848. [Google Scholar] [CrossRef]
- Rebhan, E. Model of a multiverse providing the dark energy of our universe. Int. J. Mod. Phys. A 2017, 32, 1750149. [Google Scholar] [CrossRef] [Green Version]
- Robles-Perez, S.J. Observational Consequences of an Interacting Multiverse. Universe 2017, 3, 49. [Google Scholar] [CrossRef]
- Marosek, K.; Dabrowski, M.P.; Balcerzak, A. Cyclic multiverses. Mon. Not. R. Astron. Soc. 2016, 461, 2777. [Google Scholar] [CrossRef] [Green Version]
- Robles-Perez, S.; Balcerzak, A.; Dabrowski, M.P.; Kramer, M. Interuniversal entanglement in a cyclic multiverse. Phys. Rev. D 2017, 95, 083505. [Google Scholar] [CrossRef] [Green Version]
- Morais, J.; Bouhmadi-Lopez, M.; Kramer, M.; Robles-Perez, S. Pre-inflation from the multiverse: Can it solve the quadrupole problem in the cosmic microwave background? Eur. Phys. J. C 2018, 78, 240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouhmadi-Lopez, M.; Kramer, M.; Morais, J.; Robles-Perez, S. The interacting multiverse and its effect on the cosmic microwave background. JCAP 2019, 1902, 057. [Google Scholar] [CrossRef] [Green Version]
- Robles-Perez, S.; Alonso-Serrano, A.; Bastos, C.; Bertolami, O. Vacuum decay in an interacting multiverse. Phys. Lett. B 2016, 759, 328. [Google Scholar] [CrossRef] [Green Version]
- Dabrowski, M.P.; Marosek, K. Regularizing cosmological singularities by varying physical constants. J. Cosmol. Astropart. Phys. 2013, 2013, 12. [Google Scholar] [CrossRef]
- Dabrowski, M.P.; Marosek, K.; Balcerzak, A. Standard and exotic singularities regularized by varying constants. Mem. Della Soc. Astron. Ital. 2014, 85, 44. [Google Scholar]
- Albrecht, A.; Magueijo, J. A Time varying speed of light as a solution to cosmological puzzles. Phys. Rev. D 1999, 59, 043516. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D. Cosmologies with varying light speed. Phys. Rev. D 1999, 59, 043515. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Magueijo, J. Solving the flatness and quasiflatness problems in Brans-Dicke cosmologies with a varying light speed. Class. Quant. Grav. 1999, 16, 1435. [Google Scholar] [CrossRef]
- Chakraborty, S.; Chakraborty, N.C.; Debnath, U. Brans-Dicke cosmology in an anisotropic model when velocity of light varies. Int. J. Mod. Phys. D 2002, 11, 921. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Chakraborty, N.C.; Debnath, U. A Quintessence problem in selfinteracting Brans-Dicke theory. Int. J. Mod. Phys. A 2003, 18, 3315. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Chakraborty, N.C.; Debnath, U. Quintessence problem and Brans-Dicke theory. Mod. Phys. Lett. A 2003, 18, 1549. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Chakraborty, N.C.; Debnath, U. A Quintessence problem in Brans-Dicke theory with varying speed of light. Int. J. Mod. Phys. D 2003, 12, 325. [Google Scholar] [CrossRef] [Green Version]
- Thorne, K.S. Primordial Element Formation, Primordial Magnetic Fields, and the Isotropy of the Universe. Astrophys. J. 1967, 148, 51. [Google Scholar] [CrossRef]
- Tipler, F.J. Singularities in conformally flat spacetimes. Phys. Lett. A 1977, 64, 8. [Google Scholar] [CrossRef]
- Caldwell, R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 2002, 545, 23. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Galloway, G.J.; Tipler, F.J. The closed-universe recollapse conjecture. Mon. Not. R. Astron. Soc. 1986, 223, 835. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Tsujikawa, S. Properties of singularities in the (phantom) dark energy universe. Phys. Rev. D 2005, 71, 063004. [Google Scholar] [CrossRef] [Green Version]
- Dabrowski, M.P.; Denkiewicz, T. Barotropic index w-singularities in cosmology. Phys. Rev. D 2009, 79, 063521. [Google Scholar] [CrossRef]
- Frampton, P.H.; Ludwick, K.J.; Scherrer, R.J. The Little Rip. Phys. Rev. D 2011, 84, 063003. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Debnath, U. Brans-Dicke Theory in Anisotropic Model with Viscous Fluid. Grav. Cosmol. 2011, 17, 280. [Google Scholar] [CrossRef]
- Chakraborty, S.; Debnath, U. Anisotropic universe with Hessence dark energy. Int. J. Mod. Phys. D 2010, 19, 2071. [Google Scholar] [CrossRef]
- Shamir, M.F. Anisotropic Universe in f(,T) Gravity. Adv. High Energy Phys. 2017, 2017, 6378904. [Google Scholar] [CrossRef] [Green Version]
- Shamir, M.F.; Kanwal, F. Noether Symmetry Analysis of Anisotropic Universe in Modified Gravity. Eur. Phys. J. C 2017, 77, 286. [Google Scholar] [CrossRef] [Green Version]
- Shamir, M.F.; Komal, A. Energy Bounds in f(R,G) Gravity with Anisotropic Background. Int. J. Geom. Meth. Mod. Phys. 2017, 14, 1750169. [Google Scholar] [CrossRef] [Green Version]
- Collins, C.B.; Glass, E.N.; Wilkinson, D.A. Exact spatially homogeneous cosmologies. Gen. Rel. Grav. 1980, 12, 805. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debnath, U.; Nag, S. Anisotropic Multiverse with Varying c and G and Study of Its Thermodynamics. Universe 2022, 8, 398. https://doi.org/10.3390/universe8080398
Debnath U, Nag S. Anisotropic Multiverse with Varying c and G and Study of Its Thermodynamics. Universe. 2022; 8(8):398. https://doi.org/10.3390/universe8080398
Chicago/Turabian StyleDebnath, Ujjal, and Soumak Nag. 2022. "Anisotropic Multiverse with Varying c and G and Study of Its Thermodynamics" Universe 8, no. 8: 398. https://doi.org/10.3390/universe8080398