Multiple Populations in Star Clusters
Abstract
:1. Introduction
- Chemical anomalies. It has long been known that the chemical composition of stars in GCs is not homogeneous in the elements involved in hot H-burning, such as C, N, O, Na, Al, and in some cases Mg, Si, and K. The variations in these light elements set well-known chemical patterns, such as the O–Na/C–N, and the Mg–Al anticorrelations (see [6,7,8,9], for reviews). Stars with lower N and Na and higher C and O resemble Galactic-field stars with the same metallicity, while stars enhanced in N and Na and depleted in C and O are mostly found in GCs.
- Multiple sequences in the color magnitude diagram. Since the late 1990s, there has been growing evidence of split or broad main sequences (MSs), red giant branches (RGBs), and sub-giant branches (SGBs) in GCs [13,14,15,16,17,18,19,20,21]. A discovery that dates back to the past decade is that the CMDs of nearly all GCs are composed of multiple sequences that can be followed continuously, along with all evolutionary phases, from the bottom of the MS toward the RGB tip and also along the HB, the asymptotic giant branch AGB, and even the white dwarf cooling sequence [22,23,24,25,26,27].
2. Observational Tools to Disentangle Multiple Populations in GCs
- Wideband ultraviolet photometry. CMDs made with U-band photometry are powerful tools to identify multiple stellar populations along different evolutionary phases. In their aforementioned pivotal paper on the nearest GC, M4, Marino et al. [19] have demonstrated that it is possible to disentangle stellar populations with different chemical compositions by using wideband ground-based photometry. Indeed, stars with different abundances of carbon, nitrogen, oxygen, and sodium define distinct RGB sequences in the U vs. CMD. The main reason for the RGB split is that the U filter includes NH and CN molecular bands, whereas the B filter encompasses CH bands. Hence, 2P stars exhibit fainter U magnitudes and redder colors than 1P stars as a result of their enhanced nitrogen and depleted carbon abundances [19,42].
- Narrowband photometry. The Strömgren index, originally designed to measure the Balmer discontinuity strength, is also an efficient tool to detect star-to-star variations in the strength of the CN molecular bands. Since the 1990s, it has been used for detecting multiple populations along with the RGB of various GCs [14,43,44]. The set of photometric indices designed by Jae-Woo Lee and collaborators is another outstanding tool to detect multiple populations along the RGB (e.g., [45,46,47]).
- Wide color baseline. Stellar models predict that MS and RGB stars with different helium contents but the same luminosity have different effective temperatures. Hence, helium-rich stars exhibit bluer colors than stars with pristine helium abundance (Y ∼ 0.25) as a result of their hotter effective temperatures (e.g., [48,49]). The photometric signature of helium is due to the fact that helium alters the stellar structure, while the emerging flux is rather negligible [50]. Early discoveries of split MSs in GCs with large internal helium variations were based on CMDs made with the and colors [13,16,17,18,51]. Wider color baselines, such as , are more sensitive to helium variations than colors made with optical filters, thus allowing for disentangling stellar populations with small helium differences of Y = 0.01 or less [52].
- Near-Infrared photometry is an efficient tool to identify multiple populations of M dwarfs. The F110W and F160W filters of the WFC3/NIR camera onboard HST, which are similar to the J and H bands, are the most widely used filters. Indeed, the F160W band is heavily affected by absorption from various molecules that contain oxygen, including HO, while F110W photometry is poorly affected by the oxygen abundance. Since 2P stars are oxygen-depleted, they have brighter magnitudes and redder colors than the 1P [23,33].
- Two-color diagrams and pseudo color-magnitude diagrams. Two-color diagrams involving far-UV, UV, and optical filters are widely used to identify multiple populations along different evolutionary phases. The most used ones are the vs. . F225W, F343N, and F410M bands often substitute for one or more traditional filters. The reason why these filters are efficient tools to identify MPs in GCs is that F275W (or F225W) and F336W (or F343N) passbands include OH and NH molecular bands, while F438W (or F410M) comprises CN and CH bands. As a consequence, 1P stars, which are O-rich and C-rich but N-poor, are relatively bright in F336W but are fainter than 2P stars in F275W and F438W [22,53].To investigate multiple populations along all evolutionary sequences together, Milone et al. [53] combined these colors to define the pseudo-colors = ()−().
- The photometric diagram dubbed a Chromosome Map (ChM) is a pseudo-two-color diagram that is built for MS, RGB, or AGB, separately [24,55]. The main difference with a simple two-color diagram is that the sequences of MS, RGB, or AGB stars are verticalized in both dimensions in such a way that stars of each stellar population are clustered in a small area of the ChM. The ChM is derived from colors that are sensitive to the specific composition of GC stars with the aim of maximizing the separation among the distinct populations. The traditional ChMs are built by combining the color, which is mostly sensitive to helium variations, with the , which is mainly a proxy of nitrogen abundance1.Other ChMs are constructed from colors of M dwarfs made with photometry in optical (e.g., ) and NIR bands (e.g., ) to disentangle stellar populations with different oxygen abundances [57]. Recently, a ChM that includes photometry in the F280N band has been introduced and is sensitive to the magnesium content of stellar populations [58].
- The universal ChM introduced by Marino et al. [59] allows for properly comparing the maps of different GCs. It differs from the ChM because its pseudo-color extension does not depend on cluster metallicity.
- Integrated photometry. The diagrams derived from integrated pseudo-color and the color are valuable tools to detect the multiple population properties from GC integrated light [60]. Work based on 56 Galactic GCs, where multiple populations are widely studied, revealed that after the dependence from metallicity is removed, the color residuals depend on the maximum internal helium variation within GCs and on the fraction of 2P stars. Hence, this tool has the potential to extend the investigation of multiple populations outside the local group [60].
3. Classification of Globular Clusters
- GCs are grouped into two main groups of Type I and Type II based on the distribution of stars in the ChM and/or on star-to-star heavy-element variations [24,64]. Type I GCs, which comprise the majority of Galactic GCs, host two main populations of 1P and 2P stars with similar metallicity but different abundances of some light elements. The second group of GCs, dubbed Type II GCs, comprises about 15–20% of the Milky Way GCs studied through the ChM. Type II GCs are characterized by at least one of these properties:
- Two or more sequences in the ChM. In addition to ChM composed of 1P and 2P stars, they show at least an additional sequence running on the red side of the main map [24].
- Another classification is based on the color distance between the RGB and the reddest part of the HB ([76], L1). By adopting the names of the prototype GCs, we define M3-like those GCs with , while the remaining clusters are named M13-like GCs. The HB of M3-like is well populated on the red side of the RR Lyrae instability strip, whereas in M13-like GCs, stars redder than the RR Lyrae are very few [76,77]. Other differences between these two groups of GCs comprise the evidence that (i) their SGBs have different slopes [78] and (ii) M3-like GCs exhibit less extended 1G ChM sequences than M13-like GCs with similar metallicities [79]. As an example, Figure 4 compares the CMDs and the ChMs of the prototype GCs M3 and M13.
4. Formation Scenarios
4.1. The Asymptotic Giant Branch Scenario
4.2. Fast-Rotating Massive Star Scenario
4.3. Massive Interacting Binaries
4.4. Multiple Stellar Populations as a Case of Cooling
4.5. The Super-Massive-Star Scenarios
4.6. Stellar Mergers
5. The Chemical Composition of Multiple Populations
5.1. Helium
5.2. Lithium
5.3. Light Elements
- Carbon, Nitrogen, Oxygen, and Sodium. 2P stars are enhanced in N and Na and depleted in C and O compared to 1P stars. These elements depict well-defined patterns such as the Na–O and C–N anticorrelations and Na–N and C–O correlations, which are ubiquitous features of GCs with multiple populations [6,122]5.
- Magnesium, Aluminum, and Silicon. Significant Mg and Si variations are present in a restricted number of massive GCs only, and the spread in [Mg/Fe] is typically wider in low-metallicity clusters. In contrast, aluminum variations are observed in nearly all GCs with [Al/Fe] correlating with [Na/Fe] (e.g., [128,129]). GCs with internal variations in these elements exhibit an Mg–Al anticorrelation and an Si–Al correlation. In these clusters, 2P stars are depleted in Mg and enhanced in Al and Si with respect to the 1P.
5.4. Metallicity Variations in Globular Clusters
5.4.1. The Chemical Inhomogeneity of 1P Stars
5.4.2. Chemical Composition of Type II, ‘Anomalous’ GCs
- M54, which is associated with the Sagittarius dwarf spheroidal. The fact that this cluster is located in the nucleus of a dwarf galaxy and belongs to the class of Type II GCs corroborates the idea that Type II GCs are naked nuclei of dwarf galaxies. Indeed, when the Sagittarius will be entirely stripped off by tidal interactions with the Milky Way, M54 will be deprived of its surrounding galaxy and will be almost indistinguishable from the other Type II GCs.
- The most massive Galactic GC, Centauri, exhibits large variations in metallicity, s-process elements, and overall C+N+O content [138,148,149,150]. Due to its extreme chemical composition, and retrograde orbit, Centauri is considered by many to be the surviving nucleus of a dwarf galaxy [151], an hypothesis reinforced by the recent discovery of tidal debris [152].
- Terzan 5 is the most metal-rich GC with metallicity variations. It hosts at least two main stellar populations with [Fe/H] 0.2 and [Fe/H] 0.3. Together with NGC 6388, it is a Type II GC located in the Galactic Bulge. Due to its metal content, it has been suggested that it is the remnant of a building block of the Bulge [157,158,159].
- The metal-poor GC M15 ([Fe/H] ) hosts two groups of stars with the same iron abundance but different content of barium and europium, in contrast to most GCs that have constant [Eu/Fe]. Hence, the nucleosynthetic history seems dominated more by the r-process than material in solar system [160]. Each group of r-poor and r-rich stars exhibit a distinct Na–O anticorrelation as observed for s-rich and s-poor stars of M22 and other Type II GCs. The red population of the ChM of M15 hosts the ∼5% only of the total number of stars [161], whereas the two groups of r-rich and r-poor stars have comparable numbers of stars. As a consequence, there is no correspondence between red RGB stars of the ChM and stars with different content of r-elements.
6. The Properties of Multiple Populations
- A widespread phenomenon. The recent surveys of GCs have revealed that multiple populations are present in most studied Galactic GCs [24,25].Remarkable examples of simple population Galactic GCs comprise Ruprecht 106 and Terzan 7, which according to both spectroscopic studies and multiband photometry are consistent with simple populations [162,163,164]. Additional candidate simple population GCs comprise AM1, Eridanus, Palomar 3, Palomar 4, Palomar 14, and Pyxis, as inferred from their HB morphology [76,165].
- GC specificity. While 2P stars are present in nearly all GCs, they are rare in the Milky Way field, where they constitute only a few percent (∼1–3 %) of the field stars in the Galactic Halo (e.g., [166,167]) and in the inner Galaxy [168]. However, recent work suggests that at 1.5 kpc from the Milky Way center, 2P stars include 16.8% of the total halo mass. The fraction drops to 2.7% at 10 kpc [169]. These stars are generally thought to be either former members of dissolved GCs or stars of existing GCs that are lost into the field through interactions with the Milky Way (e.g., [170]). As an alternative, it has been also speculated that 2P stars are not a distinctive feature of GCs but also form in other stellar systems (e.g., [168]).
- Variety. GCs host different numbers of stellar populations, and the extension and morphology of the ChM changes from one cluster to another [24,106]. Moreover, the number of distinct sub-populations ranges from 2 (as in NGC 6535) to more than 17 in Centauri [24,171]. The collection of ChMs plotted in Figure 7 highlights the variety of the multiple population phenomenon.
- 1P-2P discreteness. The ChMs of most GCs are composed of two main clumps of 1P and 2P stars. Although a few stars often populate the region of the ChM between the clumps, 1P and 2P stars are typically associated with discrete stellar populations in contrast to a continuous stellar distribution. The distribution of 2P stars in the ChM changes from one cluster to another. In some GCs, such as NGC 2808, we observe distinct stellar clumps, whereas 2P stars of other clusters (e.g., NGC 5272) exhibit nearly continuous pseudo-color distributions. In contrast, stellar clumps among 1P stars are quite rare, with NGC 2808 being a possible exception.
6.1. Dependence on Cluster Mass
- In Milky Way GCs, the fraction of 2P stars ranges from less than 40%, in low-mass clusters such as NGC 6362 to more than 90% in the most massive GC, Centauri. As shown in the left panel of Figure 8, the fraction of 1P stars significantly anticorrelates with present-day cluster mass, and the significance of the anticorrelation increases when initial mass estimates are considered [24,106,141]. Additional relations involving the fraction of 1P stars comprise (i) a strong anticorrelation with the present-day mass of the 2P but (ii) a mild anticorrelation with the present-day mass of 1P stars [106].
- The internal variations in some light elements also depend on cluster mass (right panels of Figure 8). As an example, the and RGB widths, which are proxies of nitrogen abundance, correlate with cluster mass [24,164], in close analogy with what is observed for the color width of the MS below the knee [33], which is indicative of oxygen internal variations. Similarly, the maximum internal variation of helium strongly correlates with cluster mass (right panel of Figure 8, [61]).
6.2. Dependence on Cluster Orbit
6.3. Multiple Populations and Stellar Mass
- Deep HST photometry in NIR bands allowed disentangling the three distinct stellar populations of NGC 6752 below the MS knee and constraining their oxygen abundances. The discovery that the relative oxygen values of multiple populations among VLM stars and more massive (∼0.8) RGB stars are consistent with each other suggests that the chemical composition of multiple populations does not depend on stellar mass [176]. A similar conclusion is provided for 1P and 2P stars of M4 [177].
- Dondoglio et al. [33] first derived the MFs of the multiple populations of NGC 2808 and M4 over the mass interval between ∼0.25 and 0.80 . The conclusion is that 1P and 2P stars share similar MFs and that the relative numbers of 1P and 2P stars are constant over the analyzed mass interval. Similar results have been found for NGC 6752, where the fractions of stars in the three populations do not change with cluster mass [176].
