Progress in the Simulation and Modelling of Coherent Radio Pulses from Ultra High-Energy Cosmic Particles
Abstract
:1. Introduction
2. Progress in the Radio Technique and (the Role of) Simulation Programs
3. Radiation from Particle Tracks in a Medium: The ZHS Algorithm
3.1. Time Domain
3.2. Frequency Domain
3.3. Comparison with the “Endpoints Formulation”
3.4. Comparison with Exact Calculations
- The observer must be in the "far field" zone, what implies that where is the distance between an arbitrary point of the sub-track and the observation point at .
- The distance between points of the sub-track and the observation point must be well approximated by a constant R. The normalization of the electric field is given by , so clearly the error is below , where is the vector that defines the length and direction of the sub-track, and the observation angle relative to the track direction.
- The Fraunhofer condition must hold within the sub-track, that is with should be well approximated by in the calculation of time delays (or phases). This implies that .
4. Monte Carlo Simulation Codes
4.1. Electromagnetic Showers in Homogeneous Media: ZHS Code
Results
4.2. Air Showers with Hadronic Component: ZHAireS
Results
5. Simplifying and Understanding Radio Emission through Models
5.1. The Simplest Model: A Basis for Parameterizations
5.2. The 1-Dimensional (1D) Approximation
5.3. The Semi-Analytical Approach
5.3.1. Results in the Near Field
5.3.2. Parameterizations of the Form Factor
5.4. Modeling Radiation in Air Shower: Near Effects
5.4.1. The One-Dimensional Toy Model
5.4.2. A Superposition Model
- The polarization of the electric field due to the excess charge is assumed to be , while that of the geomagnetic effect is assumed to approximately be parallel to .
- The amplitude of the electric field since each mechanism is supposed to have circular symmetry. At a given distance r (perpendicular to the shower axis), the magnitude of each component is constant, i.e., independent of the polar angle.
- Both components can be identified and separated using simulations. The ansatz is that the component of the field due to the excess charge, , can be directly obtained simulating a shower with the magnetic field “switched” off, while the component due to the geomagnetic effect, , is obtained using a simulation with the magnetic field switched on, , and subtracting the excess charge from it to obtain .
6. Applications
6.1. Reflected Pulses from Air Showers
6.2. Direct Pulses from Air Showers Pointing Upwards
6.3. Transition Radiation
6.4. Accelerator Tests
7. Prospects for the Future: Some Open Questions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AERA | Auger Engineering Radio Array |
AIRES | AIR-shower Extended Simulations |
AMANDA | Antarctic Muon And Neutrino Detector Array |
ANITA | ANtarctic Impulsive Transient Antenna |
ARIANNA | Antarctic Ross Ice-Shelf Antenna Neutrino Array |
BEACON | Beamforming Elevated Array for COsmic Neutrinos |
CoREAS | COrsika-based Radio Emission from Air Showers |
CORSIKA | COsmic Ray SImulations for KAscade |
EGS | Electron Gamma Shower |
GEANT | GEometry ANd Tracking |
GRAND | Giant Radio Array for Neutrino Detection |
LPM | Landau-Pomeranchuk-Migdal |
PUEO | Payload for Ultrahigh Energy Observations |
RNO-G | Radio Neutrino Observatory - Greenland |
SKA | Square Kilometer Array |
ZHAireS | ZHS + AIRES |
ZHS | Zas-Halzen-Stanev |
1 | See Acknowledgments. |
2 | We note here that both the original program, which has been maintained and extended up to date, and the algorithm are often referred to as ZHS. |
3 | Also as the formal derivative of the -function. |
4 | The factor of 2 is usually , or or 1. |
5 | TIERRAS was originally designed to be able to continue the shower development in homogeneous media such as water, ice, salt or rock. |
6 | Note that while refers to electric charge, Q alone refers to the excess number of electrons over positrons. |
7 | This is because all points along the shower axis contribute in phase at the Cherenkov angle. |
8 | This is similar to the analytical approach (in the frequency domain) taken in [19]. |
9 | Note that the modulus of is precisely , so that this projection factor in Equation (21) is included with this replacement. |
10 | Note that the current is opposite to because of the excess charge, and there is a negative sign in the time derivative of the vector potential. |
11 | There will also be emission from the interface back into the ice. This radiation will be of relevance for a neutrino detector based on the radio technique with antennas buried in the ice but needs a modified approach. Similarly, there are showers that start in the atmosphere and intercept the ice cap which will also produce coherent transition radiation both into the ice and into the atmosphere. These calculations cannot be attempted with the program that has been developed so far. |
References
- Linsley, J. Evidence for a primary cosmic-ray particle with energy 1020 eV. Phys. Rev. Lett. 1963, 10, 146–148. [Google Scholar] [CrossRef]
