Dark Matter in Supersymmetry
Abstract
1. Introduction
2. Results in the pMSSM11
2.1. The Parameter Space
2.2. The Analysis Framework
2.3. DM Results in the pMSSM11
3. Results in the EW-MSSM
3.1. The EW-MSSM
3.2. The Relevant Constraints
3.3. Five Viable DM Scenarios
- (i)
- higgsino DM (), DM relic density is only an upper bound (the rull relic density implies and cannot be fulfilled), with ;
- (ii)
- wino DM (), DM relic density is only an upper bound, (the rull relic density implies and cannot be fulfilled), with ;
- (iii)
- bino/wino DM with -coannihilation (), DM relic density can be fulfilled, ;
- (iv)
- bino DM with -coannihilation case-L (), DM relic density can be fulfilled, ; and
- (v)
- bino DM with -coannihilation case-R (), DM relic density can be fulfilled, .
3.4. DM Results in the EW-MSSM
4. Results in the
4.1. Gravitino
4.2. Axino
4.3. Right-Handed Neutrino
4.4. Multicomponent DM
5. Results in the U
5.1. The USSM and WIMP DM
5.2. Constraints on the Parameter Space
5.3. Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nille, H. Supersymmetry, supergravity and particle physics. Phys. Rept. 1984, 110, 1–162. [Google Scholar] [CrossRef]
- Barbieri, R. Looking beyond the standard model: The supersymmetric option. Riv. Nuovo Cim. 1988, 11, 1–45. [Google Scholar] [CrossRef]
- Haber, H.; Kane, G. The search for supersymmetry: Probing physics beyond the standard model. Phys. Rept. 1985, 117, 175–263. [Google Scholar] [CrossRef]
- Gunion, J.; Haber, H. Higgs bosons in supersymmetric models (I). Nucl. Phys. 1986, 272, 1–76. [Google Scholar]
- Goldberg, H. Constraint on the photino mass from cosmology. Phys. Rev. Lett. 1983, 50, 1419. [Google Scholar] [CrossRef]
- Ellis, J.; Hagelin, J.; Nanopoulos, D.; Olive, K.; Srednicki, M. Supersymmetric relics from the big bang. Nucl. Phys. 1984, 238, 453–476. [Google Scholar] [CrossRef]
- Bae, K.J.; Baer, H.; Chun, E.J. Mainly axion cold dark matter from natural supersymmetry. Phys. Rev. 2014, 89, 31701. [Google Scholar] [CrossRef]
- Lopez-Fogliani, D.E.; Muñoz, C. Proposal for a supersymmetric standard model. Phys. Rev. Lett. 2006, 97, 041801. [Google Scholar] [CrossRef]
- Muñoz, C. Phenomenology of a new supersymmetric standard model: The μνSSM. AIP Conf. Proc. 2010, 1200, 413–416. [Google Scholar]
- Lopez-Fogliani, D.E.; Muñoz, C. Searching for supersymmetry: The μνSSM. Eur. Phys. J. 2020, 229, 3263–3301. [Google Scholar] [CrossRef]
- Biekötter, T.; Heinemeyer, S.; Weiglein, G. Vacuum (meta-) stability in the μνSSM. Eur. Phys. J. C 2022, 82, 301. [Google Scholar] [CrossRef]
- Escudero, N.; Lopez-Fogliani, D.E.; Muñoz, C.; de Austri, R.R. Analysis of the parameter space and spectrum of the μνSSM. J. High Energy Phys. 2008, 12, 99. [Google Scholar] [CrossRef]
- Ghosh, P.; Roy, S. Neutrino masses and mixing, lightest neutralino decays and a solution to the µ problem in supersymmetry. J. High Energy Phys. 2009, 4, 69. [Google Scholar] [CrossRef]
- Fidalgo, J.; Lopez-Fogliani, D.E.; Muñoz, C.; de Austri, R.R. Neutrino physics and spontaneous CP violation in the μνSSM. J. High Energy Phys. 2009, 8, 105. [Google Scholar] [CrossRef]