6.4. Multiple Populations along the Asymptotic Giant Branch
6.5. Binaries and Multiple Populations
6.6. Spatial Distribution of Multiple Populations
6.7. Internal Kinematics of Multiple Populations
6.8. Multiple Populations and Cluster Age
6.9. Multiple Populations and Their Parent Galaxy
7. The Second-Parameter Problem of the Horizontal Branch Morphology
The Mass Loss Law for 1P Stars and Simple Population Clusters
8. The Extended Main Sequence Turn-Off Phenomenon
- The extended MS turn off (eMSTO) is the most prominent feature indicating that the CMDs of young Magellanic-Cloud Clusters are not consistent with simple populations. The eMSTO is visible both in CMDs composed of optical filters alone and CMDs that comprise UV photometry. In contrast, other CMD sequences, such as the MS, RGB, and the AGB, are narrow and well-defined, thus ruling out the possibility that the eMSTO is due to differential reddening or observational errors. As an example, we plot in Figure 10 the CMD of NGC 1846 and highlight its eMSTO in the inset. The eMSTO was first detected by Bertelli et al. [237] and Mackey and Broby Nielsen [238] in the LMC clusters NGC 2173 and NGC 1846. It is a universal feature of Magellanic Cloud Clusters with ages between ∼20 Myr and ∼2 Gyr [239,240,241].
- In addition to the eMSTO, star clusters younger than ∼800 Myr exhibit split MSs, with the red MS hosting the majority of MS stars [242,243,244]. In all clusters, the two MSs merge together for stellar masses smaller than ∼1.5–1.6, which is the mass limit where MS stars would be magnetically braked [219].
- Ubiquity. They are observed in all LMC and SMC clusters younger than ∼2 Gyr, for which appropriate datasets are available [240]. The eMSTOs and split MSs, initially observed in Magellanic-Cloud Clusters, have been recently observed in several Galactic open clusters in the same age interval [249,250,251,255,256], thus suggesting that they are a general characteristic of young clusters.
- Dependence on stellar mass. The relative numbers of stars in the blue and red MS depends on stellar mass. The fraction of blue MS stars declines from ∼30% among ∼4 stars to ∼15% for masses of ∼3. Then, it rises up to ∼35% toward . The fraction of blue MS stars in SMC clusters seems smaller than that of LMC clusters, thus suggesting a possible dependence from either the host galaxy or cluster metallicity. However, the small number of studied SMC clusters with split MS prevents us from making a firm conclusion.
- No dependence on cluster mass. For a fixed interval of stellar masses, clusters with different masses and ages share a similar fraction of blue and red MS stars [240].
- They exhibit broadened or dual red clump [257]. Dual clumps are interpreted as two main groups of red clump stars. One of them would avoid e degeneracy settling in their H-exhausted cores when He ignites. The second group would include slightly less massive stars that experience e-degeneracy before He ignition, thus reaching higher brightness [257,258].
- Very recently, high-precision photometry in the F275W band of the WFC3/UVIS camera onboard HST resulted in a new finding. The ∼1.7 Gyr-old cluster NGC 1783 hosts a population of A-type stars that define a cloud of points with redder F275W−F438W and F336W−F814W colors than the bulk of MS stars. When observed in optical diagrams, such as the vs. CMD, these stars distribute along a sequence in the middle of the eMSTO (see Figure 11). We tentatively attribute the colors of these stars, dubbed UV-dim stars, to circumstellar dust [259]. Clearly, further investigation is needed to understand this new phenomenon and its possible relation with the multiple MSs and eMSTOs.
The Origin of eMSTOs and Split MSs
9. Towards the Understanding of the Multiple Population Phenomenon
- Recently, the photometric diagram dubbed ChMs has revealed extended sequences of 1P stars, possibly indicating that the pristine material from which GC formed was not chemically homogeneous. The synergy of multiband photometry [56,61,79] and high-precision spectroscopy [64,146] will allow us to infer very precise chemical abundances for GC stars and constrain the tiny star-to-star elemental variations within each stellar population. Is metallicity variation the only factor responsible for the extended 1P sequences in every GC, as inferred from accurate photometric and spectroscopic studies of a few clusters [64,79]? Can we exclude that 1P stars exhibit internal helium variations as speculated by early studies on the ChMs [61]? To what extent are star-to-star metallicity variations present among 2P stars? Understanding the physical reasons for this new phenomenon is crucial to constrain the chemical composition of the primordial clouds from which 1P formed and reconstruct the series of events that led to the formation of the 2P.
- Work based on N-body simulations of GC stars has shown that the frequency of binaries among multiple populations and their 3D kinematics and spatial distributions would provide information on the initial configuration of 1P and 2P stars [198,205,275,276]. Nevertheless, observational constraints are provided for a handful of GCs only [201,204,209,210,211,212,277]. Moreover, these studies are often limited to the central cluster regions, where the initial configuration of 1P and 2P stars have been erased by the GC dynamical evolution. We opine that homogeneous and extensive investigation of internal proper motions, radial velocities, and spatial distributions of 1P and 2P stars, together with accurate determinations of the frequency of binaries among multiple populations over the entire cluster, will lead to important information on the origin of multiple populations.
- It is now widely accepted that some properties of multiple populations, such as the maximum internal variation of helium and nitrogen, mostly depend on cluster mass. To understand the formation process, it would be important to understand whether or not other parameters (e.g., age) govern the multiple population phenomenon. Conclusions on mass are mainly based on the investigation of homogeneous photometry of ∼60 GCs that represent only about one fourth of the Milky-Way GCs. Elemental abundances from spectroscopy are available for an even smaller sample of clusters. To fully understand the dependence of multiple populations, it is mandatory to increase the number of clusters with homogeneous chemical-abundance determination.
- Most of the studies on multiple populations are based on stars more massive than ∼0.6, which is a small fraction of GC stars. Indeed, it is challenging to derive precise spectroscopy or UV photometry of faint low-mass stars. The JWST will certainly provide detailed information of multiple populations among very low-mass stars by means of IR photometry and low-resolution spectra. The exploration of the M dwarf realm and the comparison of some multiple population properties, such as mass functions and chemical compositions, in this very low-mass regime with those of more massive GC stars have the potential of disentangling among the formation scenarios.
- It is crucial to understand whether the eMSTO observed in star clusters younger than ∼2 Gyr are entirely due to stellar rotation, or if at least some clusters host multiple stellar generations. Are the eMSTOs and the multiple populations observed in old GCs two different aspects of the same phenomenon? What are the physical reasons responsible for stellar populations with different rotation rates in young star clusters?The MS turn-on is very sensitive to cluster age while poorly affected by rotation. Pioneering work shows that the turn-on is an exquisite clock that can be used to precisely date the stellar populations in young clusters and disentangle the effect of age and rotation [272]. Furthermore, the investigation of new features of the CMDs of young clusters such as the recently discovered ‘UV-dim’ stars would provide new insights on the eMSTO phenomenon [259].
- Asteroseismology is a novel and powerful tool to estimate stellar masses. Future space missions dedicated to high-precision, high-cadence, long photometric series in dense stellar fields such as the proposed HAYDN mission [278] can provide accurate asteroseismic constraints for GC stars. As an example, it will be possible to infer the amount of RGB mass loss of 1P and 2P stars, thus providing further insights on the impact of mass loss on the HB morphology. Moreover, the asteroseismic masses will allow us to gather new estimates of the helium content of multiple populations that are not based neither on isochrones nor on spectroscopy. Indeed, for a fixed luminosity, age, and metallicity, the mass of MS, SGB, and RGB stars depend on their helium abundances. We refer to papers by Miglio et al. [279] and Tailo et al. [280] for pioneering studies on stellar populations in GCs based on asteroseismology.
- Direct observations of newly born GCs in the early Universe would allow us to understand whether GC precursors were significantly more massive than their present-day counterparts or not. We expect that next-generation telescopes such as JWST and ELT will have the potential to detect forming GCs at high redshift and constrain their masses, thus addressing one of the main questions raised by the multiple population phenomenon [5].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
1 | The most used ChMs are derived for RGB stars from the vs. CMD and the vs. pseudo-CMD. The first step for building the ChM consists in deriving the red and blue boundaries of the RGB in both diagrams. Each diagram is then verticalized in such a way that the red and blue RGB boundaries translate into vertical segments. Specifically, for each star we calculate the quantities and . Here, , and ‘fiducial R’ and ‘fiducial B’ correspond to the red and the blue RGB boundaries. and are the RGB widths in the corresponding diagrams and are calculated 2.0 F814W mag above the MS turn off. The traditional ChM is obtained by plotting as a function of for RGB stars. A similar procedure is used to derive the ChM of MS and AGB. We refer to Milone et al. [24], Milone et al. [56] for details. |
2 | The MS knee is a typical feature of NIR CMDs of stellar populations. It is the result of two competing phenomena that involve MS stars less massive than ∼0.4. On one side, the increase of the collision-induced absorption of molecule moves the stellar flux to the blue. On the other side, the decrease in effective temperature, together with the increase of shift the color of stars to the red [62,63]. |
3 | A major limitation in investigating the lithium abundance of GC stars is that due to lithium destruction in stellar interiors the [Li/H] value strongly depends on the evolutionary phase. As illustrated in accurate spectroscopic study of the metal-poor GC NGC 6397, we observe nearly constant [Li/H] among MS stars. Such a lithium plateau is followed by first a drop in the middle of the SGB, which is associated to the first dredge-up, and a second one that corresponds to the RGB bump [115]. As a consequence, the investigation of relative lithium abundances among multiple populations is limited to stars fainter than the RGB bump in the same evolutionary phase. |
4 | The Cameron–Fowler mechanism can produce lithium in intermediate-mass AGB stars. Convection brings to the outer layers the products of the reaction He()Be, which takes place in the stellar interiors. Lithium is then produced via the reaction Be(). |
5 | |
6 | The fact that observational errors depend on radial distance provides a major challenge in properly identifying the distinct populations across the GC field of view and in deriving their radial and spatial distributions. For this reason, we only consider those clusters where it is possible to clearly disentangle 1P and 2P stars. |