- Bird, D.J.; Corbató, S.C.; Dai, H.Y.; Dawson, B.R.; Elbert, J.W.; Gaisser, T.K.; Green, K.D.; Huang, M.A.; Kieda, D.B.; Ko, S.; et al. Evidence for correlated changes in the spectrum and composition of cosmic rays at extremely high-energies. Phys. Rev. Lett. 1993, 71, 3401–3404. [Google Scholar] [CrossRef] [PubMed]
- High Resolution Fly’s Eye Collaboration. First observation of the Greisen-Zatsepin-Kuzmin suppression. Phys. Rev. Lett. 2008, 100, 101101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez-Muniz, J.; Ambrosio, M.; et al. Observation of the suppression of the flux of cosmic rays above 4×1019 eV. Phys. Rev. Lett. 2008, 101, 061101. [Google Scholar] [CrossRef] [Green Version]
- Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; et al. Energy Spectrum of Ultra-High Energy Cosmic Rays Observed with the Telescope Array Using a Hybrid Technique. Astropart. Phys. 2015, 61, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Aab, A.; Abreu, P.; Aglietta, M.; Albury, J.M.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Batista, R.A.; Anastasi, G.A.; et al. Features of the Energy Spectrum of Cosmic Rays above 2.5 × 1018 eV Using the Pierre Auger Observatory. Phys. Rev. Lett. 2020, 125, 121106. [Google Scholar] [CrossRef]
- Abbott, B.P.; Bloemen, S.; Canizares, P.; Falcke, H.; Fender, R.P.; Ghosh, S.; Groot, P.; Hinderer, T.; Hörandel, J.R.; Jonker, P.G.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I.F.M.; Albury, J.M.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Anastasi, G.A.; et al. Large-scale cosmic-ray anisotropies above 4 EeV measured by the Pierre Auger Observatory. Astrophys. J. 2018, 868, 4. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.A.R.C.O.; Ahn, E.J.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications. Phys. Rev. D 2014, 90, 122006. [Google Scholar] [CrossRef] [Green Version]
- Aab, A.; Abreu, P.; Aglietta, M.A.R.C.O.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Anastasi, G.A.; et al. Inferences on mass composition and tests of hadronic interactions from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Observatory. Phys. Rev. D 2017, 96, 122003. [Google Scholar] [CrossRef] [Green Version]
- IceCube Collaboration. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science 2013, 342, 1242856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stettner, J. Measurement of the Diffuse Astrophysical Muon-Neutrino Spectrum with Ten Years of IceCube Data. In Proceedings of the 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, USA, 24 July–1 August 2019; p. 1017. [Google Scholar] [CrossRef]
- Allan, H.R. Radio Emission from Extensive Air Showers. Prog. Elem. Part. Cosm. Ray Phys. 1971, 10, 171–302. [Google Scholar]
- Fegan, D.J. Detection of elusive Radio and Optical emission from Cosmic-ray showers in the 1960s. Nucl. Instrum. Meth. A 2012, 662, S2–S11. [Google Scholar] [CrossRef] [Green Version]
- Connolly, A.L.; Vieregg, A.G. Radio Detection of High Energy Neutrinos. 2017. Available online: https://www.worldscientific.com/doi/abs/10.1142/9789814759410_0015 (accessed on 21 April 2022).
- Huege, T. Radio detection of cosmic ray air showers in the digital era. Phys. Rept. 2016, 620, 1–52. [Google Scholar] [CrossRef] [Green Version]
- Schröder, F.G. Radio detection of Cosmic-Ray Air Showers and High-Energy Neutrinos. Prog. Part. Nucl. Phys. 2017, 93, 1–68. [Google Scholar] [CrossRef] [Green Version]
- Huege, T.; Besson, D. Radio-wave detection of ultra-high-energy neutrinos and cosmic rays. PTEP 2017, 2017, 12A106. [Google Scholar] [CrossRef] [Green Version]
- Buniy, R.V.; Ralston, J.P. Radio detection of high-energy particles: Coherence versus multiple scales. Phys. Rev. D 2002, 65, 016003. [Google Scholar] [CrossRef] [Green Version]
- Scholten, O.; Werner, K.; Rusydi, F. A Macroscopic Description of Coherent Geo-Magnetic Radiation from Cosmic Ray Air Showers. Astropart. Phys. 2008, 29, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Werner, K.; Scholten, O. Macroscopic Treatment of Radio Emission from Cosmic Ray Air Showers based on Shower Simulations. Astropart. Phys. 2008, 29, 393–411. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Muñiz, J.; Romero-Wolf, A.; Zas, E. Practical and accurate calculations of Askaryan radiation. Phys. Rev. D 2011, 84, 103003. [Google Scholar] [CrossRef] [Green Version]
- Werner, K.; de Vries, K.D.; Scholten, O. A Realistic Treatment of Geomagnetic Cherenkov Radiation from Cosmic Ray Air Showers. Astropart. Phys. 2012, 37, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Zas, E.; Halzen, F.; Stanev, T. Electromagnetic pulses from high-energy showers: Implications for neutrino detection. Phys. Rev. D 1992, 45, 362–376. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Muñiz, J.; Carvalho, W.R., Jr.; Tueros, M.; Zas, E. Coherent Cherenkov radio pulses from hadronic showers up to EeV energies. Astropart. Phys. 2012, 35, 287–299. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, M.; Huege, T. REAS3: Monte Carlo simulations of radio emission from cosmic ray air showers using an ‘end-point’ formalism. Astropart. Phys. 2011, 34, 438–446. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Muñiz, J.; Carvalho, W.R., Jr.; Zas, E. Monte Carlo simulations of radio pulses in atmospheric showers using ZHAireS. Astropart. Phys. 2012, 35, 325–341. [Google Scholar] [CrossRef] [Green Version]