- Ghosh, P.; Dey, P.; Mukhopadhyaya, B.; Roy, S. Radiative contribution to neutrino masses and mixing in μνSSM. J. High Energy Phys. 2010, 5, 1–50. [Google Scholar] [CrossRef]
- Ellis, J.R.; Gunion, J.F.; Haber, H.E.; Roszkowski, L.; Zwirner, F. Higgs bosons in a nonminimal supersymmetric model. Phys. Rev. D 1989, 9, 844. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.J.; Nevzorov, R.; Zerwas, P.M. The Higgs sector of the next-to-minimal supersymmetric standard model. Nucl. Phys. B 2004, 681, 3–30. [Google Scholar] [CrossRef]
- Kim, J.E.; Nilles, H. The µ-problem and the strong CP-problem. Phys. Lett. B 1984, 138, 150–154. [Google Scholar] [CrossRef]
- Ghosh, P.; Lopez-Fogliani, D.E.; Mitsou, V.A.; Muñoz, C.; de Austri, R.R. Probing the μνSSM with light scalars, pseudoscalars and neutralinos from the decay of a SM-like Higgs boson at the LHC. J. High Energy Phys. 2014, 11, 1–57. [Google Scholar] [CrossRef]
- Ghosh, P.; Lara, I.; Lopez-Fogliani, D.E.; Muñoz, C.; de Austri, R.R. Searching for left sneutrino LSP at the LHC. Int. J. Mod. Phys. A 2018, 33, 1850110. [Google Scholar] [CrossRef]
- Lara, I.; López-Fogliani, D.E.; Muñoz, C.; Nagata, N.; Otono, H.; Austri, R.R.D. Looking for the left sneutrino LSP with displaced-vertex searches. Phys. Rev. D 2018, 98, 75004. [Google Scholar] [CrossRef]
- Lara, I.; López-Fogliani, D.E.; Muñoz, C. Electroweak superpartners scrutinized at the LHC in events with multi-leptons. Phys. Lett. B 2019, 790, 176–183. [Google Scholar] [CrossRef]
- Kpatcha, E.; Lara, I.; López-Fogliani, D.E.; Muñoz, C.; Nagata, N.; Otono, H.; de Austri, R.R. Sampling the μνSSM for displaced decays of the tau left sneutrino LSP at the LHC. Eur. Phys. J. C 2019, 79, 1–18. [Google Scholar] [CrossRef]
- Kpatcha, E.; López-Fogliani, D.E.; Muñoz, C.; de Austri, R.R. Impact of Higgs physics on the parameter space of the μνSSM. Eur. Phys. J. C 2020, 80, 1–43. [Google Scholar] [CrossRef]
- Kpatcha, E.; Lara, I.; López-Fogliani, D.E.; Muñoz, C.; Nagata, N. Explaining muon g-2 data in the μνSSM. Eur. Phys. J. C 2021, 81, 1–22. [Google Scholar] [CrossRef]
- Heinemeyer, S.; Kpatcha, E.; Lara, I.; López-Fogliani, D.E.; Muñoz, C.; Nagata, N. The new (g-2)μ result and the μνSSM. Eur. Phys. J. C 2021, 81, 802. [Google Scholar] [CrossRef]
- Choi, K.-Y.; López-Fogliani, D.E.; Muñoz, C.; de Austri, R.R. Gamma-ray detection from gravitino dark matter decay in the μνSM. J. Cosmol. Astropart. Phys. 2010, 3, 028. [Google Scholar] [CrossRef]
- Gómez-Vargas, G.A.; Fornasa, M.; Zandanel, F.; Cuesta, A.J.; Muñoz, C.; Prada, F.; Yepes, G. CLUES on Fermi-LAT prospects for the extragalactic detection of μνSSM gravitino dark matter. J. Cosmol. Astropart. Phys. 2012, 2, 1. [Google Scholar] [CrossRef]
- Albert, A.; Gómez-Vargas, G.A.; Grefe, M.; Muñoz, C.; Weniger, C.; Bloom, E.; Charles, E.; Mazziota, M.N.; Morselli, A. Search for 100 MeV to 10 GeV γ -ray lines in the Fermi-LAT data and implications for gravitino dark matter in the μνSSM. J. Cosmol. Astropart. Phys. 2014, 10, 23. [Google Scholar] [CrossRef]