7 |
References
- Frebel, A.; Norris, J.E. Near-Field Cosmology with Extremely Metal-Poor Stars. Annu. Rev. Astron. Astrophys. 2015, 53, 631–688. [Google Scholar] [CrossRef] [Green Version]
- Renzini, A.; Buzzoni, A. Global properties of stellar populations and the spectral evolution of galaxies. In Spectral Evolution of Galaxies; Chiosi, C., Renzini, A., Eds.; Springer: Berlin, Germany, 1986; Volume 122, pp. 195–231. [Google Scholar] [CrossRef]
- Dotter, A.; Sarajedini, A.; Anderson, J.; Aparicio, A.; Bedin, L.R.; Chaboyer, B.; Majewski, S.; Marín-Franch, A.; Milone, A.; Paust, N.; et al. The ACS Survey of Galactic Globular Clusters. IX. Horizontal Branch Morphology and the Second Parameter Phenomenon. Astrophys. J. 2010, 708, 698–716. [Google Scholar] [CrossRef] [Green Version]
- Madau, P.; Dickinson, M. Cosmic Star-Formation History. Annu. Rev. Astron. Astrophys. 2014, 52, 415–486. [Google Scholar] [CrossRef] [Green Version]
- Renzini, A. Finding forming globular clusters at high redshifts. Mon. Not. R. Astron. Soc. Lett. 2017, 469, L63–L67. [Google Scholar] [CrossRef]
- Kraft, R.P. Abundance Differences among Globular Cluster Giants: Primordial vs. Evolutionary Scenarios. Publ. Astron. Soc. Pac. 1994, 106, 553. [Google Scholar] [CrossRef]
- Gratton, R.; Sneden, C.; Carretta, E. Abundance Variations Within Globular Clusters. Annu. Rev. Astron. Astrophys. 2004, 42, 385–440. [Google Scholar] [CrossRef] [Green Version]
- Gratton, R.G.; Carretta, E.; Bragaglia, A. Multiple populations in globular clusters. Lessons learned from the Milky Way globular clusters. Astron. Astrophys. Rev. 2012, 20, 50. [Google Scholar] [CrossRef] [Green Version]
- Gratton, R.; Bragaglia, A.; Carretta, E.; D’Orazi, V.; Lucatello, S.; Sollima, A. What is a globular cluster? An observational perspective. Astron. Astrophys. Rev. 2019, 27, 8. [Google Scholar] [CrossRef] [Green Version]
- Sandage, A.; Wildey, R. The Anomalous Color-Magnitude Diagram of the Remote Globular Cluster NGC 7006. Astrophys. J. 1967, 150, 469. [Google Scholar] [CrossRef]
- Van den Bergh, S. Old Stellar Populations. J. R. Astron. Soc. Can. 1965, 59, 151. [Google Scholar]
- Catelan, M. Horizontal branch stars: The interplay between observations and theory, and insights into the formation of the Galaxy. Astrophys. Space Sci. 2009, 320, 261–309. [Google Scholar] [CrossRef]
- Anderson, A.J. Mass Segregation in Globular Clusters M92, 47 Tucanae, and Omega Centauri. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1997. [Google Scholar]
- Grundahl, F.; VandenBerg, D.A.; Andersen, M.I. Strömgren Photometry of Globular Clusters: The Distance and Age of M13, Evidence for Two Populations of Horizontal-Branch Stars. Astrophys. J. 1998, 500, L179–L182. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.W.; Joo, J.M.; Sohn, Y.J.; Rey, S.C.; Lee, H.C.; Walker, A.R. Multiple stellar populations in the globular cluster ω Centauri as tracers of a merger event. Nature 1999, 402, 55–57. [Google Scholar] [CrossRef]
- Bedin, L.R.; Piotto, G.; Anderson, J.; Cassisi, S.; King, I.R.; Momany, Y.; Carraro, G. ω Centauri: The Population Puzzle Goes Deeper. Astrophys. J. 2004, 605, L83–L136. [Google Scholar] [CrossRef] [Green Version]
- D’Antona, F.; Bellazzini, M.; Caloi, V.; Pecci, F.F.; Galleti, S.; Rood, R.T. A Helium Spread among the Main-Sequence Stars in NGC 2808. Astrophys. J. 2005, 631, 868–878. [Google Scholar] [CrossRef] [Green Version]
- Piotto, G.; Bedin, L.R.; Anderson, J.; King, I.R.; Cassisi, S.; Milone, A.P.; Villanova, S.; Pietrinferni, A.; Renzini, A. A Triple Main Sequence in the Globular Cluster NGC 2808. Astrophys. J. 2007, 661, L53–L56. [Google Scholar] [CrossRef] [Green Version]
- Marino, A.F.; Villanova, S.; Piotto, G.; Milone, A.P.; Momany, Y.; Bedin, L.R.; Medling, A.M. Spectroscopic and photometric evidence of two stellar populations in the Galactic globular cluster NGC 6121 (M 4). Astron. Astrophys. 2008, 490, 625–640. [Google Scholar] [CrossRef]
- Yong, D.; Grundahl, F. An Abundance Analysis of Bright Giants in the Globular Cluster NGC 1851. Astrophys. J. 2008, 672, L29. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Bedin, L.R.; Piotto, G.; Anderson, J.; King, I.R.; Sarajedini, A.; Dotter, A.; Chaboyer, B.; Marín-Franch, A.; Majewski, S.; et al. The ACS Survey of Galactic Globular Clusters. III. The Double Subgiant Branch of NGC 1851. Astrophys. J. 2008, 673, 241–250. [Google Scholar] [CrossRef]
- Milone, A.P.; Piotto, G.; Bedin, L.R.; King, I.R.; Anderson, J.; Marino, A.F.; Bellini, A.; Gratton, R.; Renzini, A.; Stetson, P.B.; et al. Multiple Stellar Populations in 47 Tucanae. Astrophys. J. 2012, 744, 58. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Marino, A.F.; Cassisi, S.; Piotto, G.; Bedin, L.R.; Anderson, J.; Allard, F.; Aparicio, A.; Bellini, A.; Buonanno, R.; et al. The Infrared Eye of the Wide-Field Camera 3 on the Hubble Space Telescope Reveals Multiple Main Sequences of Very Low Mass Stars in NGC 2808. Astrophys. J. 2012, 754, L34. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Piotto, G.; Renzini, A.; Marino, A.F.; Bedin, L.R.; Vesperini, E.; D’Antona, F.; Nardiello, D.; Anderson, J.; King, I.R.; et al. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters—IX. The Atlas of multiple stellar populations. Mon. Not. R. Astron. Soc. Lett. 2017, 464, 3636–3656. [Google Scholar] [CrossRef] [Green Version]
- Piotto, G.; Milone, A.P.; Bedin, L.R.; Anderson, J.; King, I.R.; Marino, A.F.; Nardiello, D.; Aparicio, A.; Barbuy, B.; Bellini, A.; et al. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. I. Overview of the Project and Detection of Multiple Stellar Populations. Astron. J. 2015, 149, 91. [Google Scholar] [CrossRef] [Green Version]
- Lagioia, E.P.; Milone, A.P.; Marino, A.F.; Tailo, M.; Renzini, A.; Carlos, M.; Cordoni, G.; Dondoglio, E.; Jang, S.; Karakas, A.; et al. Multiple Stellar Populations in Asymptotic Giant Branch Stars of Galactic Globular Clusters. Astrophys. J. 2021, 910, 6. [Google Scholar] [CrossRef]
- Bellini, A.; Anderson, J.; Salaris, M.; Cassisi, S.; Bedin, L.R.; Piotto, G.; Bergeron, P. A Double White-dwarf Cooling Sequence in ω Centauri. Astrophys. J. 2013, 769, L32. [Google Scholar] [CrossRef] [Green Version]
- Marino, A.F.; Villanova, S.; Milone, A.P.; Piotto, G.; Lind, K.; Geisler, D.; Stetson, P.B. Sodium-Oxygen Anticorrelation Among Horizontal Branch Stars in the Globular Cluster M4. Astrophys. J. 2011, 730, L16. [Google Scholar] [CrossRef] [Green Version]
- Cottrell, P.L.; Da Costa, G.S. Correlated cyanogen and sodium anomalies in the globular clusters 47 TUC and NGC 6752. Astrophys. J. 1981, 245, L79–L82. [Google Scholar] [CrossRef]
- Dantona, F.; Gratton, R.; Chieffi, A. CNO self-pollution in globular clusters; a model and its possible observational tests. Mem. Della Soc. Astron. Ital. 1983, 54, 173–198. [Google Scholar]
- D’Ercole, A.; Vesperini, E.; D’Antona, F.; McMillan, S.L.W.; Recchi, S. Formation and dynamical evolution of multiple stellar generations in globular clusters. Mon. Not. R. Astron. Soc. Lett. 2008, 391, 825–843. [Google Scholar] [CrossRef] [Green Version]
- Denissenkov, P.A.; Hartwick, F.D.A. Supermassive stars as a source of abundance anomalies of proton-capture elements in globular clusters. Mon. Not. R. Astron. Soc. Lett. 2014, 437, L21–L25. [Google Scholar] [CrossRef]
- Dondoglio, E.; Milone, A.P.; Renzini, A.; Vesperini, E.; Lagioia, E.P.; Marino, A.F.; Bellini, A.; Carlos, M.; Cordoni, G.; Jang, S.; et al. Survey of multiple populations in globular clusters among very low-mass stars. arXiv 2022, arXiv:2201.08631. [Google Scholar] [CrossRef]
- Bastian, N.; Lamers, H.J.G.L.M.; de Mink, S.E.; Longmore, S.N.; Goodwin, S.P.; Gieles, M. Early disc accretion as the origin of abundance anomalies in globular clusters. Mon. Not. R. Astron. Soc. Lett. 2013, 436, 2398–2411. [Google Scholar] [CrossRef] [Green Version]
- Gieles, M.; Charbonnel, C.; Krause, M.G.H.; Hénault-Brunet, V.; Agertz, O.; Lamers, H.J.G.L.M.; Bastian, N.; Gualandris, A.; Zocchi, A.; Petts, J.A. Concurrent formation of supermassive stars and globular clusters: Implications for early self-enrichment. Mon. Not. R. Astron. Soc. Lett. 2018, 478, 2461–2479. [Google Scholar] [CrossRef] [Green Version]
- Bastian, N.; Lardo, C. Multiple Stellar Populations in Globular Clusters. Annu. Rev. Astron. Astrophys. 2018, 56, 83–136. [Google Scholar] [CrossRef] [Green Version]
- Cassisi, S.; Salaris, M. Multiple populations in massive star clusters under the magnifying glass of photometry: Theory and tools. Annu. Rev. Astron. Astrophys. 2020, 28, 83–136. [Google Scholar] [CrossRef]
- Sneden, C.; Kraft, R.P.; Prosser, C.F.; Langer, G.E. Oxygen Abundance in Halo Giants. I. Giants in the Very Metal-poor Globular Clusters M92 and M15 and the Metal-Poor Halo Field. Astron. J. 1991, 102, 2001. [Google Scholar] [CrossRef]
- Sneden, C.; Kraft, R.P.; Prosser, C.F.; Langer, G.E. Oxygen Abundances in Halo Giants. III. Giants in the Mildly Metal-Poor Globular Cluster M5. Astron. J. 1992, 104, 2121. [Google Scholar] [CrossRef]
- Anderson, J.; King, I.R. Toward High-Precision Astrometry with WFPC2. I. Deriving an Accurate Point-Spread Function. Publ. Astron. Soc. Pac. 2000, 112, 1360–1382. [Google Scholar] [CrossRef]
- Anderson, J.; Sarajedini, A.; Bedin, L.R.; King, I.R.; Piotto, G.; Reid, I.N.; Siegel, M.; Majewski, S.R.; Paust, N.E.Q.; Aparicio, A.; et al. The Acs Survey of Globular Clusters. V. Generating a Comprehensive Star Catalog for each Cluster. Astron. J. 2008, 135, 2055–2073. [Google Scholar] [CrossRef]
- Sbordone, L.; Salaris, M.; Weiss, A.; Cassisi, S. Photometric signatures of multiple stellar populations in Galactic globular clusters. Astron. Astrophys. 2011, 534, A9. [Google Scholar] [CrossRef] [Green Version]
- Grundahl, F. Globular Cluster Ages and Strömgren CCD Photometry. In Spectrophotometric Dating of Stars and Galaxies; Hubeny, I., Heap, S., Cornett, R., Eds.; ASP: San Francisco, CA, USA, 1999; Volume 192, p. 223. [Google Scholar]
- Yong, D.; Grundahl, F.; Johnson, J.A.; Asplund, M. Nitrogen Abundances in Giant Stars of the Globular Cluster NGC 6752. Astrophys. J. 2008, 684, 1159–1169. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W. Multiple Stellar Populations of Globular Clusters from Homogeneous Ca-CN Photometry. II. M5 (NGC 5904) and a New Filter System. Astrophys. J. 2017, 844, 77. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.W. Multiple Stellar Populations of Globular Clusters from Homogeneous Ca-CN Photometry. IV. Toward Precision Populational Tagging. Astrophys. J. 2019, 872, 41. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.; Lee, Y.W.; Pasquato, M.; Han, S.I.; Roh, D.G. Reversed Trend of Radial Distribution of Subpopulations in the Globular Clusters NGC 362 and NGC 6723. Astrophys. J. 2016, 832, 99. [Google Scholar] [CrossRef] [Green Version]
- D’Antona, F.; Caloi, V.; Montalbán, J.; Ventura, P.; Gratton, R. Helium variation due to self-pollution among Globular Cluster stars. Consequences on the horizontal branch morphology. Astron. Astrophys. 2002, 395, 69–75. [Google Scholar] [CrossRef]
- Norris, J.E. The Helium Abundances of ω Centauri. Astrophys. J. 2004, 612, L25–L28. [Google Scholar] [CrossRef]
- Girardi, L.; Castelli, F.; Bertelli, G.; Nasi, E. On the effect of helium enhancement on bolometric corrections and Teff-colour relations. Astron. Astrophys. 2007, 468, 657–662. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Piotto, G.; King, I.R.; Bedin, L.R.; Anderson, J.; Marino, A.F.; Momany, Y.; Malavolta, L.; Villanova, S. Multiple Stellar Populations in the Galactic Globular Cluster NGC 6752. Astrophys. J. 2010, 709, 1183–1194. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Marino, A.F.; Piotto, G.; Bedin, L.R.; Anderson, J.; Aparicio, A.; Cassisi, S.; Rich, R.M. A Double Main Sequence in the Globular Cluster NGC 6397. Astrophys. J. 2012, 745, 27. [Google Scholar] [CrossRef]