- Huege, T.; Ludwig, M.; James, C.W. Simulating radio emission from air showers with CoREAS. AIP Conf. Proc. 2013, 1535, 128. [Google Scholar] [CrossRef] [Green Version]
- Marin, V.; Revenu, B. Simulation of radio emission from cosmic ray air shower with SELFAS2. Astropart. Phys. 2012, 35, 733–741. [Google Scholar] [CrossRef] [Green Version]
- Halzen, F.; Zas, E.; Stanev, T. Radiodetection of cosmic neutrinos: A Numerical, real time analysis. Phys. Lett. B 1991, 257, 432–436. [Google Scholar] [CrossRef]
- Jelley, J.V. Further work on Cherenkov light pulses. In Proceedings of the Oxford Conference on Extensive Air Showers, Harwell, UK, 11–13 April 1956. [Google Scholar]
- Jelley, J.V. Cerenkov Radiation in the Atmosphere and Its Application to the Study of Extensive Air Showers. Nuovo C. (Italy) Divid. Nuovo C. A Nuovo C. B 1958, VIII, 578–584. [Google Scholar] [CrossRef]
- Jelley, J.V. Cherenkov Radiation and Its Applications; Pergamon Press: London, UK, 1958. [Google Scholar]
- Galbraith, W.; Jelley, J.V. Light Pulses from the Night Sky associated with Cosmic Rays. Nature 1953, 171, 349–350. [Google Scholar] [CrossRef]
- Jelley, J.V. In Days of Yore. In Very High Energy Gamma Ray Astronomy; Turver, K., Ed.; Reidel Pub. Co.: Dordrecht, Holland, 1987; pp. 27–37. [Google Scholar]
- Askar’yan, G.A. Excess Negative Charge of an Electron-Photon Shower and its Coherent Radio Emission. Sov. Phys. JETP 1962, 14, 441–443. [Google Scholar]
- Askar’yan, G.A. Coherent Radio Emission from Cosmic Showers in Air and in Dense Media. Sov. Phys. JETP 1965, 48, 988–990. [Google Scholar]
- Jelley, J.V.; Fruin, J.H.; Porter, N.A.; Weekes, T.C.; Smith, F.G.; Porter, R.A. Radio Pulses from Extensive Cosmic-Ray Air Showers. Nature 1965, 205, 327–328. [Google Scholar] [CrossRef]
- Barker, P.R.; Hazen, W.E.; Hendel, Z. Radio Pulses from Cosmic-Ray Air Showers. Phys. Rev. Lett. 1967, 18, 51–54. [Google Scholar] [CrossRef]
- Allan, H.R.; Clay, R.W. Radio Pulses from Extensive Air Showers. Nature 1970, 227, 1116–1118. [Google Scholar] [CrossRef]
- Kahn, F.D.; Lerche, I. Radiation from cosmic ray air showers. Proc. Roy. Soc. Lond. A 1966, 289, 206–213. [Google Scholar] [CrossRef]
- Lerche, I. Theory of Radio Pulses from Cosmic Ray Air Showers. Nature 1967, 215, 268–269. [Google Scholar] [CrossRef]
- Allan, H.R.; Clay, R.W.; Jones, J.K.; Abrosimov, A.T.; Neat, K.P. Radio Pulse Production in Extensive Air Showers. Nature 1969, 222, 635–637. [Google Scholar] [CrossRef]
- Prescott, J.R.; Hough, J.H.; Pidcock, J.K. Mechanism of Radio Emisssion from Extensive Air Showers. Nature 1971, 223, 109–110. [Google Scholar]
- Mandolesi, N.; Morigi, G.; Palumbo, G. Radio pules from extensive air showers during thunderstorms-the atmospheric electric field as a possible cause. J. Atmos. Terr. Phys. 1974, 36, 1431–1435. [Google Scholar] [CrossRef]
- Roberts, A. The Birth of high-energy neutrino astronomy: A Personal history of the DUMAND project. Rev. Mod. Phys. 1992, 64, 259–312. [Google Scholar] [CrossRef]
- Gusev, G.A.; Zheleznykh, I.M. Neutrino and Muon Detection from the Radio Emission of Cascades created by them in Natural Dielectric Media. JETP Lett. 1983, 38, 611–614. [Google Scholar]
- Markov, M.A.; Zheleznykh, I.M. Large Scale Cherenkov Detectors in Ocean, Atmosphere and Ice. Nucl. Instrum. Meth. A 1986, 248, 242–251. [Google Scholar] [CrossRef]
- Andres, E.; Askebjer, P.; Barwick, S.W.; Bay, R.; Bergström, L.; Biron, A.; Booth, J.; Bouchta, A.; Carius, S.; Carlson, M.; et al. The AMANDA neutrino telescope: Principle of operation and first results. Astropart. Phys. 2000, 13, 1–20. [Google Scholar] [CrossRef]
- Ralston, J.P.; McKay, D.W. Icemand: Microwave Detection of Ultrahigh-energy Neutrinos in Ice. Nucl. Phys. B Proc. Suppl. 1990, 14, 356–362. [Google Scholar] [CrossRef]
- Hankins, T.H.; Ekers, R.D.; O’Sullivan, J.D. A search for lunar radio Čerenkov emission of high-energy neutrinos. Mon. Not. R. Astron. Soc. 1996, 283, 1027–1030. [Google Scholar] [CrossRef] [Green Version]
- Gorham, P.W.; Liewer, K.M.; Naudet, C.J. Initial results from a search for lunar radio emission from interactions of >= 1019 eV neutrinos and cosmic rays. In Proceedings of the 26th International Cosmic Ray Conference, Salt Lake City, UT, USA, 17–25 August 1999. [Google Scholar]
- Kravchenko, I.; Frichter, G.M.; Seckel, D.; Spiczak, G.M.; Adams, J.; Seunarine, S.; Allen, C.; Bean, A.; Besson, D.; Box, D.J.; et al. Performance and simulation of the RICE detector. Astropart. Phys. 2003, 19, 15–36. [Google Scholar] [CrossRef] [Green Version]