- Gómez-Vargas, G.A.; López-Fogliani, D.E.; Muñoz, C.; de Austri, R.R. Search for sharp and smooth spectral signatures of μνSSM gravitino dark matter with Fermi-LAT. J. Cosmol. Astropart. Phys. 2017, 3, 47. [Google Scholar] [CrossRef]
- Gómez-Vargas, G.A.; López-Fogliani, D.E.; Muñoz, C.; Perez, A.D. MeV-GeV γ-ray telescopes probing gravitino LSP with coexisting axino NLSP as dark matter in the μνSSM. Astropart. Phys. 2021, 125, 102506. [Google Scholar] [CrossRef]
- Restrepo, D.; Taoso, M.; Valle, J.; Zapata, O. Gravitino dark matter and neutrino masses with bilinear R-parity violation. Phys. Rev. D 2012, 85, 023523. [Google Scholar] [CrossRef]
- Gómez-Vargas, G.A.; López-Fogliani, D.E.; Muñoz, C.; Perez, A.D. MeV-GeV γ-ray telescopes probing axino LSP/gravitino NLSP as dark matter in the μνSSM. J. Cosmol. Astropart. Phys. 2020, 1, 58. [Google Scholar] [CrossRef]
- Chung, D.J.H.; Long, A.J. Electroweak phase transition in the μνSSM. Phys. Rev. D 2010, 81, 123531. [Google Scholar] [CrossRef]
- Cerdeno, D.G.; Muñoz, C.; Seto, O. Right-handed sneutrino as thermal dark matter. Phys. Rev. D 2009, 79, 023510. [Google Scholar] [CrossRef]
- Cerdeno, D.G.; Peiro, M.; Robles, S. Fits to the Fermi-LAT GeV excess with right-handed sneutrino dark matter: Implications for direct and indirect dark matter searches and the LHC. Phys. Rev. D 2015, 91, 123530. [Google Scholar] [CrossRef]
- López-Fogliani, D.E.; Perez, A.D.; de Austri, R.R. Dark matter candidates in the NMSSM with RH neutrino superfields. J. Cosmol. Astropart. Phys. 2021, 4, 67. [Google Scholar] [CrossRef]
- Aguilar-Saavedra, J.A.; Lara, I.; López-Fogliani, D.E.; Muñoz, C. U(1)′ extensions of the μνSSM. Eur. Phys. J. C 2021, 81, 443. [Google Scholar]
- Aguilar-Saavedra, J.A.; Lara, I.; López-Fogliani, D.E.; Muñoz, C. Exotic diboson Z’ decays in the U μν SSM. Eur. Phys. J. C 2021, 81, 805. [Google Scholar] [CrossRef]
- Aguilar-Saavedra, J.A.; López-Fogliani, D.E.; Muñoz, C.; Pierre, M. WIMP dark matter in the UμνSSM. J. Cosmol. Astropart. Phys. 2022, 5, 4. [Google Scholar] [CrossRef]
- Bagnaschi, E.; Sakurai, K.; Borsato, M.; Buchmueller, O.; Citron, M.; Costa, J.C.; De Roeck, A.; Dolan, M.J.; Ellis, J.R.; Flacher, S.; et al. Likelihood analysis of the pMSSM11 in light of LHC 13-TeV data. Eur. Phys. J. C 2018, 78, 56. [Google Scholar] [CrossRef] [PubMed]
- AbdusSalam, S.S.; Allanach, B.C.; Dreiner, H.K.; Ellis, J.; Ellwanger, U.; Gunion, J.; Heinmeyer, S.; Kraemer, M.; Mangano, M.L.; Olive, K.A.; et al. Benchmark models, planes, lines and points for future SUSY searches at the LHC. Eur. Phys. J. C 2011, 71, 1835. [Google Scholar] [CrossRef]
- Buchmueller, O.; Cavanaugh, R.; De Roeck, A.; Heinmeyer, S.; Isidori, G.; Ronga, F.J.; Weber, A.M.; Weiglein, G. Prediction for the lightest Higgs boson mass in the CMSSM using indirect experimental constraints. Phys. Lett. B 2007, 657, 87–94. [Google Scholar] [CrossRef]
- Buchmueller, O.; Cavanaugh, R.; De Roeck, A.; Heinmeyer, S.; Isidori, G.; Ronga, F.J.; Weber, A.M.; Weiglein, G. Supersymmetry in light of 1/fb of LHC data. Eur. Phys. J. 2012, 72, 1878. [Google Scholar] [CrossRef]