- Milone, A.P.; Marino, A.F.; Piotto, G.; Bedin, L.R.; Anderson, J.; Aparicio, A.; Bellini, A.; Cassisi, S.; D’Antona, F.; Grundahl, F.; et al. A WFC3/HST View of the Three Stellar Populations in the Globular Cluster NGC 6752. Astrophys. J. 2013, 767, 120. [Google Scholar] [CrossRef] [Green Version]
- Monelli, M.; Milone, A.P.; Stetson, P.B.; Marino, A.F.; Cassisi, S.; del Pino Molina, A.; Salaris, M.; Aparicio, A.; Asplund, M.; Grundahl, F.; et al. The SUMO project I. A survey of multiple populations in globular clusters. Mon. Not. R. Astron. Soc. Lett. 2013, 431, 2126–2149. [Google Scholar] [CrossRef]
- Milone, A.P.; Marino, A.F.; Piotto, G.; Bedin, L.R.; Anderson, J.; Renzini, A.; King, I.R.; Bellini, A.; Brown, T.M.; Cassisi, S.; et al. The Hubble Space Telescope UV Legacy Survey of galactic globular clusters—II. The seven stellar populations of NGC 7089 (M2)☆. Mon. Not. R. Astron. Soc. Lett. 2015, 447, 927–938. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Marino, A.F.; Piotto, G.; Renzini, A.; Bedin, L.R.; Anderson, J.; Cassisi, S.; D’Antona, F.; Bellini, A.; Jerjen, H.; et al. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. III. A Quintuple Stellar Population in NGC 2808. Astrophys. J. 2015, 808, 51. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Marino, A.F.; Bedin, L.R.; Anderson, J.; Apai, D.; Bellini, A.; Bergeron, P.; Burgasser, A.J.; Dotter, A.; Rees, J.M. The HST large programme on ω Centauri—I. Multiple stellar populations at the bottom of the main sequence probed in NIR-Optical. Mon. Not. R. Astron. Soc. Lett. 2017, 469, 800–812. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Marino, A.F.; Renzini, A.; Li, C.; Jang, S.; Lagioia, E.P.; Tailo, M.; Cordoni, G.; Carlos, M.; Dondoglio, E. A chromosome map to unveil stellar populations with different magnesium abundances. The case of ω Centauri. Mon. Not. R. Astron. Soc. Lett. 2020, 497, 3846–3859. [Google Scholar] [CrossRef]
- Marino, A.F.; Milone, A.P.; Sills, A.; Yong, D.; Renzini, A.; Bedin, L.R.; Cordoni, G.; D’Antona, F.; Jerjen, H.; Karakas, A.; et al. Chemical Abundances along the 1G Sequence of the Chromosome Maps: The Globular Cluster NGC 3201. Astrophys. J. 2019, 887, 91. [Google Scholar] [CrossRef] [Green Version]
- Jang, S.; Milone, A.P.; Lagioia, E.P.; Tailo, M.; Carlos, M.; Dondoglio, E.; Martorano, M.; Mohandasan, A.; Marino, A.F.; Cordoni, G.; et al. Integrated Photometry of Multiple Stellar Populations in Globular Clusters. Astrophys. J. 2021, 920, 129. [Google Scholar] [CrossRef]
- Milone, A.P.; Marino, A.F.; Renzini, A.; D’Antona, F.; Anderson, J.; Barbuy, B.; Bedin, L.R.; Bellini, A.; Brown, T.M.; Cassisi, S.; et al. The Hubble Space Telescope UV legacy survey of galactic globular clusters—XVI. The helium abundance of multiple populations. Mon. Not. R. Astron. Soc. Lett. 2018, 481, 5098–5122. [Google Scholar] [CrossRef] [Green Version]
- Saumon, D.; Bergeron, P.; Lunine, J.I.; Hubbard, W.B.; Burrows, A. Cool Zero-Metallicity Stellar Atmospheres. Astrophys. J. 1994, 424, 333. [Google Scholar] [CrossRef]
- Baraffe, I.; Chabrier, G.; Allard, F.; Hauschildt, P.H. Evolutionary models for metal-poor low-mass stars. Lower main sequence of globular clusters and halo field stars. Astron. Astrophys. 1997, 327, 1054–1069. [Google Scholar]
- Marino, A.F.; Milone, A.P.; Renzini, A.; D’Antona, F.; Anderson, J.; Bedin, L.R.; Bellini, A.; Cordoni, G.; Lagioia, E.P.; Piotto, G.; et al. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters—XIX. A chemical tagging of the multiple stellar populations over the chromosome maps. Mon. Not. R. Astron. Soc. Lett. 2019, 487, 3815–3844. [Google Scholar] [CrossRef]
- Han, S.I.; Lee, Y.W.; Joo, S.J.; Sohn, S.T.; Yoon, S.J.; Kim, H.S.; Lee, J.W. The Presence of Two Distinct Red Giant Branches in the Globular Cluster NGC 1851. Astrophys. J. 2009, 707, L190–L194. [Google Scholar] [CrossRef] [Green Version]
- Marino, A.F.; Milone, A.P.; Karakas, A.I.; Casagrande, L.; Yong, D.; Shingles, L.; Da Costa, G.; Norris, J.E.; Stetson, P.B.; Lind, K.; et al. Iron and s-elements abundance variations in NGC 5286: Comparison with ‘anomalous’ globular clusters and Milky Way satellites. Mon. Not. R. Astron. Soc. Lett. 2015, 450, 815–845. [Google Scholar] [CrossRef] [Green Version]
- Yong, D.; Grundahl, F.; D’Antona, F.; Karakas, A.I.; Lattanzio, J.C.; Norris, J.E. A Large C+N+O Abundance Spread in Giant Stars of the Globular Cluster NGC 1851. Astrophys. J. 2009, 695, L62–L66. [Google Scholar] [CrossRef] [Green Version]
- Yong, D.; Roederer, I.U.; Grundahl, F.; Da Costa, G.S.; Karakas, A.I.; Norris, J.E.; Aoki, W.; Fishlock, C.K.; Marino, A.F.; Milone, A.P.; et al. Iron and neutron-capture element abundance variations in the globular cluster M2 (NGC 7089). Mon. Not. R. Astron. Soc. Lett. 2014, 441, 3396–3416. [Google Scholar] [CrossRef] [Green Version]
- Marino, A.F.; Milone, A.P.; Piotto, G.; Villanova, S.; Bedin, L.R.; Bellini, A.; Renzini, A. A double stellar generation in the globular cluster NGC 6656 (M 22). Two stellar groups with different iron and s-process element abundances. Astron. Astrophys. 2009, 505, 1099–1113. [Google Scholar] [CrossRef] [Green Version]
- Marino, A.F.; Milone, A.P.; Renzini, A.; Yong, D.; Asplund, M.; Da Costa, G.S.; Jerjen, H.; Cordoni, G.; Carlos, M.; Dondoglio, E.; et al. Spectroscopy and Photometry of the Least Massive Type II Globular Clusters: NGC 1261 and NGC 6934. Astrophys. J. 2021, 923, 22. [Google Scholar] [CrossRef]
- Da Costa, G.S.; Held, E.V.; Saviane, I.; Gullieuszik, M. M22: An [Fe/H] Abundance Range Revealed. Astrophys. J. 2009, 705, 1481–1491. [Google Scholar] [CrossRef] [Green Version]
- Da Costa, G.S.; Marino, A.F. Nucleosynthesis in the Stellar Systems ω Centauri and M22. Publ. Astron. Soc. Aust. 2011, 28, 28–37. [Google Scholar] [CrossRef] [Green Version]
- Carretta, E.; Gratton, R.G.; Lucatello, S.; Bragaglia, A.; Catanzaro, G.; Leone, F.; Momany, Y.; D’Orazi, V.; Cassisi, S.; D’Antona, F.; et al. Abundances for a Large Sample of Red Giants in NGC 1851: Hints for a Merger of Two Clusters? Astrophys. J. 2010, 722, L1–L6. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.I.; Rich, R.M.; Pilachowski, C.A.; Caldwell, N.; Mateo, M.; Bailey, J.I., III; Crane, J.D. A Spectroscopic Analysis of the Galactic Globular Cluster NGC 6273 (M19). Astron. J. 2015, 150, 63. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.I.; Caldwell, N.; Rich, R.M.; Mateo, M.; Bailey, J.I., III; Clarkson, W.I.; Olszewski, E.W.; Walker, M.G. A Chemical Composition Survey of the Iron-complex Globular Cluster NGC 6273 (M19). Astrophys. J. 2017, 836, 168. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Marino, A.F.; Dotter, A.; Norris, J.E.; Jerjen, H.; Piotto, G.; Cassisi, S.; Bedin, L.R.; Recio Blanco, A.; Sarajedini, A.; et al. Global and Nonglobal Parameters of Horizontal-branch Morphology of Globular Clusters. Astrophys. J. 2014, 785, 21. [Google Scholar] [CrossRef] [Green Version]
- Tailo, M.; Milone, A.P.; Lagioia, E.P.; D’Antona, F.; Marino, A.F.; Vesperini, E.; Caloi, V.; Ventura, P.; Dondoglio, E.; Cordoni, G. Mass-loss along the red giant branch in 46 globular clusters and their multiple populations. Mon. Not. R. Astron. Soc. Lett. 2020, 498, 5745–5771. [Google Scholar] [CrossRef]
- VandenBerg, D.A.; Brogaard, K.; Leaman, R.; Casagrande, L. The Ages of 55 Globular Clusters as Determined Using an Improved VHBTO Method along with Color-Magnitude Diagram Constraints, and Their Implications for Broader Issues. Astrophys. J. 2013, 775, 134. [Google Scholar] [CrossRef]
- Legnardi, M.V.; Milone, A.P.; Armillotta, L.; Marino, A.F.; Cordoni, G.; Renzini, A.; Vesperini, E.; D’Antona, F.; McKenzie, M.; Yong, D.; et al. Constraining the original composition of the gas forming first-generation stars in globular clusters. Mon. Not. R. Astron. Soc. Lett. 2022, 513, 735–751. [Google Scholar] [CrossRef]
- Hesser, J.E. Spectral Inhomogeneities in Faint 47 Tucanae Stars. Astrophys. J. 1978, 223, L117. [Google Scholar] [CrossRef]
- Cannon, R.D.; Croke, B.F.W.; Bell, R.A.; Hesser, J.E.; Stathakis, R.A. Carbon and nitrogen abundance variations on the main sequence of 47 Tucanae. Mon. Not. R. Astron. Soc. Lett. 1998, 298, 601–624. [Google Scholar] [CrossRef] [Green Version]
- Gratton, R.G.; Bonifacio, P.; Bragaglia, A.; Carretta, E.; Castellani, V.; Centurion, M.; Chieffi, A.; Claudi, R.; Clementini, G.; D’Antona, F.; et al. The O-Na and Mg-Al anticorrelations in turn-off and early subgiants in globular clusters. Astron. Astrophys. 2001, 369, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Prantzos, N.; Charbonnel, C.; Iliadis, C. Revisiting nucleosynthesis in globular clusters. The case of NGC 2808 and the role of He and K. Astron. Astrophys. 2017, 608, A28. [Google Scholar] [CrossRef] [Green Version]
- De Mink, S.E.; Pols, O.R.; Langer, N.; Izzard, R.G. Massive binaries as the source of abundance anomalies in globular clusters. Astron. Astrophys. 2009, 507, L1–L4. [Google Scholar] [CrossRef]
- Valcarce, A.A.R.; Catelan, M. Formation of multiple populations in globular clusters: Another possible scenario. Astron. Astrophys. 2011, 533, A120. [Google Scholar] [CrossRef] [Green Version]
- Krause, M.; Charbonnel, C.; Decressin, T.; Meynet, G.; Prantzos, N. Superbubble dynamics in globular cluster infancy. II. Consequences for secondary star formation in the context of self-enrichment via fast-rotating massive stars. Astron. Astrophys. 2013, 552, A121. [Google Scholar] [CrossRef] [Green Version]
- D’Antona, F.; Vesperini, E.; D’Ercole, A.; Ventura, P.; Milone, A.P.; Marino, A.F.; Tailo, M. A single model for the variety of multiple-population formation(s) in globular clusters: A temporal sequence. Mon. Not. R. Astron. Soc. Lett. 2016, 458, 2122–2139. [Google Scholar] [CrossRef] [Green Version]
- Renzini, A.; Marino, A.F.; Milone, A.P. The Formation of Globular Clusters as a Case of Overcooling. arXiv 2022, arXiv:2203.03002. [Google Scholar] [CrossRef]
- Renzini, A. Rethinking globular clusters formation. Mem. Della Soc. Astron. Ital. 2013, 84, 162. [Google Scholar]
- Renzini, A.; D’Antona, F.; Cassisi, S.; King, I.R.; Milone, A.P.; Ventura, P.; Anderson, J.; Bedin, L.R.; Bellini, A.; Brown, T.M.; et al. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters—V. Constraints on formation scenarios. Mon. Not. R. Astron. Soc. Lett. 2015, 454, 4197–4207. [Google Scholar] [CrossRef] [Green Version]
- Schaerer, D.; Charbonnel, C. A new perspective on globular clusters, their initial mass function and their contribution to the stellar halo and the cosmic reionization. Mon. Not. R. Astron. Soc. Lett. 2011, 413, 2297–2304. [Google Scholar] [CrossRef] [Green Version]
- Katz, H.; Ricotti, M. Two epochs of globular cluster formation from deep field luminosity functions: Implications for reionization and the Milky Way satellites. Mon. Not. R. Astron. Soc. Lett. 2013, 432, 3250–3261. [Google Scholar] [CrossRef] [Green Version]
- Ventura, P.; D’Antona, F.; Mazzitelli, I.; Gratton, R. Predictions for Self-Pollution in Globular Cluster Stars. Astrophys. J. 2001, 550, L65–L69. [Google Scholar] [CrossRef] [Green Version]
- D’Ercole, A.; D’Antona, F.; Ventura, P.; Vesperini, E.; McMillan, S.L.W. Abundance patterns of multiple populations in globular clusters: A chemical evolution model based on yields from AGB ejecta. Mon. Not. R. Astron. Soc. Lett. 2010, 407, 854–869. [Google Scholar] [CrossRef] [Green Version]
- Prantzos, N.; Charbonnel, C. On the self-enrichment scenario of galactic globular clusters: Constraints on the IMF. Astron. Astrophys. 2006, 458, 135–149. [Google Scholar] [CrossRef]