- Gorham, P.; Saltzberg, D.; Schoessow, P.; Gai, W.; Power, J.G.; Konecny, R.; Conde, M.E. Radio frequency measurements of coherent transition and Cherenkov radiation: Implications for high-energy neutrino detection. Phys. Rev. E 2000, 62, 8590–8605. [Google Scholar] [CrossRef] [Green Version]
- Miocinovic, P.; Barwick, S.W.; Beatty, J.J.; Besson, D.Z.; Binns, W.R.; Cai, B.; Clem, J.M.; Connolly, A.; Coutu, S.; Cowen, D.F.; et al. Tuning into UHE neutrinos in Antarctica—The ANITA experiment. eConf 2004, C041213, 2516. [Google Scholar]
- Barwick, S.W. Constraints on cosmic neutrino fluxes from the anita experiment. Phys. Rev. Lett. 2006, 96, 171101. [Google Scholar] [CrossRef]
- Hoover, S.; Nam, J.; Gorham, P.W.; Grashorn, E.; Allison, P.; Barwick, S.W.; Beatty, J.J.; Belov, K.; Besson, D.Z.; Binns, W.R.; et al. Observation of Ultra-high-energy Cosmic Rays with the ANITA Balloon-borne Radio Interferometer. Phys. Rev. Lett. 2010, 105, 151101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fegan, D.J.; Slevin, P.J. Radio Pulses from Extensive Air Showers at 520 MHz. Nature 1965, 217, 440–441. [Google Scholar] [CrossRef]
- Charman, W.N.; Jelley, J.V. A Search at the Zenith for 200 MHz and 3000 MHz Radio Emission from Extensive Air Showers. Nuov. Cim. 1969, 63, 473–485. [Google Scholar] [CrossRef]
- Spencer, R.E. Radio Pulses from Cosmic Ray Air Showers at 44, 105, 239 and 408 MHz. Nature 1969, 460–461, 1116–1118. [Google Scholar] [CrossRef]
- Schoorlemmer, H.; Belov, K.; Romero-Wolf, A.; García-Fernández, D.; Bugaev, V.; Wissel, S.A.; Allison, P.; Alvarez-Muñiz, J.; Barwick, S.W.; Beatty, J.J.; et al. Energy and Flux Measurements of Ultra-High Energy Cosmic Rays Observed During the First ANITA Flight. Astropart. Phys. 2016, 77, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Falcke, H.; Apel, W.D.; Badea, A.F.; Bähren, L.; Bekk, K.; Bercuci, A.; Bertaina, M.; Biermann, P.L.; Blümer, J.; Bozdog, H.; et al. Detection and imaging of atmospheric radio flashes from cosmic ray air showers. Nature 2005, 435, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Apel, W.D.; Arteaga-Velázquez, J.C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P.L.; Blümer, J.; Bozdog, H.; Cantoni, E.; Chiavassa, A.; et al. Final results of the LOPES radio interferometer for cosmic-ray air showers. Eur. Phys. J. C 2021, 81, 176. [Google Scholar] [CrossRef]
- Rottgering, H. LOFAR, A New low frequency radio telescope. New Astron. Rev. 2003, 47, 405–409. [Google Scholar] [CrossRef] [Green Version]
- Schellart, P.; Nelles, A.; Buitink, S.; Corstanje, A.; Enriquez, J.E.; Falcke, H.; Frieswijk, W.; Hörandel, J.R.; Horneffer, A.; James, C.W.; et al. Detecting cosmic rays with the LOFAR radio telescope. Astron. Astrophys. 2013, 560, A98. [Google Scholar] [CrossRef] [Green Version]
- Ravel, O.; Dallier, R.; Denis, L.; Gousset, T.; Haddad, F.; Lautridou, P.; Lecacheux, A.; Morteau, E.; Rosolen, C.; Roy, C. Radio detection of cosmic ray air shower by the CODALEMA experiment. Nucl. Instrum. Meth. A 2004, 518, 213–215. [Google Scholar] [CrossRef]
- Huege, T.; Falcke, H. Radio emission from cosmic ray air showers: Simulation results and parametrization. Astropart. Phys. 2005, 24, 116–136. [Google Scholar] [CrossRef] [Green Version]
- Huege, T.; Ulrich, R.; Engel, R. Monte Carlo simulations of geosynchrotron radio emission from CORSIKA-simulated air showers. Astropart. Phys. 2007, 27, 392–405. [Google Scholar] [CrossRef] [Green Version]
- Huege, T.; Falcke, H. Radio emission from cosmic ray air showers: Coherent geosynchrotron radiation. Astron. Astrophys. 2003, 412, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Bezyazeekov, P.A.; Budnev, N.M.; Gress, O.A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Konstantinov, E.N.; Korosteleva, E.E.; et al. Measurement of cosmic-ray air showers with the Tunka Radio Extension (Tunka-Rex). Nucl. Instrum. Meth. A 2015, 802, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Bezyazeekov, P.A.; Budnev, N.M.; Gress, O.A.; Haungs, A.; Hiller, R.; Huege, T.; Kazarina, Y.; Kleifges, M.; Konstantinov, E.N.; Korosteleva, E.E.; et al. Radio measurements of the energy and the depth of the shower maximum of cosmic-ray air showers by Tunka-Rex. JCAP 2016, 01, 052. [Google Scholar] [CrossRef] [Green Version]
- Abreu, P.; Acounis, S.; Aglietta, M.; Ahlers, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; et al. Results of a Self-Triggered Prototype System for Radio-Detection of Extensive Air Showers at the Pierre Auger Observatory. JINST 2012, 7, P11023. [Google Scholar] [CrossRef]
- Kelley, J.L. AERA: The Auger Engineering Radio Array. In Proceedings of the 32nd International Cosmic Ray Conference, Beijing, China, 11–18 August 2011; Volume 3, p. 112. [Google Scholar]
- Sciutto, S.J. AIRES: A system for air shower simulations. arXiv 1999, arXiv:astro-ph/9911331. [Google Scholar] [CrossRef]
- Heck, D.; Knapp, J.; Capdevielle, J.N.; Schatz, G.; Thouw, T. CORSIKA: A Monte Carlo code to simulate extensive air showers. Rep. Fzka 1998, 6019, 1. Available online: https://inspirehep.net/files/9bdb7ea99706d9ae48d0be29f9e19f11 (accessed on 22 April 2022).