- Buchmueller, O.; Cavanaugh, R.; De Roeck, A.; Heinmeyer, S.; Isidori, G.; Ronga, F.J.; Weber, A.M.; Weiglein, G. The CMSSM and NUHM1 in light of 7 TeV LHC, Bs→μ+μ− and XENON100 data. Eur. Phys. J. 2012, 72, 2243. [Google Scholar] [CrossRef]
- Buchmueller, O.; Cavanaugh, R.; De Roeck, A.; Heinmeyer, S.; Isidori, G.; Ronga, F.J.; Weber, A.M.; Weiglein, G. Implications of improved Higgs mass calculations for supersymmetric models. Eur. Phys. J. 2014, 74, 2809. [Google Scholar] [CrossRef] [PubMed]
- Buchmueller, O.; Cavanaugh, R.; De Roeck, A.; Dolan, M.J.; Ellis, J.R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; Marrouche, J.; Martinez Santos, D.; et al. The CMSSM and NUHM1 after LHC Run 1. Eur. Phys. J. C 2014, 74, 2922. [Google Scholar] [CrossRef]
- Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M.J.; Ellis, J.R.; Flacher, H.; Heinemeyer, S.; Malik, J.; Marrouche, J.; et al. The NUHM2 after LHC Run 1. Eur. Phys. J. C 2014, 12, 3212. [Google Scholar]
- De Vries, K.J.; Bagnaschi, E.A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M.J.; Ellis, J.R.; Flacher, H.; Heinemeyer, S.; et al. The pMSSM10 after LHC run 1. Eur. Phys. J. C 2015, 75, 422. [Google Scholar]
- Bagnaschi, E.A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M.J.; Ellis, J.R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; et al. Supersymmetric dark matter after LHC run 1. Eur. Phys. J. C 2015, 75, 500. [Google Scholar] [CrossRef]
- Bagnaschi, E.; Costa, J.C.; Sakurai, K.; Borsato, M.; Buchmueller, O.; Cavanaugh, R.; Chobanova, V.; Citron, M.; De Roeck, A.; Dolan, M.J.; et al. Likelihood analysis of supersymmetric SU(5) GUTs. Eur. Phys. J. C 2017, 77, 104. [Google Scholar] [CrossRef] [PubMed]
- Bagnaschi, E.; Borsato, M.; Sakurai, K.M.; Buchmueller, O.; Cavanaugh, R.; Chobanova, V.; Citron, M.; Costa, J.C.; De Roeck, A.; Dolan, M.J.; et al. Likelihood analysis of the minimal AMSB model. Eur. Phys. J. C 2017, 77, 268. [Google Scholar] [CrossRef] [PubMed]
- Skands, P.; Allanach, B.C.; Baer, H.; Balazs, C.; Belanger, G.; Boudjema, F.; Djouadi, A.; Godbole, R.; Guasch, J.; Heinemeyer, S.; et al. SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages, and event generators. J. High Energy Phys. 2004, 407, 036. [Google Scholar] [CrossRef]
- Allanach, B.C. SOFTSUSY: A program for calculating supersymmetric spectra. Comput. Phys. Commun. 2002, 143, 305–331. [Google Scholar] [CrossRef]
- Heinemeyer, S.; Hollik, W.; Stockinger, D.; Weber, A.M.; Weiglein, G. Precise prediction for MW in the MSSM. J. High Energy Phys. 2006, 0608, 052. [Google Scholar] [CrossRef]
- Heinemeyer, S.; Hollik, W.; Stockinger, D.; Weber, A.M.; Weiglein, G. Z pole observables in the MSSM. J. High Energy Phys. 2008, 0804, 039. [Google Scholar] [CrossRef]
- Heinemeyer, S.; Hollik, W.; Weiglein, G.; Zeune, L. Implications of LHC search results on the W boson mass prediction in the MSSM. J. High Energy Phys. 2013, 1312, 84. [Google Scholar] [CrossRef]
- Heinemeyer, S.; Hollik, W.; Weiglein, G. FeynHiggs: A program for the calculation of the masses of the neutral -even Higgs bosons in the MSSM. Comput. Phys. Commun. 2000, 124, 76–89. [Google Scholar] [CrossRef]