- Decressin, T.; Meynet, G.; Charbonnel, C.; Prantzos, N.; Ekström, S. Fast rotating massive stars and the origin of the abundance patterns in galactic globular clusters. Astron. Astrophys. 2007, 464, 1029–1044. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Kroupa, P.; Takahashi, K.; Jerabkova, T. The possible role of stellar mergers for the formation of multiple stellar populations in globular clusters. Mon. Not. R. Astron. Soc. Lett. 2020, 491, 440–454. [Google Scholar] [CrossRef]
- Villanova, S.; Piotto, G.; Gratton, R.G. The helium content of globular clusters: Light element abundance correlations and HB morphology. I. NGC 6752. Astron. Astrophys. 2009, 499, 755–763. [Google Scholar] [CrossRef] [Green Version]
- Marino, A.F.; Milone, A.P.; Przybilla, N.; Bergemann, M.; Lind, K.; Asplund, M.; Cassisi, S.; Catelan, M.; Casagrande, L.; Valcarce, A.A.R.; et al. Helium enhanced stars and multiple populations along the horizontal branch of NGC 2808: Direct spectroscopic measurements. Mon. Not. R. Astron. Soc. Lett. 2014, 437, 1609–1627. [Google Scholar] [CrossRef] [Green Version]
- Behr, B.B. Chemical Abundances and Rotation Velocities of Blue Horizontal-Branch Stars in Six Globular Clusters. Astrophys. J. Suppl. Ser. 2003, 149, 67–99. [Google Scholar] [CrossRef] [Green Version]
- Moehler, S.; Sweigart, A.V.; Landsman, W.B.; Hammer, N.J.; Dreizler, S. Spectroscopic analyses of the blue hook stars in NGC 2808: A more stringent test of the late hot flasher scenario. Astron. Astrophys. 2004, 415, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Fabbian, D.; Recio-Blanco, A.; Gratton, R.G.; Piotto, G. Abundance anomalies in hot horizontal branch stars of the galactic globular cluster NGC1904. Astron. Astrophys. 2005, 434, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Pasquini, L.; Mauas, P.; Käufl, H.U.; Cacciari, C. Measuring helium abundance difference in giants of NGC 2808. Astron. Astrophys. 2011, 531, A35. [Google Scholar] [CrossRef] [Green Version]
- Dupree, A.K.; Strader, J.; Smith, G.H. Direct Evidence for an Enhancement of Helium in Giant Stars in Omega Centauri. Astrophys. J. 2011, 728, 155. [Google Scholar] [CrossRef] [Green Version]
- Lagioia, E.P.; Milone, A.P.; Marino, A.F.; Cassisi, S.; Aparicio, A.J.; Piotto, G.; Anderson, J.; Barbuy, B.; Bedin, L.R.; Bellini, A.; et al. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters—XII. The RGB bumps of multiple stellar populations. Mon. Not. R. Astron. Soc. Lett. 2018, 475, 4088–4103. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Marino, A.F.; Da Costa, G.S.; Lagioia, E.P.; D’Antona, F.; Goudfrooij, P.; Jerjen, H.; Massari, D.; Renzini, A.; Yong, D.; et al. Multiple populations in globular clusters and their parent galaxies. Mon. Not. R. Astron. Soc. Lett. 2020, 491, 515–531. [Google Scholar] [CrossRef] [Green Version]
- Lagioia, E.P.; Milone, A.P.; Marino, A.F.; Dotter, A. Helium Variation in Four Small Magellanic Cloud Globular Clusters. Astron. J. 2019, 871, 140. [Google Scholar] [CrossRef]
- Zennaro, M.; Milone, A.P.; Marino, A.F.; Cordoni, G.; Lagioia, E.P.; Tailo, M. Four stellar populations and extreme helium variation in the massive outer-halo globular cluster NGC 2419. Mon. Not. R. Astron. Soc. Lett. 2019, 487, 3239–3251. [Google Scholar] [CrossRef] [Green Version]
- Chantereau, W.; Charbonnel, C.; Meynet, G. Evolution of long-lived globular cluster stars. III. Effect of the initial helium spread on the position of stars in a synthetic Hertzsprung-Russell diagram. Astron. Astrophys. 2016, 592, A111. [Google Scholar] [CrossRef] [Green Version]
- Siess, L. Evolution of massive AGB stars. III. the thermally pulsing super-AGB phase. Astron. Astrophys. 2010, 512, A10. [Google Scholar] [CrossRef]
- Doherty, C.L.; Gil-Pons, P.; Lau, H.H.B.; Lattanzio, J.C.; Siess, L.; Campbell, S.W. Super and massive AGB stars—III. Nucleosynthesis in metal-poor and very metal-poor stars—Z = 0.001 and 0.0001. Mon. Not. R. Astron. Soc. Lett. 2014, 441, 582–598. [Google Scholar] [CrossRef]
- D’Orazi, V.; Marino, A.F. Lithium Abundances in Red Giants of M4: Evidence for Asymptotic Giant Branch Star Pollution in Globular Clusters? Astrophys. J. 2010, 716, L166–L169. [Google Scholar] [CrossRef] [Green Version]
- D’Orazi, V.; Angelou, G.C.; Gratton, R.G.; Lattanzio, J.C.; Bragaglia, A.; Carretta, E.; Lucatello, S.; Momany, Y. Lithium Abundances in Globular Cluster Giants: NGC 6218 (M12) and NGC 5904 (M5). Astrophys. J. 2014, 791, 39. [Google Scholar] [CrossRef] [Green Version]
- D’Orazi, V.; Gratton, R.G.; Angelou, G.C.; Bragaglia, A.; Carretta, E.; Lattanzio, J.C.; Lucatello, S.; Momany, Y.; Sollima, A.; Beccari, G. Lithium abundances in globular cluster giants: NGC 1904, NGC 2808, and NGC 362. Mon. Not. R. Astron. Soc. Lett. 2015, 449, 4038–4047. [Google Scholar] [CrossRef] [Green Version]
- Lind, K.; Primas, F.; Charbonnel, C.; Grundahl, F.; Asplund, M. Signatures of intrinsic Li depletion and Li-Na anticorrelation in the metal-poor globular cluster NGC 6397. Astron. Astrophys. 2009, 503, 545–557. [Google Scholar] [CrossRef] [Green Version]
- Pasquini, L.; Bonifacio, P.; Molaro, P.; Francois, P.; Spite, F.; Gratton, R.G.; Carretta, E.; Wolff, B. Li in NGC 6752 and the formation of globular clusters. Astron. Astrophys. 2005, 441, 549–553. [Google Scholar] [CrossRef]
- Shen, Z.X.; Bonifacio, P.; Pasquini, L.; Zaggia, S. Li - O anticorrelation in NGC 6752: Evidence for Li-enriched polluting gas. Astron. Astrophys. 2010, 524, L2. [Google Scholar] [CrossRef] [Green Version]
- Lind, K.; Charbonnel, C.; Decressin, T.; Primas, F.; Grundahl, F.; Asplund, M. Tracing the evolution of NGC 6397 through the chemical composition of its stellar populations. Astron. Astrophys. 2011, 527, A148. [Google Scholar] [CrossRef]
- Carretta, E. Five Groups of Red Giants with Distinct Chemical Composition in the Globular Cluster NGC 2808. Astrophys. J. 2015, 810, 148. [Google Scholar] [CrossRef]
- D’Antona, F.; Ventura, P.; Fabiola Marino, A.; Milone, A.P.; Tailo, M.; Di Criscienzo, M.; Vesperini, E. The Lithium Test for Multiple Populations in Globular Clusters: Lithium in NGC 2808. Astrophys. J. 2019, 871, L19. [Google Scholar] [CrossRef]
- Cameron, A.G.W.; Fowler, W.A. Lithium and the s-PROCESS in Red-Giant Stars. Astrophys. J. 1971, 164, 111. [Google Scholar] [CrossRef]
- Cohen, J.G.; Meléndez, J. Abundances in a Large Sample of Stars in M3 and M13. Astron. J. 2005, 129, 303–329. [Google Scholar] [CrossRef]
- Popper, D.A. Spectral Types of Stars in the Globular Clusters Messier 3 and Messier 13. Astrophys. J. 1947, 105, 204. [Google Scholar] [CrossRef]
- Osborn, W. Two new CN-strong globular cluster stars. Observatory 1971, 91, 223. [Google Scholar]
- Harding, G. A A CH star in omega Centauri. Observatory 1971, 82, 65. [Google Scholar]
- Popper, D.A.; Hartwick, F.D.A. and McClure, R. D Cyanogen strengths of globular cluster post-main-sequence stars. Astrophys. J. 1976, 207, 113. [Google Scholar] [CrossRef]
- Da Costa, G.S. Abundance anomalies in globular clusters. IAU Symp. 1997, 189, 193–202. [Google Scholar]
- Carretta, E.; Bragaglia, A.; Gratton, R.; Lucatello, S. Na-O anticorrelation and HB. VIII. Proton-capture elements and metallicities in 17 globular clusters from UVES spectra. Astron. Astrophys. 2009, 505, 139–155. [Google Scholar] [CrossRef]
- Pancino, E.; Romano, D.; Tang, B.; Tautvaišienė, G.; Casey, A.R.; Gruyters, P.; Geisler, D.; San Roman, I.; Randich, S.; Alfaro, E.J.; et al. The Gaia-ESO Survey. Mg-Al anticorrelation in iDR4 globular clusters. Astron. Astrophys. 2017, 601, A112. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.G.; Kirby, E.N. The Bizarre Chemical Inventory of NGC 2419, An Extreme Outer Halo Globular Cluster. Astrophys. J. 2012, 760, 86. [Google Scholar] [CrossRef] [Green Version]
- Mucciarelli, A.; Bellazzini, M.; Ibata, R.; Merle, T.; Chapman, S.C.; Dalessandro, E.; Sollima, A. News from the Galactic suburbia: The chemical composition of the remote globular cluster NGC 2419. Mon. Not. R. Astron. Soc. Lett. 2012, 426, 2889–2900. [Google Scholar] [CrossRef]
- Mucciarelli, A.; Bellazzini, M.; Merle, T.; Plez, B.; Dalessandro, E.; Ibata, R. Potassium: A New Actor on the Globular Cluster Chemical Evolution Stage. The Case of NGC 2808. Astrophys. J. 2015, 801, 68. [Google Scholar] [CrossRef] [Green Version]
- Alvarez Garay, D.A.; Mucciarelli, A.; Lardo, C.; Bellazzini, M.; Merle, T. The Mg-K Anticorrelation in ω Centauri. Astrophys. J. 2022, 928, L11. [Google Scholar] [CrossRef]
- Carlos, M.; Marino, A.; Milone, A.; Jang, S.; Dondoglio, E.; Legnardi, M.; Mohandasan, A.; Cordoni, E. Spectroscopy of multiple populations in NGC2808. Mon. Not. R. Astron. Soc. 2022; submitted. [Google Scholar]
- Carretta, E.; Bragaglia, A.; Lucatello, S.; Gratton, R.G.; D’Orazi, V.; Sollima, A. Aluminium abundances in five discrete stellar populations of the globular cluster NGC 2808. Astron. Astrophys. 2018, 615, A17. [Google Scholar] [CrossRef] [Green Version]
- Denisenkov, P.A.; Denisenkova, S.N. Possible Explanation of the Correlation Between Nitrogen and Sodium Over Abundances for Red Giants in Globular Clusters. Astron. Tsirkulyar 1989, 1538, 11. [Google Scholar]
- Ventura, P.; D’Antona, F.; Di Criscienzo, M.; Carini, R.; D’Ercole, A.; Vesperini, E. Super-AGB-AGB Evolution and the Chemical Inventory in NGC 2419. Astrophys. J. 2012, 761, L30. [Google Scholar] [CrossRef] [Green Version]
- Norris, J.E.; Da Costa, G.S. The Giant Branch of omega Centauri. IV. Abundance Patterns Based on Echelle Spectra of 40 Red Giants. Astrophys. J. 1995, 447, 680. [Google Scholar] [CrossRef]
- Marino, A.F.; Yong, D.; Milone, A.P.; Piotto, G.; Lundquist, M.; Bedin, L.R.; Chené, A.N.; Da Costa, G.; Asplund, M.; Jerjen, H. Metallicity Variations in the Type II Globular Cluster NGC 6934. Astrophys. J. 2018, 859, 81. [Google Scholar] [CrossRef] [Green Version]
- Yong, D.; Da Costa, G.S.; Norris, J.E. Confirming the intrinsic abundance spread in the globular cluster NGC 6273 (M19) with calcium triplet spectroscopy. Mon. Not. R. Astron. Soc. Lett. 2016, 460, 1846–1853. [Google Scholar] [CrossRef] [Green Version]
- Dondoglio, E.; Milone, A.P.; Lagioia, E.P.; Marino, A.F.; Tailo, M.; Cordoni, G.; Jang, S.; Carlos, M. Multiple Stellar Populations along the Red Horizontal Branch and Red Clump of Globular Clusters. Astrophys. J. 2021, 906, 76. [Google Scholar] [CrossRef]
- Arbey, A.; Auffinger, J.; Silk, J. Constraining primordial black hole masses with the isotropic gamma ray background. Phys. Rev. D 2020, 101, 023010. [Google Scholar] [CrossRef] [Green Version]
- Murray, S.D.; Lin, D.N.C. On the Origin of Metal Homogeneities in Globular Clusters. Astrophys. J. 1990, 357, 105. [Google Scholar] [CrossRef]
- Feng, Y.; Krumholz, M.R. Early turbulent mixing as the origin of chemical homogeneity in open star clusters. Nature 2014, 513, 523–525. [Google Scholar] [CrossRef] [Green Version]
- Armillotta, L.; Krumholz, M.R.; Fujimoto, Y. Mixing of metals during star cluster formation: Statistics and implications for chemical tagging. Mon. Not. R. Astron. Soc. Lett. 2018, 481, 5000–5013. [Google Scholar] [CrossRef] [Green Version]
- Yong, D.; Meléndez, J.; Grundahl, F.; Roederer, I.U.; Norris, J.E.; Milone, A.P.; Marino, A.F.; Coelho, P.; McArthur, B.E.; Lind, K.; et al. High precision differential abundance measurements in globular clusters: Chemical inhomogeneities in NGC 6752. Mon. Not. R. Astron. Soc. Lett. 2013, 434, 3542–3565. [Google Scholar] [CrossRef] [Green Version]
- D’Antona, F.; D’Ercole, A.; Marino, A.F.; Milone, A.P.; Ventura, P.; Vesperini, E. The Oxygen versus Sodium (Anti)Correlation(S) in ω Cen. Astrophys. J. 2011, 736, 5. [Google Scholar] [CrossRef]
- Marino, A.F.; Sneden, C.; Kraft, R.P.; Wallerstein, G.; Norris, J.E.; Da Costa, G.; Milone, A.P.; Ivans, I.I.; Gonzalez, G.; Fulbright, J.P.; et al. The two metallicity groups of the globular cluster M 22: A chemical perspective. Astron. Astrophys. 2011, 532, A8. [Google Scholar] [CrossRef]