- James, C.W.; Falcke, H.; Huege, T.; Ludwig, M. General description of electromagnetic radiation processes based on instantaneous charge acceleration in ‘endpoints’. Phys. Rev. E 2011, 84, 056602. [Google Scholar] [CrossRef] [Green Version]
- Huege, T. Theory and simulations of air shower radio emission. AIP Conf. Proc. 2013, 1535, 121. [Google Scholar] [CrossRef] [Green Version]
- Nelles, A.; Schellart, P.; Buitink, S.; Corstanje, A.; De Vries, K.D.; Enriquez, J.E.; Falcke, H.; Frieswijk, W.; Hörandel, J.R.; Scholten, O.; et al. Measuring a Cherenkov ring in the radio emission from air showers at 110–190 MHz with LOFAR. Astropart. Phys. 2015, 65, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E.J.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Allison, P.; Almela, A.; Castillo, J.A.; et al. Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy. Phys. Rev. Lett. 2016, 116, 241101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buitink, S.; Corstanje, A.; Falcke, H.; Hörandel, J.R.; Huege, T.; Nelles, A.; Rachen, J.P.; Rossetto, L.; Schellart, P.; Scholten, O.; et al. A large light-mass component of cosmic rays at 1017–1017.5 eV from radio observations. Nature 2016, 531, 70. [Google Scholar] [CrossRef] [PubMed]
- Pont, B.B.T.; Alves Batista, R.; Canfora, F.; de Jong, S.J.; De Mauro, G.; Falcke, H.; Fodran, T.; Galea, C.; Giaccari, U.; Hörandel, J.; et al. The depth of the shower maximum of air showers measured with AERA. In Proceedings of the 37th International Cosmic Ray Conference (ICRC 2021), Online, 12–23 July 2021; p. 387. [Google Scholar] [CrossRef]
- Gorham, P.W.; Nam, J.; Romero-Wolf, A.; Hoover, S.; Allison, P.; Banerjee, O.; Beatty, J.J.; Belov, K.; Besson, D.Z.; Binns, W.R.; et al. Characteristics of Four Upward-pointing Cosmic-ray-like Events Observed with ANITA. Phys. Rev. Lett. 2016, 117, 071101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorham, P.W.; Rotter, B.; Allison, P.; Banerjee, O.; Batten, L.; Beatty, J.J.; Bechtol, K.; Belov, K.; Besson, D.Z.; Binns, W.R.; et al. Observation of an Unusual Upward-going Cosmic-ray-like Event in the Third Flight of ANITA. Phys. Rev. Lett. 2018, 121, 161102. [Google Scholar] [CrossRef] [Green Version]
- Gorham, P.W.; Ludwig, A.; Deaconu, C.; Cao, P.; Allison, P.; Banerjee, O.; Batten, L.; Bhattacharya, D.; Beatty, J.J.; Belov, K.; et al. Unusual Near-Horizon Cosmic-Ray-like Events Observed by ANITA-IV. Phys. Rev. Lett. 2021, 126, 071103. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I.F.M.; Albury, J.M.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Anastasi, G.A.; et al. Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory. JCAP 2019, 10, 022. [Google Scholar] [CrossRef] [Green Version]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. A search for IceCube events in the direction of ANITA neutrino candidates. Astrophys. J. 2020, 892, 53. [Google Scholar] [CrossRef]
- Romero-Wolf, A.; Wissel, S.A.; Schoorlemmer, H.; Carvalho Jr, W.R.; Alvarez-Muniz, J.; Zas, E.; Allison, P.; Banerjee, O.; Batten, L.; Beatty, J.J.; et al. Comprehensive analysis of anomalous ANITA events disfavors a diffuse tau-neutrino flux origin. Phys. Rev. D 2019, 99, 063011. [Google Scholar] [CrossRef] [Green Version]
- Anchordoqui, L.A.; Antoniadis, I.; Barger, V.; Cornet, F.; Canal, C.G.; Gutiérrez, M.; Illana, J.I.; Learned, J.G.; Marfatia, D.; Masip, M.; et al. The pros and cons of beyond standard model interpretations of ANITA events. In Proceedings of the 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, USA, 24 July–1 August 2019; p. 884. [Google Scholar] [CrossRef]
- Bray, J.D. The sensitivity of past and near-future lunar radio experiments to ultra-high-energy cosmic rays and neutrinos. Astropart. Phys. 2016, 77, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Bertou, X.; Billoir, P.; Deligny, O.; Lachaud, C.; Letessier-Selvon, A. Tau neutrinos in the Auger Observatory: A New window to UHECR sources. Astropart. Phys. 2002, 17, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Fargion, D.; De Sanctis Lucentini, P.G.; De Santis, M. Tau air showers from earth. Astrophys. J. 2004, 613, 1285–1301. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Muñiz, J.; Alves Batista, R.; Balagopal V, A.; Bolmont, J.; Bustamante, M.; Carvalho, W.; Charrier, D.; Cognard, I.; Decoene, V.; Denton, P.B.; et al. The Giant Radio Array for Neutrino Detection (GRAND): Science and Design. Sci. China Phys. Mech. Astron. 2020, 63, 219501. [Google Scholar] [CrossRef] [Green Version]