- Heinemeyer, S.; Hollik, W.; Weiglein, G. The masses of the neutral CP-even Higgs bosons in the MSSM: Accurate analysis at the two-loop level. Eur. Phys. J. 1999, 9, 343–366. [Google Scholar] [CrossRef]
- Degrassi, G.; Heinemeyer, S.; Hollik, W.; Weiglein, P.S.G. Towards high-precision predictions for the MSSM Higgs sector. Eur. Phys. J. 2003, 28, 133–143. [Google Scholar] [CrossRef]
- Frank, M.; Hahn, T.; Heinemeyer, S.; Hollik, W.; Rzehak, H.; Weiglein, G. LHC physics. JHEP 2007, 47, 0702. [Google Scholar]
- Hahn, T.; Heinemeyer, S.; Hollik, W.; Rzehak, H.; Weiglein, G. FeynHiggs: A program for the calculation of MSSM Higgs-boson observables—Version 2.6.5. Comput. Phys. Commun. 2009, 180, 1426–1427. [Google Scholar] [CrossRef]
- Hahn, T.; Heinemeyer, S.; Hollik, W.; Rzehak, H.; Weiglein, G. High-Precision Predictions for the Light CP-Even Higgs Boson Mass of the Minimal Supersymmetric Standard Model. Phys. Rev. Lett. 2014, 112, 141801. [Google Scholar] [CrossRef]
- Bahl, H.; Hollik, W. Precise prediction for the light MSSM Higgs-boson mass combining effective field theory and fixed-order calculations. Eur. Phys. J. 2016, 76, 499. [Google Scholar] [CrossRef]
- Bahl, H.; Heinemeyer, S.; Hollik, W.; Weiglein, G. Reconciling EFT and hybrid calculations of the light MSSM Higgs-boson mass. Eur. Phys. J. 2018, 78, 57. [Google Scholar] [CrossRef]
- Bahl, H.; Hahn, T.; Heinemeyer, S.; Hollik, W.; Paßehr, S.; Rzehak, H.; Weiglein, G. Precision calculations in the MSSM Higgs-boson sector with FeynHiggs 2.14. Comput. Phys. Commun. 2020, 249, 107099. [Google Scholar] [CrossRef]
- Bahl, H.; Heinemeyer, S.; Hollik, W.; Weiglein, G. Theoretical uncertainties in the MSSM Higgs boson mass calculation. Eur. Phys. J. 2020, 80, 497. [Google Scholar] [CrossRef]
- Isidori, G.; Paradisi, P. Hints of large tan β in flavour physics. Phys. Lett. B 2006, 639, 499–507. [Google Scholar] [CrossRef][Green Version]
- Isidori, G.; Mescia, F.; Paradisi, P.; Temes, D. Flavor physics at large tanβ with a binolike lightest supersymmetric particle. Phys. Rev. D 2007, 2007 75, 115019. [Google Scholar] [CrossRef]
- Mahmoudi, F. SuperIso: A program for calculating the isospin asymmetry of B→K*γ in the MSSM. Comput. Phys. Commun. 2008, 178, 745–754. [Google Scholar] [CrossRef]
- Mahmoudi, F. SuperIso v3.0: A program for calculating flavor physics observables in 2HDM and supersymmetry. Comput. Phys. Commun. 2009, 180, 1579. [Google Scholar] [CrossRef]
- Eriksson, D.; Mahmoudi, F.; Stål, O. Charged Higgs bosons in minimal supersymmetry: Updated constraints and experimental prospects. JHEP 2008, 035. [Google Scholar] [CrossRef][Green Version]
- Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. micrOMEGAs_3: A program for calculating dark matter observables. Comput. Phys. Commun. 2014, 185, 960–985. [Google Scholar] [CrossRef]
- Information about this code is available from K.A. Olive: It contains important contributions from Evans, J.; Falk, T.; Ferstl, A.; Ganis, G.; Luo, F.; Mustafayev, A.; McDonald, J.; Luo, F.; Olive, K.A.; Sandick, P.; Santoso, Y.; Savage, C.; Spanos, V.; Srednicki, M. Available online: https://link.springer.com/article/10.1140/epjc/s10052-018-5633-3 (accessed on 28 July 2022).