- Johnson, C.I.; Pilachowski, C.A. Chemical Abundances for 855 Giants in the Globular Cluster Omega Centauri (NGC 5139). Astrophys. J. 2010, 722, 1373–1410. [Google Scholar] [CrossRef]
- Marino, A.F.; Milone, A.P.; Piotto, G.; Cassisi, S.; D’Antona, F.; Anderson, J.; Aparicio, A.; Bedin, L.R.; Renzini, A.; Villanova, S. The C+N+O Abundance of ω Centauri Giant Stars: Implications for the Chemical-enrichment Scenario and the Relative Ages of Different Stellar Populations. Astrophys. J. 2012, 746, 14. [Google Scholar] [CrossRef]
- Bekki, K.; Freeman, K.C. Formation of ω Centauri from an ancient nucleated dwarf galaxy in the young Galactic disc. Mon. Not. R. Astron. Soc. Lett. 2003, 346, L11–L15. [Google Scholar] [CrossRef] [Green Version]
- Ibata, R.A.; Bellazzini, M.; Malhan, K.; Martin, N.; Bianchini, P. Identification of the long stellar stream of the prototypical massive globular cluster ω Centauri. Nat. Astron. 2019, 3, 667–672. [Google Scholar] [CrossRef]
- Olszewski, E.W.; Saha, A.; Knezek, P.; Subramaniam, A.; de Boer, T.; Seitzer, P. A 500 Parsec Halo Surrounding the Galactic Globular NGC 1851. Astron. J. 2009, 138, 1570–1576. [Google Scholar] [CrossRef] [Green Version]
- Kuzma, P.B.; Da Costa, G.S.; Mackey, A.D.; Roderick, T.A. The outer envelopes of globular clusters—I. NGC 7089 (M2). Mon. Not. R. Astron. Soc. Lett. 2016, 461, 3639–3652. [Google Scholar] [CrossRef] [Green Version]
- Kuzma, P.B.; Da Costa, G.S.; Mackey, A.D. The outer envelopes of globular clusters. II. NGC 1851, NGC 5824 and NGC 1261*. Mon. Not. R. Astron. Soc. Lett. 2018, 473, 2881–2898. [Google Scholar] [CrossRef]
- Marino, A.F.; Milone, A.P.; Yong, D.; Dotter, A.; Da Costa, G.; Asplund, M.; Jerjen, H.; Mackey, D.; Norris, J.; Cassisi, S.; et al. The halo+cluster system of the Galactic globular cluster NGC 1851. Mon. Not. R. Astron. Soc. Lett. 2014, 442, 3044–3064. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, F.R.; Dalessandro, E.; Mucciarelli, A.; Beccari, G.; Rich, R.M.; Origlia, L.; Lanzoni, B.; Rood, R.T.; Valenti, E.; Bellazzini, M.; et al. The cluster Terzan 5 as a remnant of a primordial building block of the Galactic bulge. Nature 2009, 462, 483–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Origlia, L.; Rich, R.M.; Ferraro, F.R.; Lanzoni, B.; Bellazzini, M.; Dalessandro, E.; Mucciarelli, A.; Valenti, E.; Beccari, G. Spectroscopy Unveils the Complex Nature of Terzan 5. Astrophys. J. 2011, 726, L20. [Google Scholar] [CrossRef]
- Massari, D.; Dalessandro, E.; Ferraro, F.R.; Miocchi, P.; Bellini, A.; Origlia, L.; Lanzoni, B.; Rich, R.M.; Mucciarelli, A. Proper Motions in Terzan 5: Membership of the Multi-iron Subpopulations and First Constraint on the Orbit. Astrophys. J. 2015, 810, 69. [Google Scholar] [CrossRef] [Green Version]
- Sneden, C.; Kraft, R.P.; Shetrone, M.D.; Smith, G.H.; Langer, G.E.; Prosser, C.F. Star-To-Star Abundance Variations Among Bright Giants in the Metal-Poor Globular Cluster M15. Astron. J. 1997, 114, 1964. [Google Scholar] [CrossRef]
- Nardiello, D.; Milone, A.P.; Piotto, G.; Anderson, J.; Bedin, L.R.; Bellini, A.; Cassisi, S.; Libralato, M.; Marino, A.F. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters—XIV. Multiple stellar populations within M 15 and their radial distribution. Mon. Not. R. Astron. Soc. Lett. 2018, 477, 2004–2019. [Google Scholar] [CrossRef] [Green Version]
- Villanova, S.; Geisler, D.; Carraro, G.; Moni Bidin, C.; Muñoz, C. Ruprecht 106: The First Single Population Globular Cluster? Astrophys. J. 2013, 778, 186. [Google Scholar] [CrossRef] [Green Version]
- Dotter, A.; Milone, A.P.; Conroy, C.; Marino, A.F.; Sarajedini, A. Ruprecht 106: A Riddle, Wrapped in a Mystery, inside an Enigma. Astrophys. J. 2018, 865, L10. [Google Scholar] [CrossRef] [Green Version]
- Lagioia, E.P.; Milone, A.P.; Marino, A.F.; Cordoni, G.; Tailo, M. The Role of Cluster Mass in the Multiple Populations of Galactic and Extragalactic Globular Clusters. Astron. J. 2019, 158, 202. [Google Scholar] [CrossRef] [Green Version]
- Tailo, M.; Milone, A.P.; Lagioia, E.P.; D’Antona, F.; Jang, S.; Vesperini, E.; Marino, A.F.; Ventura, P.; Caloi, V.; Carlos, M.; et al. Mass-loss law for red giant stars in simple population globular clusters. Mon. Not. R. Astron. Soc. Lett. 2021, 503, 694–703. [Google Scholar] [CrossRef]
- Martell, S.L.; Smolinski, J.P.; Beers, T.C.; Grebel, E.K. Building the Galactic halo from globular clusters: Evidence from chemically unusual red giants. Astron. Astrophys. 2011, 534, A136. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, I.; Meléndez, J.; Chanamé, J. Oxygen Abundances in Low- and High-α Field Halo Stars and the Discovery of Two Field Stars Born in Globular Clusters. Astrophys. J. 2012, 757, 164. [Google Scholar] [CrossRef] [Green Version]
- Schiavon, R.P.; Zamora, O.; Carrera, R.; Lucatello, S.; Robin, A.C.; Ness, M.; Martell, S.L.; Smith, V.V.; García-Hernández, D.A.; Manchado, A.; et al. Chemical tagging with APOGEE: Discovery of a large population of N-rich stars in the inner Galaxy. Mon. Not. R. Astron. Soc. Lett. 2017, 465, 501–524. [Google Scholar] [CrossRef]
- Horta, D.; Mackereth, J.T.; Schiavon, R.P.; Hasselquist, S.; Bovy, J.; Allende Prieto, C.; Beers, T.C.; Cunha, K.; García-Hernández, D.A.; Kisku, S.S.; et al. The contribution of N-rich stars to the Galactic stellar halo using APOGEE red giants. Mon. Not. R. Astron. Soc. Lett. 2021, 500, 5462–5478. [Google Scholar] [CrossRef]
- Vesperini, E.; McMillan, S.L.W.; D’Antona, F.; D’Ercole, A. The Fraction of Globular Cluster Second-generation Stars in the Galactic Halo. Astrophys. J. 2010, 718, L112–L116. [Google Scholar] [CrossRef]
- Bellini, A.; Milone, A.P.; Anderson, J.; Marino, A.F.; Piotto, G.; van der Marel, R.P.; Bedin, L.R.; King, I.R. The State-of-the-art HST Astro-photometric Analysis of the Core of ω Centauri. III. The Main Sequence’s Multiple Populations Galore. Astrophys. J. 2017, 844, 164. [Google Scholar] [CrossRef] [Green Version]
- Baumgardt, H.; Hilker, M. A catalogue of masses, structural parameters, and velocity dispersion profiles of 112 Milky Way globular clusters. Mon. Not. R. Astron. Soc. Lett. 2018, 478, 1520–1557. [Google Scholar] [CrossRef] [Green Version]
- D’Antona, F.; Milone, A.P.; Johnson, C.I.; Tailo, M.; Vesperini, E.; Caloi, V.; Ventura, P.; Marino, A.F.; Dell’Agli, F. HST Observations of the Globular Cluster NGC 6402 (M14) and Its Peculiar Multiple Populations. Astrophys. J. 2022, 925, 192. [Google Scholar] [CrossRef]
- Da Costa, G.S. Are the globular clusters with significant internal [Fe/H] spreads all former dwarf galaxy nuclei? In The General Assembly of Galaxy Halos: Structure, Origin and Evolution; Bragaglia, A., Arnaboldi, M., Rejkuba, M., Romano, D., Eds.; Cambridge University Press: Cambridge, UK, 2016; Volume 317, pp. 110–115. [Google Scholar] [CrossRef] [Green Version]
- Willman, B.; Strader, J. “Galaxy,” Defined. Astron. J. 2012, 144, 76. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Marino, A.F.; Bedin, L.R.; Anderson, J.; Apai, D.; Bellini, A.; Dieball, A.; Salaris, M.; Libralato, M.; Nardiello, D.; et al. The HST Large Programme on NGC 6752—II. Multiple populations at the bottom of the main sequence probed in NIR. Mon. Not. R. Astron. Soc. Lett. 2019, 484, 4046–4053. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Marino, A.F.; Bedin, L.R.; Piotto, G.; Cassisi, S.; Dieball, A.; Anderson, J.; Jerjen, H.; Asplund, M.; Bellini, A.; et al. The M 4 Core Project with HST—II. Multiple stellar populations at the bottom of the main sequence. Mon. Not. R. Astron. Soc. Lett. 2014, 439, 1588–1595. [Google Scholar] [CrossRef] [Green Version]
- Calura, F.; D’Ercole, A.; Vesperini, E.; Vanzella, E.; Sollima, A. Formation of second-generation stars in globular clusters. Mon. Not. R. Astron. Soc. Lett. 2019, 489, 3269–3284. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.H.; Norris, J.E. CN Variations Among Asymptotic Giant Branch and Horizontal Branch Stars in the Intermediate Metallicity Globular Cluster M5, M4, and NGC 6752. Astron. J. 1993, 105, 173. [Google Scholar] [CrossRef]
- Ivans, I.I.; Sneden, C.; Kraft, R.P.; Suntzeff, N.B.; Smith, V.V.; Langer, G.E.; Fulbright, J.P. Star-to-Star Abundance Variations among Bright Giants in the Mildly Metal-poor Globular Cluster M4. Astron. J. 1999, 118, 1273–1300. [Google Scholar] [CrossRef] [Green Version]
- García-Hernández, D.A.; Mészáros, S.; Monelli, M.; Cassisi, S.; Stetson, P.B.; Zamora, O.; Shetrone, M.; Lucatello, S. Clear Evidence for the Presence of Second-generation Asymptotic Giant Branch Stars in Metal-poor Galactic Globular Clusters. Astrophys. J. 2015, 815, L4. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.I.; McDonald, I.; Pilachowski, C.A.; Mateo, M.; Bailey John, I.I.; Cordero, M.J.; Zijlstra, A.A.; Crane, J.D.; Olszewski, E.; Shectman, S.A.; et al. AGB Sodium Abundances in the Globular Cluster 47 Tucanae (NGC 104). Astron. J. 2015, 149, 71. [Google Scholar] [CrossRef] [Green Version]
- Gruyters, P.; Casagrande, L.; Milone, A.P.; Hodgkin, S.T.; Serenelli, A.; Feltzing, S. First evidence of multiple populations along the AGB from Strömgren photometry. Astron. Astrophys. 2017, 603, A37. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.W.; D’Orazi, V.; Yong, D.; Constantino, T.N.; Lattanzio, J.C.; Stancliffe, R.J.; Angelou, G.C.; Wylie-de Boer, E.C.; Grundahl, F. Sodium content as a predictor of the advanced evolution of globular cluster stars. Nature 2013, 498, 198–200. [Google Scholar] [CrossRef] [Green Version]
- Lapenna, E.; Mucciarelli, A.; Ferraro, F.R.; Origlia, L.; Lanzoni, B.; Massari, D.; Dalessandro, E. Chemical Analysis of Asymptotic Giant Branch Stars in M62. Astrophys. J. 2015, 813, 97. [Google Scholar] [CrossRef] [Green Version]
- Marino, A.F.; Milone, A.P.; Yong, D.; Da Costa, G.; Asplund, M.; Bedin, L.R.; Jerjen, H.; Nardiello, D.; Piotto, G.; Renzini, A.; et al. Spectroscopy and Photometry of Multiple Populations along the Asymptotic Giant Branch of NGC 2808 and NGC 6121 (M4). Astrophys. J. 2017, 843, 66. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P. Helium and multiple populations in the massive globular cluster NGC 6266 (M 62). Mon. Not. R. Astron. Soc. Lett. 2015, 446, 1672–1684. [Google Scholar] [CrossRef] [Green Version]
- Greggio, L.; Renzini, A. Clues on the Hot Star Content and the Ultraviolet Output of Elliptical Galaxies. Astrophys. J. 1990, 364, 35. [Google Scholar] [CrossRef]
- Brown, T.M.; Sweigart, A.V.; Lanz, T.; Landsman, W.B.; Hubeny, I. Flash Mixing on the White Dwarf Cooling Curve: Understanding Hot Horizontal Branch Anomalies in NGC 2808. Astrophys. J. 2001, 562, 368–393. [Google Scholar] [CrossRef] [Green Version]
- Charbonnel, C.; Chantereau, W. Evolution of long-lived globular cluster stars. II. Sodium abundance variations on the asymptotic giant branch as a function of globular cluster age and metallicity. Astron. Astrophys. 2016, 586, A21. [Google Scholar] [CrossRef] [Green Version]
- Lucatello, S.; Sollima, A.; Gratton, R.; Vesperini, E.; D’Orazi, V.; Carretta, E.; Bragaglia, A. The incidence of binaries in globular cluster stellar populations. Astron. Astrophys. 2015, 584, A52. [Google Scholar] [CrossRef] [Green Version]
- Dalessandro, E.; Mucciarelli, A.; Bellazzini, M.; Sollima, A.; Vesperini, E.; Hong, J.; Hénault-Brunet, V.; Ferraro, F.R.; Ibata, R.; Lanzoni, B.; et al. The Unexpected Kinematics of Multiple Populations in NGC 6362: Do Binaries Play a Role? Astrophys. J. 2018, 864, 33. [Google Scholar] [CrossRef]
- Milone, A.P.; Vesperini, E.; Marino, A.F.; Hong, J.; van der Marel, R.; Anderson, J.; Renzini, A.; Cordoni, G.; Bedin, L.R.; Bellini, A.; et al. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters—XXI. Binaries among multiple stellar populations. Mon. Not. R. Astron. Soc. Lett. 2020, 492, 5457–5469. [Google Scholar] [CrossRef]