- Wissel, S.; Romero-Wolf, A.; Schoorlemmer, H.; Carvalho Jr, W.R.; Alvarez-Muñiz, J.; Zas, E.; Cummings, A.; Deaconu, C.; Hughes, K.; Ludwig, A.; et al. Prospects for high-elevation radio detection of >100 PeV tau neutrinos. JCAP 2020, 11, 065. [Google Scholar] [CrossRef]
- Abarr, Q.; Allison, P.; Yebra, J.A.; Alvarez-Muñiz, J.; Beatty, J.J.; Besson, D.Z.; Chen, P.; Chen, Y.; Xie, C.; Clem, J.M.; et al. The Payload for Ultrahigh Energy Observations (PUEO): A white paper. JINST 2021, 16, P08035. [Google Scholar] [CrossRef]
- Fodran, T.; Abreu, P.; Aglietta, M.; Albury, J.M.; Allekotte, I.; Almela, A.; Alvarez-Muniz, J.; Alves Batista, R.; Anastasi, G.A.; Anchordoqui, L.A.; et al. First results from the AugerPrime Radio Detector. In Proceedings of the 37th International Cosmic Ray Conference (ICRC 2021), Online, 12–23 July 2021; p. 270. [Google Scholar] [CrossRef]
- Aguilar, J.A.; Allison, P.; Beatty, J.J.; Bernhoff, H.; Besson, D.Z.; Bingefors, N.; Botner, O.; Bouma, S.; Buitink, S.; Carter, K.; et al. The Radio Neutrino Observatory Greenland (RNO-G). In Proceedings of the 37th International Cosmic Ray Conference (ICRC 2021), Online, 12–23 July 2021; p. 001. [Google Scholar] [CrossRef]
- Bishop, A.; Hokanson-Fasig, B.; Karle, A.; Lu, L.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; et al. Concept Study of a Radio Array Embedded in a Deep Gen2-like Optical Array. In Proceedings of the 37th International Cosmic Ray Conference (ICRC 2021), Online, 12–23 July 2021; p. 1182. [Google Scholar] [CrossRef]
- Prohira, S.; de Vries, K.D.; Allison, P.; Beatty, J.; Besson, D.; Connolly, A.; Dasgupta, P.; Deaconu, C.; De Kockere, S.; Frikken, D.; et al. The Radar Echo Telescope for Cosmic Rays: Pathfinder experiment for a next-generation neutrino observatory. Phys. Rev. D 2021, 104, 102006. [Google Scholar] [CrossRef]
- Motloch, P.; Alvarez-Muñiz, J.; Privitera, P.; Zas, E. Transition radiation at radio frequencies from ultrahigh-energy neutrino-induced showers. Phys. Rev. D 2016, 93, 043010, Addendum in Phys. Rev. D 2016, 94, 049905. [Google Scholar] [CrossRef] [Green Version]
- de Vries, K.D.; Prohira, S. Coherent transition radiation from the geomagnetically-induced current in cosmic-ray air showers: Implications for the anomalous events observed by ANITA. Phys. Rev. Lett. 2019, 123, 091102. [Google Scholar] [CrossRef] [Green Version]
- Schoorlemmer, H.; Carvalho, W.R. Radio interferometry applied to the observation of cosmic-ray induced extensive air showers. arXiv 2020, arXiv:2006.10348. [Google Scholar] [CrossRef]
- Jelley, J.V. Theoretical considerations of the radiofrequency emission from extensive air showers. Int. Cosm. Ray Conf. 1965, 2, 698. [Google Scholar]
- Frank, I.M.; Tamm, I.E. Coherent visible radiation of fast electrons passing through matter. Compt. Rend. Acad. Sci. URSS 1937, 14, 109–114. [Google Scholar] [CrossRef]
- Garcia-Fernandez, D.; Alvarez-Muñiz, J.; Carvalho, W.R.; Romero-Wolf, A.; Zas, E. Calculations of electric fields for radio detection of ultrahigh energy particles. Phys. Rev. D 2013, 87, 023003. [Google Scholar] [CrossRef] [Green Version]
- James, C.W. Nature of radio-wave radiation from particle cascades. Phys. Rev. D 2022, 105, 023014. [Google Scholar] [CrossRef]
- Charrier, D.; Dallier, R.; Escudie, A.; García-Fernández, D.; Lecacheux, A.; Martin, L.; Revenu, B. Radio detection of cosmic rays in [1.7–3.7] MHz: The EXTASIS experiment. Astropart. Phys. 2019, 113, 6–21. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Muñiz, J.; Vazquez, R.A.; Zas, E. Calculation methods for radio pulses from high-energy showers. Phys. Rev. D 2000, 62, 063001. [Google Scholar] [CrossRef] [Green Version]
- Stanev, T.; Vankov, C. A set of subroutines for simulation of electron-photon cascades. Comp. Phys. Comm. 1979, 16, 363–372. [Google Scholar] [CrossRef]
- Nelson, W.R.; Hirayama, H.; Rogers, D.W.O. The Egs4 Code System; Stanford Linear Accelerator Center: Menlo Park, CA, USA, 1985. [Google Scholar]
- Alvarez-Muñiz, J.; Marques, E.; Vazquez, R.A.; Zas, E. Coherent radio pulses from showers in different media: A unified parameterization. Phys. Rev. D 2006, 74, 023007. [Google Scholar] [CrossRef]
- Moliére, G. Theory of the scattering of fast charged particles. 2. Repeated and multiple scattering. Z. Naturforsch. A 1948, 3, 78–97. [Google Scholar]
- Koch, H.W.; Motz, J.W. Bremsstrahlung Cross-Section Formulas and Related Data. Rev. Mod. Phys. 1959, 31, 920–955. [Google Scholar] [CrossRef]
- Landau, L.D.; Pomeranchuk, I. Electron cascade process at very high-energies. Dokl. Akad. Nauk Ser. Fiz. 1953, 92, 735–738. [Google Scholar]