- Vesperini, E.; McMillan, S.L.W.; D’Antona, F.; D’Ercole, A. Binary star disruption in globular clusters with multiple stellar populations. Mon. Not. R. Astron. Soc. Lett. 2011, 416, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Vesperini, E.; Sollima, A.; McMillan, S.L.W.; D’Antona, F.; D’Ercole, A. Evolution of binary stars in multiple-population globular clusters. Mon. Not. R. Astron. Soc. Lett. 2015, 449, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Vesperini, E.; Sollima, A.; McMillan, S.L.W.; D’Antona, F.; D’Ercole, A. Evolution of binary stars in multiple-population globular clusters—II. Compact binaries. Mon. Not. R. Astron. Soc. Lett. 2016, 457, 4507–4514. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Patel, S.; Vesperini, E.; Webb, J.J.; Dalessandro, E. Spatial mixing of binary stars in multiple-population globular clusters. Mon. Not. R. Astron. Soc. Lett. 2019, 483, 2592–2599. [Google Scholar] [CrossRef] [Green Version]
- Vesperini, E.; McMillan, S.L.W.; D’Antona, F.; D’Ercole, A. Dynamical evolution and spatial mixing of multiple population globular clusters. Mon. Not. R. Astron. Soc. Lett. 2013, 429, 1913–1921. [Google Scholar] [CrossRef] [Green Version]
- Cordero, M.J.; Pilachowski, C.A.; Johnson, C.I.; McDonald, I.; Zijlstra, A.A.; Simmerer, J. Detailed Abundances for a Large Sample of Giant Stars in the Globular Cluster 47 Tucanae (NGC 104). Astrophys. J. 2014, 780, 94. [Google Scholar] [CrossRef] [Green Version]
- Simioni, M.; Milone, A.P.; Bedin, L.R.; Aparicio, A.; Piotto, G.; Vesperini, E.; Hong, J. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters—X. The radial distribution of stellar populations in NGC 2808. Mon. Not. R. Astron. Soc. Lett. 2016, 463, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Cordoni, G.; Milone, A.P.; Mastrobuono-Battisti, A.; Marino, A.F.; Lagioia, E.P.; Tailo, M.; Baumgardt, H.; Hilker, M. Three-component Kinematics of Multiple Stellar Populations in Globular Clusters with Gaia and VLT. Astrophys. J. 2020, 889, 18. [Google Scholar] [CrossRef]
- Sollima, A.; Ferraro, F.R.; Bellazzini, M.; Origlia, L.; Straniero, O.; Pancino, E. Deep FORS1 Observations of the Double Main Sequence of ω Centauri. Astrophys. J. 2007, 654, 915–922. [Google Scholar] [CrossRef] [Green Version]
- Bellini, A.; Piotto, G.; Bedin, L.R.; King, I.R.; Anderson, J.; Milone, A.P.; Momany, Y. Radial distribution of the multiple stellar populations in ω Centauri. Astron. Astrophys. 2009, 507, 1393–1408. [Google Scholar] [CrossRef]
- Cordoni, G.; Milone, A.P.; Marino, A.F.; Da Costa, G.S.; Dondoglio, E.; Jerjen, H.; Lagioia, E.P.; Mastrobuono-Battisti, A.; Norris, J.E.; Tailo, M.; et al. Gaia and Hubble Unveil the Kinematics of Stellar Populations in the Type II Globular Clusters ω Centauri and M22. Astrophys. J. 2020, 898, 147. [Google Scholar] [CrossRef]
- Mastrobuono-Battisti, A.; Perets, H.B. Evolution of Second-generation Stars in Stellar Disks of Globular and Nuclear Clusters: ω Centauri as a Test Case. Astrophys. J. 2013, 779, 85. [Google Scholar] [CrossRef]
- Mastrobuono-Battisti, A.; Perets, H.B. Second-generation Stellar Disks in Dense Star Clusters and Cluster Ellipticities. Astrophys. J. 2016, 823, 61. [Google Scholar] [CrossRef] [Green Version]
- Gaia Collaboration; Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne, J.H.J.; Babusiaux, C.; Bailer-Jones, C.A.L.; Biermann, M.; Evans, D.W.; Eyer, L.; et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 2018, 616, A1. [Google Scholar] [CrossRef] [Green Version]
- Gaia Collaboration; Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne, J.H.J.; Babusiaux, C.; Biermann, M.; Creevey, O.L.; Evans, D.W.; Eyer, L.; et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 2021, 649, A1. [Google Scholar] [CrossRef]
- Richer, H.B.; Heyl, J.; Anderson, J.; Kalirai, J.S.; Shara, M.M.; Dotter, A.; Fahlman, G.G.; Rich, R.M. A Dynamical Signature of Multiple Stellar Populations in 47 Tucanae. Astrophys. J. 2013, 771, L15. [Google Scholar] [CrossRef] [Green Version]
- Bellini, A.; Vesperini, E.; Piotto, G.; Milone, A.P.; Hong, J.; Anderson, J.; van der Marel, R.P.; Bedin, L.R.; Cassisi, S.; D’Antona, F.; et al. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters: The Internal Kinematics of the Multiple Stellar Populations in NGC 2808. Astrophys. J. 2015, 810, L13. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Marino, A.F.; Mastrobuono-Battisti, A.; Lagioia, E.P. Gaia unveils the kinematics of multiple stellar populations in 47 Tucanae. Mon. Not. R. Astron. Soc. Lett. 2018, 479, 5005–5011. [Google Scholar] [CrossRef]
- Libralato, M.; Bellini, A.; van der Marel, R.P.; Anderson, J.; Watkins, L.L.; Piotto, G.; Ferraro, F.R.; Nardiello, D.; Vesperini, E. Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Cluster. VI. Improved Data Reduction and Internal-kinematic Analysis of NGC 362. Astrophys. J. 2018, 861, 99. [Google Scholar] [CrossRef] [Green Version]
- Bragaglia, A.; Gratton, R.G.; Carretta, E.; D’Orazi, V.; Sneden, C.; Lucatello, S. Searching for multiple stellar populations in the massive, old open cluster Berkeley 39. Astron. Astrophys. 2012, 548, A122. [Google Scholar] [CrossRef] [Green Version]
- Niederhofer, F.; Bastian, N.; Kozhurina-Platais, V.; Larsen, S.; Hollyhead, K.; Lardo, C.; Cabrera-Ziri, I.; Kacharov, N.; Platais, I.; Salaris, M.; et al. The search for multiple populations in Magellanic Cloud clusters—II. The detection of multiple populations in three intermediate-age SMC clusters. Mon. Not. R. Astron. Soc. Lett. 2017, 465, 4159–4165. [Google Scholar] [CrossRef]
- Hollyhead, K.; Kacharov, N.; Lardo, C.; Bastian, N.; Hilker, M.; Rejkuba, M.; Koch, A.; Grebel, E.K.; Georgiev, I. Evidence for multiple populations in the intermediate-age cluster Lindsay 1 in the SMC. Mon. Not. R. Astron. Soc. Lett. 2017, 465, L39–L43. [Google Scholar] [CrossRef] [Green Version]
- Martocchia, S.; Cabrera-Ziri, I.; Lardo, C.; Dalessandro, E.; Bastian, N.; Kozhurina-Platais, V.; Usher, C.; Niederhofer, F.; Cordero, M.; Geisler, D.; et al. Age as a major factor in the onset of multiple populations in stellar clusters. Mon. Not. R. Astron. Soc. Lett. 2018, 473, 2688–2700. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Tang, B.; Milone, A.P.; de Grijs, R.; Hong, J.; Yang, Y.; Wang, Y. Multiple Stellar Populations at Less-evolved Stages: Detection of Chemical Variations among Main-sequence Dwarfs in NGC 1978. Astrophys. J. 2021, 906, 133. [Google Scholar] [CrossRef]
- Martocchia, S.; Dalessandro, E.; Lardo, C.; Cabrera-Ziri, I.; Bastian, N.; Kozhurina-Platais, V.; Salaris, M.; Chantereau, W.; Geisler, D.; Hilker, M.; et al. The search for multiple populations in Magellanic Clouds clusters - V. Correlation between cluster age and abundance spreads. Mon. Not. R. Astron. Soc. Lett. 2019, 487, 5324–5334. [Google Scholar] [CrossRef]
- Georgy, C.; Charbonnel, C.; Amard, L.; Bastian, N.; Ekström, S.; Lardo, C.; Palacios, A.; Eggenberger, P.; Cabrera-Ziri, I.; Gallet, F.; et al. Disappearance of the extended main sequence turn-off in intermediate age clusters as a consequence of magnetic braking. Astron. Astrophys. 2019, 622, A66. [Google Scholar] [CrossRef]
- Mucciarelli, A.; Origlia, L.; Ferraro, F.R.; Pancino, E. Looking Outside the Galaxy: The Discovery of Chemical Anomalies in Three Old Large Magellanic Cloud Clusters. Astrophys. J. 2009, 695, L134–L139. [Google Scholar] [CrossRef]
- Dalessandro, E.; Lapenna, E.; Mucciarelli, A.; Origlia, L.; Ferraro, F.R.; Lanzoni, B. Multiple Populations in the Old and Massive Small Magellanic Cloud Globular Cluster NGC 121. Astrophys. J. 2016, 829, 77. [Google Scholar] [CrossRef] [Green Version]
- Larsen, S.S.; Brodie, J.P.; Grundahl, F.; Strader, J. Nitrogen Abundances and Multiple Stellar Populations in the Globular Clusters of the Fornax dSph. Astrophys. J. 2014, 797, 15. [Google Scholar] [CrossRef]
- Nardiello, D.; Piotto, G.; Milone, A.P.; Rich, R.M.; Cassisi, S.; Bedin, L.R.; Bellini, A.; Renzini, A. Hubble Space Telescope analysis of stellar populations within the globular cluster G1 (Mayall II) in M 31. Mon. Not. R. Astron. Soc. Lett. 2019, 485, 3076–3087. [Google Scholar] [CrossRef] [Green Version]
- Massari, D.; Koppelman, H.H.; Helmi, A. Origin of the system of globular clusters in the Milky Way. Astron. Astrophys. 2019, 630, L4. [Google Scholar] [CrossRef]
- Leaman, R.; VandenBerg, D.A.; Mendel, J.T. The bifurcated age-metallicity relation of Milky Way globular clusters and its implications for the accretion history of the galaxy. Mon. Not. R. Astron. Soc. Lett. 2013, 436, 122–135. [Google Scholar] [CrossRef] [Green Version]
- Dotter, A.; Sarajedini, A.; Anderson, J. Globular Clusters in the Outer Galactic Halo: New Hubble Space Telescope/Advanced Camera for Surveys Imaging of Six Globular Clusters and the Galactic Globular Cluster Age-metallicity Relation. Astrophys. J. 2011, 738, 74. [Google Scholar] [CrossRef] [Green Version]
- Helmi, A.; White, S.D.M.; de Zeeuw, P.T.; Zhao, H. Debris streams in the solar neighbourhood as relicts from the formation of the Milky Way. Nature 1999, 402, 53–55. [Google Scholar] [CrossRef] [Green Version]
- Gratton, R.G.; Lucatello, S.; Carretta, E.; Bragaglia, A.; D’Orazi, V.; Momany, Y.A. The Na-O anticorrelation in horizontal branch stars. I. NGC 2808. Astron. Astrophys. 2011, 534, A123. [Google Scholar] [CrossRef]
- Lovisi, L.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F.R.; Gratton, R.; Dalessandro, E.; Contreras Ramos, R. Chemical and Kinematical Properties of Blue Straggler Stars and Horizontal Branch Stars in NGC 6397. Astrophys. J. 2012, 754, 91. [Google Scholar] [CrossRef] [Green Version]
- Marino, A.F.; Milone, A.P.; Lind, K. Horizontal Branch Morphology and Multiple Stellar Populations in the Anomalous Globular Cluster M 22. Astrophys. J. 2013, 768, 27. [Google Scholar] [CrossRef] [Green Version]
- Iben, I.; Renzini, A. Single star evolution I. Massive stars and early evolution of low and intermediate mass stars. Phys. Rep. 1984, 105, 329–406. [Google Scholar] [CrossRef]
- D’Antona, F.; Caloi, V. The Early Evolution of Globular Clusters: The Case of NGC 2808. Astrophys. J. 2004, 611, 871–880. [Google Scholar] [CrossRef]
- Tailo, M.; Milone, A.P.; Marino, A.F.; D’Antona, F.; Lagioia, E.P.; Cordoni, G. Mass Loss of Different Stellar Populations in Globular Clusters: The Case of M4. Astrophys. J. 2019, 873, 123. [Google Scholar] [CrossRef]
- Freeman, K.C.; Norris, J. The chemical composition, structure, and dynamics of globular clusters. Annu. Rev. Astron. Astrophys. 1981, 19, 319–356. [Google Scholar] [CrossRef]
- Tailo, M.; D’Antona, F.; Vesperini, E.; di Criscienzo, M.; Ventura, P.; Milone, A.P.; Bellini, A.; Dotter, A.; Decressin, T.; D’Ercole, A.; et al. Rapidly rotating second-generation progenitors for the ‘blue hook’ stars of ω Centauri. Nature 2015, 523, 318–321. [Google Scholar] [CrossRef]
- D’Antona, F.; Caloi, V. The fraction of second generation stars in globular clusters from the analysis of the horizontal branch. Mon. Not. R. Astron. Soc. Lett. 2008, 390, 693–705. [Google Scholar] [CrossRef] [Green Version]
- Bertelli, G.; Nasi, E.; Girardi, L.; Chiosi, C.; Zoccali, M.; Gallart, C. Testing Intermediate-Age Stellar Evolution Models with VLT Photometry of Large Magellanic Cloud Clusters. III. Padova Results. Astron. J. 2003, 125, 770–784. [Google Scholar] [CrossRef]
- Mackey, A.D.; Broby Nielsen, P. A double main-sequence turn-off in the rich star cluster NGC 1846 in the Large Magellanic Cloud. Mon. Not. R. Astron. Soc. Lett. 2007, 379, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Bedin, L.R.; Piotto, G.; Anderson, J. Multiple stellar populations in Magellanic Cloud clusters. I. An ordinary feature for intermediate age globulars in the LMC? Astron. Astrophys. 2009, 497, 755–771. [Google Scholar] [CrossRef]
- Milone, A.P.; Marino, A.F.; Di Criscienzo, M.; D’Antona, F.; Bedin, L.R.; Da Costa, G.; Piotto, G.; Tailo, M.; Dotter, A.; Angeloni, R.; et al. Multiple stellar populations in Magellanic Cloud clusters—VI. A survey of multiple sequences and Be stars in young clusters. Mon. Not. R. Astron. Soc. Lett. 2018, 477, 2640–2663. [Google Scholar] [CrossRef] [Green Version]
- Goudfrooij, P.; Girardi, L.; Kozhurina-Platais, V.; Kalirai, J.S.; Platais, I.; Puzia, T.H.; Correnti, M.; Bressan, A.; Chandar, R.; Kerber, L.; et al. Extended Main Sequence Turnoffs in Intermediate-age Star Clusters: A Correlation between Turnoff Width and Early Escape Velocity. Astrophys. J. 2014, 797, 35. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Bedin, L.R.; Piotto, G.; Marino, A.F.; Cassisi, S.; Bellini, A.; Jerjen, H.; Pietrinferni, A.; Aparicio, A.; Rich, R.M. Multiple stellar populations in Magellanic Cloud clusters—III. The first evidence of an extended main sequence turn-off in a young cluster: NGC 1856. Mon. Not. R. Astron. Soc. Lett. 2015, 450, 3750–3764. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Marino, A.F.; D’Antona, F.; Bedin, L.R.; Da Costa, G.S.; Jerjen, H.; Mackey, A.D. Multiple stellar populations in Magellanic Cloud clusters—IV. The double main sequence of the young cluster NGC 1755. Mon. Not. R. Astron. Soc. Lett. 2016, 458, 4368–4382. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; de Grijs, R.; Deng, L.; Milone, A.P. Discovery of Extended Main-sequence Turnoffs in Four Young Massive Clusters in the Magellanic Clouds. Astrophys. J. 2017, 844, 119. [Google Scholar] [CrossRef]
- Martocchia, S.; Bastian, N.; Usher, C.; Kozhurina-Platais, V.; Niederhofer, F.; Cabrera-Ziri, I.; Dalessandro, E.; Hollyhead, K.; Kacharov, N.; Lardo, C.; et al. The search for multiple populations in Magellanic Cloud Clusters—III. No evidence for multiple populations in the SMC cluster NGC 419. Mon. Not. R. Astron. Soc. Lett. 2017, 468, 3150–3158. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Tang, B.; Milone, A.P.; Yang, Y.; Ji, X. When Does the Onset of Multiple Stellar Populations in Star Clusters Occur? III. No Evidence of Significant Chemical Variations in Main-sequence Stars of NGC 419. Astrophys. J. 2020, 893, 17. [Google Scholar] [CrossRef] [Green Version]
- Mucciarelli, A.; Dalessandro, E.; Ferraro, F.R.; Origlia, L.; Lanzoni, B. No Evidence of Chemical Anomalies in the Bimodal Turnoff Cluster NGC 1806 in the Large Magellanic Cloud. Astrophys. J. 2014, 793, L6. [Google Scholar] [CrossRef] [Green Version]
- Dupree, A.K.; Dotter, A.; Johnson, C.I.; Marino, A.F.; Milone, A.P.; Bailey, J.I., III; Crane, J.D.; Mateo, M.; Olszewski, E.W. NGC 1866: First Spectroscopic Detection of Fast-rotating Stars in a Young LMC Cluster. Astrophys. J. 2017, 846, L1. [Google Scholar] [CrossRef]
- Marino, A.F.; Przybilla, N.; Milone, A.P.; Da Costa, G.; D’Antona, F.; Dotter, A.; Dupree, A. Different Stellar Rotations in the Two Main Sequences of the Young Globular Cluster NGC 1818: The First Direct Spectroscopic Evidence. Astron. J. 2018, 156, 116. [Google Scholar] [CrossRef]
- Bastian, N.; Kamann, S.; Cabrera-Ziri, I.; Georgy, C.; Ekström, S.; Charbonnel, C.; de Juan Ovelar, M.; Usher, C. Extended main sequence turnoffs in open clusters as seen by Gaia—I. NGC 2818 and the role of stellar rotation. Mon. Not. R. Astron. Soc. Lett. 2018, 480, 3739–3746. [Google Scholar] [CrossRef]
- Marino, A.F.; Milone, A.P.; Casagrande, L.; Przybilla, N.; Balaguer-Núñez, L.; Di Criscienzo, M.; Serenelli, A.; Vilardell, F. Discovery of Extended Main Sequence Turnoffs in Galactic Open Clusters. Astrophys. J. 2018, 863, L33. [Google Scholar] [CrossRef]
- Keller, S.C.; Bessell, M.S. Spectroscopy of Be stars in the Small Magellanic Cloud cluster NGC 330. Astron. Astrophys. 1998, 340, 397–401. [Google Scholar]
- Bastian, N.; Cabrera-Ziri, I.; Niederhofer, F.; de Mink, S.; Georgy, C.; Baade, D.; Correnti, M.; Usher, C.; Romaniello, M. A high fraction of Be stars in young massive clusters: Evidence for a large population of near-critically rotating stars. Mon. Not. R. Astron. Soc. Lett. 2017, 465, 4795–4799. [Google Scholar] [CrossRef] [Green Version]
- Niederhofer, F.; Georgy, C.; Bastian, N.; Ekström, S. Apparent age spreads in clusters and the role of stellar rotation. Mon. Not. R. Astron. Soc. Lett. 2015, 453, 2070–2074. [Google Scholar] [CrossRef] [Green Version]
- Cordoni, G.; Milone, A.P.; Marino, A.F.; Di Criscienzo, M.; D’Antona, F.; Dotter, A.; Lagioia, E.P.; Tailo, M. Extended Main-sequence Turnoff as a Common Feature of Milky Way Open Clusters. Astrophys. J. 2018, 869, 139. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Sun, W.; de Grijs, R.; Deng, L.; Wang, K.; Cordoni, G.; Milone, A.P. Extended Main-sequence Turnoffs in the Double Cluster h and χ Persei: The Complex Role of Stellar Rotation. Astrophys. J. 2019, 876, 65. [Google Scholar] [CrossRef] [Green Version]
- Girardi, L.; Rubele, S.; Kerber, L. Discovery of two distinct red clumps in NGC 419: A rare snapshot of a cluster at the onset of degeneracy. Mon. Not. R. Astron. Soc. Lett. 2009, 394, L74–L78. [Google Scholar] [CrossRef] [Green Version]
- Girardi, L.; Goudfrooij, P.; Kalirai, J.S.; Kerber, L.; Kozhurina-Platais, V.; Rubele, S.; Bressan, A.; Chandar, R.; Marigo, P.; Platais, I.; et al. An extended main-sequence turn-off in the Small Magellanic Cloud star cluster NGC 411. Mon. Not. R. Astron. Soc. Lett. 2013, 431, 3501–3509. [Google Scholar] [CrossRef]
- Milone, A.P. The HST survey of star clusters in Magellanic Clouds. Astron. Astrophys. 2022; submitted. [Google Scholar]
- Mackey, A.D.; Broby Nielsen, P.; Ferguson, A.M.N.; Richardson, J.C. Multiple Stellar Populations in Three Rich Large Magellanic Cloud Star Clusters. Astrophys. J. 2008, 681, L17. [Google Scholar] [CrossRef] [Green Version]
- Glatt, K.; Grebel, E.K.; Sabbi, E.; Gallagher, J.S.I.; Nota, A.; Sirianni, M.; Clementini, G.; Tosi, M.; Harbeck, D.; Koch, A.; et al. Age Determination of Six Intermediate-Age Small Magellanic Cloud Star Clusters with HST/ACS. Astron. J. 2008, 136, 1703–1727. [Google Scholar] [CrossRef] [Green Version]
- Goudfrooij, P.; Puzia, T.H.; Chandar, R.; Kozhurina-Platais, V. Population Parameters of Intermediate-age Star Clusters in the Large Magellanic Cloud. III. Dynamical Evidence for a Range of Ages Being Responsible for Extended Main-sequence Turnoffs. Astrophys. J. 2011, 737, 4. [Google Scholar] [CrossRef]
- Keller, S.C.; Mackey, A.D.; Da Costa, G.S. The Extended Main-sequence Turnoff Clusters of the Large Magellanic Cloud—Missing Links in Globular Cluster Evolution. Astrophys. J. 2011, 731, 22. [Google Scholar] [CrossRef] [Green Version]
- Bastian, N.; de Mink, S.E. The effect of stellar rotation on colour-magnitude diagrams: On the apparent presence of multiple populations in intermediate age stellar clusters. Mon. Not. R. Astron. Soc. Lett. 2009, 398, L11–L15. [Google Scholar] [CrossRef]
- D’Antona, F.; Di Criscienzo, M.; Decressin, T.; Milone, A.P.; Vesperini, E.; Ventura, P. The extended main-sequence turn-off cluster NGC 1856: Rotational evolution in a coeval stellar ensemble. Mon. Not. R. Astron. Soc. Lett. 2015, 453, 2637–2643. [Google Scholar] [CrossRef] [Green Version]
- Ekström, S.; Georgy, C.; Eggenberger, P.; Meynet, G.; Mowlavi, N.; Wyttenbach, A.; Granada, A.; Decressin, T.; Hirschi, R.; Frischknecht, U.; et al. Grids of stellar models with rotation. I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014). Astron. Astrophys. 2012, 537, A146. [Google Scholar] [CrossRef] [Green Version]
- Milone, A.P.; Marino, A.F.; D’Antona, F.; Bedin, L.R.; Piotto, G.; Jerjen, H.; Anderson, J.; Dotter, A.; di Criscienzo, M.; Lagioia, E.P. Multiple stellar populations in Magellanic Cloud clusters—V. The split main sequence of the young cluster NGC 1866. Mon. Not. R. Astron. Soc. Lett. 2017, 465, 4363–4374. [Google Scholar] [CrossRef] [Green Version]
- Goudfrooij, P.; Girardi, L.; Correnti, M. Extended Main-sequence Turn-offs in Intermediate-age Star Clusters: Stellar Rotation Diminishes, but Does Not Eliminate, Age Spreads. Astrophys. J. 2017, 846, 22. [Google Scholar] [CrossRef] [Green Version]
- Costa, G.; Girardi, L.; Bressan, A.; Chen, Y.; Goudfrooij, P.; Marigo, P.; Rodrigues, T.S.; Lanza, A. Multiple stellar populations in NGC 1866. New clues from Cepheids and colour-magnitude diagram. Astron. Astrophys. 2019, 631, A128. [Google Scholar] [CrossRef]
- D’Antona, F.; Milone, A.P.; Tailo, M.; Ventura, P.; Vesperini, E.; di Criscienzo, M. Stars caught in the braking stage in young Magellanic Cloud clusters. Nat. Astron. 2017, 1, 0186. [Google Scholar] [CrossRef] [Green Version]
- Cignoni, M.; Tosi, M.; Sabbi, E.; Nota, A.; Degl’Innocenti, S.; Prada Moroni, P.G.; Gallagher, J.S. Pre-main-sequence Turn-On as a Chronometer for Young Clusters: NGC 346 as a Benchmark. Astrophys. J. 2010, 712, L63–L68. [Google Scholar] [CrossRef] [Green Version]
- Cordoni, G. The Turn-On of NGC1818 unveils the origin of Multiple Stellar Populations in Magellanic Cloud clusters. Mon. Not. R. Astron. Soc. 2022; submitted. [Google Scholar]
- Bastian, N.; Kamann, S.; Amard, L.; Charbonnel, C.; Haemmerlé, L.; Matt, S.P. On the origin of the bimodal rotational velocity distribution in stellar clusters: Rotation on the pre-main sequence. Mon. Not. R. Astron. Soc. Lett. 2020, 495, 1978–1983. [Google Scholar] [CrossRef]
- Wang, C.; Langer, N.; Schootemeijer, A.; Milone, A.; Hastings, B.; Xu, X.T.; Bodensteiner, J.; Sana, H.; Castro, N.; Lennon, D.J.; et al. Stellar mergers as the origin of the blue main-sequence band in young star clusters. Nat. Astron. 2022, 6, 480–487. [Google Scholar] [CrossRef]
- Vesperini, E.; Varri, A.L.; McMillan, S.L.W.; Zepf, S.E. Kinematical fingerprints of star cluster early dynamical evolution. Mon. Not. R. Astron. Soc. Lett. 2014, 443, L79–L83. [Google Scholar] [CrossRef]
- Tiongco, M.A.; Vesperini, E.; Varri, A.L. Kinematical evolution of multiple stellar populations in star clusters. Mon. Not. R. Astron. Soc. Lett. 2019, 487, 5535–5548. [Google Scholar] [CrossRef]
- Libralato, M.; Bellini, A.; Piotto, G.; Nardiello, D.; van der Marel, R.P.; Anderson, J.; Bedin, L.R.; Vesperini, E. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. XVIII. Proper-motion Kinematics of Multiple Stellar Populations in the Core Regions of NGC 6352. Astrophys. J. 2019, 873, 109. [Google Scholar] [CrossRef] [Green Version]
- Miglio, A.; Girardi, L.; Grundahl, F.; Mosser, B.; Bastian, N.; Bragaglia, A.; Brogaard, K.; Buldgen, G.; Chantereau, W.; Chaplin, W.; et al. Haydn. Exp. Astron. 2021, 51, 963–1001. [Google Scholar] [CrossRef]
- Miglio, A.; Chaplin, W.J.; Brogaard, K.; Lund, M.N.; Mosser, B.; Davies, G.R.; Handberg, R.; Milone, A.P.; Marino, A.F.; Bossini, D.; et al. Detection of solar-like oscillations in relics of the Milky Way: Asteroseismology of K giants in M4 using data from the NASA K2 mission. Mon. Not. R. Astron. Soc. Lett. 2016, 461, 760–765. [Google Scholar] [CrossRef] [Green Version]
- Tailo, M.; Corsaro, E.; Miglio, A.; Montalbán, J.; Brogaard, K.; Milone, A.P.; Stokholm, A.; Casali, G.; Bragaglia, A. Asteroseismology of the multiple stellar populations in the Globular Cluster M4. arXiv 2022, arXiv:2205.06645. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milone, A.P.; Marino, A.F. Multiple Populations in Star Clusters. Universe 2022, 8, 359. https://doi.org/10.3390/universe8070359
Milone AP, Marino AF. Multiple Populations in Star Clusters. Universe. 2022; 8(7):359. https://doi.org/10.3390/universe8070359
Chicago/Turabian StyleMilone, Antonino P., and Anna F. Marino. 2022. "Multiple Populations in Star Clusters" Universe 8, no. 7: 359. https://doi.org/10.3390/universe8070359
APA StyleMilone, A. P., & Marino, A. F. (2022). Multiple Populations in Star Clusters. Universe, 8(7), 359. https://doi.org/10.3390/universe8070359