- Migdal, A.B. Bremsstrahlung and pair production in condensed media at high-energies. Phys. Rev. 1956, 103, 1811–1820. [Google Scholar] [CrossRef]
- Migdal, A.B. Bremsstrahlung and pair production at high energies in condensed media. Sov. Phys. JETP 1957, 5, 527. [Google Scholar] [CrossRef]
- Stanev, T.; Vankov, C.; Streitmatter, R.E.; Ellsworth, R.W.; Bowen, T. Development of Ultrahigh-Energy Electromagnetic Cascades in Water and Lead including the Landau-Pomenrachuk-Migdal effect. Phys. Rev. D 1982, 25, 1291–1304. [Google Scholar] [CrossRef]
- Alvarez-Muñiz, J.; Zas, E. Cherenkov radio pulses from EeV neutrino interactions: The LPM effect. Phys. Lett. B 1997, 411, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Hillas, A.M. Shower simulation: Lessons from MOCCA. Nucl. Phys. B Proc. Suppl. 1997, 52, 29–42. [Google Scholar] [CrossRef]
- Kobal, M. A thinning method using weight limitation for air-shower simulations. Astropart. Phys. 2001, 15, 259–273. [Google Scholar] [CrossRef]
- Alvarez-Muñiz, J.; James, C.W.; Protheroe, R.J.; Zas, E. Thinned simulations of extremely energetic showers in dense media for radio applications. Astropart. Phys. 2009, 32, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Muñiz, J.; Vazquez, R.A.; Zas, E. Characterization of neutrino signals with radiopulses in dense media through the LPM effect. Phys. Rev. D 2000, 61, 023001. [Google Scholar] [CrossRef] [Green Version]
- Razzaque, S.; Seunarine, S.; Besson, D.Z.; McKay, D.W.; Ralston, J.P.; Seckel, D. Coherent radio pulses from GEANT generated electromagnetic showers in ice. Phys. Rev. D 2002, 65, 103002. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Muñiz, J.; Marques, E.; Vazquez, R.A.; Zas, E. Comparative study of electromagnetic shower track lengths in water and implications for Cherenkov radio emission. Phys. Rev. D 2003, 68, 043001. [Google Scholar] [CrossRef] [Green Version]
- Tueros, M.; Sciutto, S. TIERRAS: A package to simulate high energy cosmic ray showers underground, underwater and under-ice. Comput. Phys. Commun. 2010, 181, 380–392. [Google Scholar] [CrossRef]
- Alvarez-Muñiz, J.; Carvalho, W.R.; Romero-Wolf, A.; Tueros, M.; Zas, E. Coherent Radiation from Extensive Air Showers in the Ultra-High Frequency Band. Phys. Rev. D 2012, 86, 123007. [Google Scholar] [CrossRef] [Green Version]
- Hanson, J.C.; Connolly, A.L. Complex Analysis of Askaryan Radiation: A Fully Analytic Treatment including the LPM effect and Cascade Form Factor. Astropart. Phys. 2017, 91, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Muñiz, J.; Hansen, P.M.; Romero-Wolf, A.; Zas, E. Askaryan radiation from neutrino-induced showers in ice. Phys. Rev. D 2020, 101, 083005. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Muñiz, J.; Carvalho, W.R., Jr.; Schoorlemmer, H.; Zas, E. Radio pulses from ultra-high energy atmospheric showers as the superposition of Askaryan and geomagnetic mechanisms. Astropart. Phys. 2014, 59, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Zilles, A.; Martineau-Huynh, O.; Kotera, K.; Tueros, M.; de Vries, K.; Carvalho, W., Jr.; Niess, V.; Renault-Tinacci, N.; Decoene, V. Radio Morphing: Towards a fast computation of the radio signal from air showers. Astropart. Phys. 2020, 114, 10–21. [Google Scholar] [CrossRef]
- Alvarez-Muñiz, J.; Zas, E. The LPM effect for EeV hadronic showers in ice: Implications for radio detection of neutrinos. Phys. Lett. B 1998, 434, 396–406. [Google Scholar] [CrossRef] [Green Version]
- James, C.W.; Ekers, R.D.; Alvarez-Muñiz, J.; Bray, J.D.; McFadden, R.A.; Phillips, C.J.; Protheroe, R.J.; Roberts, P. LUNASKA experiments using the Australia Telescope Compact Array to search for ultra-high energy neutrinos and develop technology for the lunar Cherenkov technique. Phys. Rev. D 2010, 81, 042003. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Muñiz, J.; Romero-Wolf, A.; Zas, E. Cherenkov radio pulses from electromagnetic showers in the time-domain. Phys. Rev. D 2010, 81, 123009. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Muñiz, J.; Carvalho, W.R.; García-Fernández, D.; Schoorlemmer, H.; Zas, E. Simulations of reflected radio signals from cosmic ray induced air showers. Astropart. Phys. 2015, 66, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Barwick, S.W.; Besson, D.Z.; Burgman, A.; Chiem, E.; Hallgren, A.; Hanson, J.C.; Klein, S.R.; Kleinfelder, S.A.; Nelles, A.; Persichilli, C.; et al. Radio detection of air showers with the ARIANNA experiment on the Ross Ice Shelf. Astropart. Phys. 2017, 90, 50–68. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, D. Energy Spectrum Measured by the Telescope Array. In Proceedings of the 36th International Cosmic Ray Conference (ICRC 2019), Madison, WI, USA, 24 July–1 August 2019; p. 298. [Google Scholar] [CrossRef]
- Abreu, P.; Aglietta, M.; Albury, J.M.; Allekotte, I.; Almela, A.; Alvarez-Muñiz, J.; Alves Batista, R.; Anastasi, G.A.; Anchordoqui, L.; Andrada, B.; et al. The energy spectrum of cosmic rays beyond the turn-down around 1017 eV as measured with the surface detector of the Pierre Auger Observatory. Eur. Phys. J. C 2021, 81, 966. [Google Scholar] [CrossRef]
- Alvarez-Muñiz, J.; Carvalho, W.R.; Cummings, A.L.; Payet, K.; Romero-Wolf, A.; Schoorlemmer, H.; Zas, E. Comprehensive approach to tau-lepton production by high-energy tau neutrinos propagating through the Earth. Phys. Rev. D 2018, 97, 023021, Erratum in Phys. Rev. D 2019, 99, 069902. [Google Scholar] [CrossRef] [Green Version]
- Prechelt, R.; Wissel, S.A.; Romero-Wolf, A.; Burch, C.; Gorham, P.W.; Allison, P.; Alvarez-Muñiz, J.; Banerjee, O.; Batten, L.; Beatty, J.J.; et al. Analysis of a tau neutrino origin for the near-horizon air shower events observed by the fourth flight of the Antarctic Impulsive Transient Antenna. Phys. Rev. D 2022, 105, 042001. [Google Scholar] [CrossRef]
- Motloch, P.; Alvarez-Muñiz, J.; Privitera, P.; Zas, E. Can transition radiation explain the ANITA event 3985267? Phys. Rev. D 2017, 95, 043004. [Google Scholar] [CrossRef] [Green Version]
- Saltzberg, D.; Gorham, P.; Walz, D.; Field, C.; Iverson, R.; Odian, A.; Resch, G.; Schoessow, P.; Williams, D. Observation of the Askaryan effect: Coherent microwave Cherenkov emission from charge asymmetry in high-energy particle cascades. Phys. Rev. Lett. 2001, 86, 2802–2805. [Google Scholar] [CrossRef] [Green Version]
- Gorham, P.W.; Saltzberg, D.; Field, R.C.; Guillian, E.; Milincic, R.; Walz, D.; Williams, D. Accelerator measurements of the Askaryan effect in rock salt: A Roadmap toward teraton underground neutrino detectors. Phys. Rev. D 2005, 72, 023002. [Google Scholar] [CrossRef] [Green Version]
- Gorham, P.W.; Barwick, S.W.; Beatty, J.J.; Besson, D.Z.; Binns, W.R.; Chen, C.; Chen, P.; Clem, J.M.; Connolly, A.; Dowkontt, P.F.; et al. Observations of the Askaryan effect in ice. Phys. Rev. Lett. 2007, 99, 171101. [Google Scholar] [CrossRef] [Green Version]
- Belov, K.; Mulrey, K.; Romero-Wolf, A.; Wissel, S.A.; Zilles, A.; Bechtol, K.; Borch, K.; Chen, P.; Clem, J.; Gorham, P.W.; et al. Accelerator measurements of magnetically-induced radio emission from particle cascades with applications to cosmic-ray air showers. Phys. Rev. Lett. 2016, 116, 141103. [Google Scholar] [CrossRef] [Green Version]
- Bechtol, K.; Belov, K.; Borch, K.; Chen, P.; Clem, J.; Gorham, P.; Hast, C.; Huege, T.; Hyneman, R.; Jobe, K.; et al. The SLAC T-510 experiment for radio emission from particle showers: Detailed simulation study and interpretation. Phys. Rev. D 2022, 105, 063025. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Allison, P.; Amin, N.M.; et al. IceCube-Gen2: The window to the extreme Universe. J. Phys. G 2021, 48, 060501. [Google Scholar] [CrossRef]
- James, C.W.; Alvarez-Muñiz, J.; Bray, J.D.; Buitink, S.; Dagkesamanskii, R.D.; Ekers, R.D.; Falcke, H.; Gayley, K.; Huege, T.; Mevius, M.; et al. Overview of lunar detection of ultra-high energy particles and new plans for the SKA. EPJ Web Conf. 2017, 135, 04001. [Google Scholar] [CrossRef] [Green Version]
Type | Code | |||||||
---|---|---|---|---|---|---|---|---|
EM | ZHS | 45.00 | 0.0570 | 0.3484 | 0.03 | 0.3279 | 3.0 | 3.5 |
EM | ZHAireS | 44.45 | 0.0348 | 0.4352 | 0.0203 | 0.3823 | 3.588 | 4.043 |
HAD | ZHAireS | 40.71 | 0.0391 | 0.4277 | 0.0234 | 0.3723 | 3.320 | 3.687 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarez-Muñiz, J.; Zas, E. Progress in the Simulation and Modelling of Coherent Radio Pulses from Ultra High-Energy Cosmic Particles. Universe 2022, 8, 297. https://doi.org/10.3390/universe8060297
Alvarez-Muñiz J, Zas E. Progress in the Simulation and Modelling of Coherent Radio Pulses from Ultra High-Energy Cosmic Particles. Universe. 2022; 8(6):297. https://doi.org/10.3390/universe8060297
Chicago/Turabian StyleAlvarez-Muñiz, Jaime, and Enrique Zas. 2022. "Progress in the Simulation and Modelling of Coherent Radio Pulses from Ultra High-Energy Cosmic Particles" Universe 8, no. 6: 297. https://doi.org/10.3390/universe8060297
APA StyleAlvarez-Muñiz, J., & Zas, E. (2022). Progress in the Simulation and Modelling of Coherent Radio Pulses from Ultra High-Energy Cosmic Particles. Universe, 8(6), 297. https://doi.org/10.3390/universe8060297