- Muhlleitner, M.; Djouadi, A.; Mambrini, Y. SDECAY: A Fortran code for the decays of the supersymmetric particles in the MSSM. Comput. Phys. Commun. 2005, 168, 46–70. [Google Scholar] [CrossRef][Green Version]
- Bechtle, P.; Heinemeyer, S.; Staal, O.; Stefaniak, T.; Weiglein, G. HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC. Eur. Phys. J. C 2014, 74, 2711. [Google Scholar] [CrossRef]
- Bechtle, P.; Heinemeyer, S.; Stål, O.; Stefaniak, T.; Weiglein, G. Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC. JHEP 2014, 1411, 39. [Google Scholar] [CrossRef]
- Bechtle, P.; Heinemeyer, S.; Staal, O.; Stefaniak, T.; Weiglein, G. HiggsSignals-2: Probing new physics with precision Higgs measurements in the LHC 13 TeV era. Phys. J. C 2021, 81, 145. [Google Scholar] [CrossRef]
- Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K.E. HiggsBounds: Confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron. Comput. Phys. Commun. 2010, 181, 138–167. [Google Scholar] [CrossRef]
- Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K.E. HiggsBounds 2.0.0: Confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron. Comput. Phys. Commun. 2011, 181, 2605–2631. [Google Scholar] [CrossRef]
- Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K.E. HiggsBounds-4: Improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC. Eur. Phys. J. C 2014, 74, 2693. [Google Scholar] [CrossRef]
- Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K.E. Applying exclusion likelihoods from LHC searches to extended Higgs sectors. Eur. Phys. J. C 2015, 75, 421. [Google Scholar] [CrossRef]
- Bechtle, P.; Dercks, D.; Heinemeyer, S.; Klingl, T.; Stefaniak, T.; Weiglein, G.; Wittbrodt, J. HiggsBounds-5: Testing Higgs sectors in the LHC 13 TeV Era. Eur. Phys. J. C 2020, 12, 1211. [Google Scholar] [CrossRef]
- [PandaX-II Collaboration]. Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett. 2017, 119, 181302. [Google Scholar] [CrossRef] [PubMed]
- [PandaX-II Collaboration]. Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment. Phys. Rev. Lett. 2016, 117, 121303. [Google Scholar] [CrossRef] [PubMed]
- [XENON Collaboration]. First Dark Matter Search Results from the XENON1T Experiment. Phys. Rev. Lett. 2017, 119, 181301. [Google Scholar] [CrossRef] [PubMed]
- [LUX Collaboration]. Results from a Search for Dark Matter in the Complete LUX Exposure. Phys. Rev. Lett. 2017, 118, 021303. [Google Scholar] [CrossRef] [PubMed]
- [XENON Collaboration]. Physics reach of the XENON1T dark matter experiment. J. Cosmol. Astropart. Phys. 2016, 1604, 27. [Google Scholar]
- Mount, B.J.; Hans, S.; Rosero, R.; Yeh, M.; Chan, C.; Gaitskell, R.J.; Huang, D.Q.; Makkinje, J.; Malling, D.C.; Pangilinan, M.; et al. LUX-ZEPLIN (LZ) Technical Design Report. arXiv 2017, arXiv:1703.09144. [Google Scholar]
- Bernabei, R.; Belli, P.; Caracciolo, V.; Cerulli, R.; Merlo, V.; Cappella, F.; d’Angelo, A.; Incicchitti, A.; Dai, C.J.; Ma, X.H.; et al. The dark matter: DAMA/LIBRA and its perspectives. arXiv 2021, arXiv:2110.04734. [Google Scholar]
- Amaré, J.; Cebrián, S.; Cintas, D.; Coarasa, I.; García, E.; Martínez, M.; Oliván, M.A.; Ortigoza, Y.; de Solórzano, A.O.; Puimedón, J.; et al. Annual modulation results from three-year exposure of ANAIS-112. Phys. Rev. D 2021, 103, 102005. [Google Scholar] [CrossRef]
- [PICO Collaboration]. Dark matter search results from the PICO-60 CF3I bubble chamber. Phys. Rev. D 2016, 93, 052014. [Google Scholar] [CrossRef]
- Ng, K.C.Y.; Beacom, J.F.; Peter, A.H.G.; Rott, C. Solar atmospheric neutrinos: A new neutrino floor for dark matter searches. Phys. Rev. D 2017, 96, 103006. [Google Scholar] [CrossRef]
- [IceCube Collaboration]. Search for annihilating dark matter in the Sun with 3 years of IceCube data. Eur. Phys. J. C 2017, 77, 146. [Google Scholar] [CrossRef]
- [Super-Kamiokande Collaboration]. Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande. Phys. Rev. Lett. 2015, 114, 141301. [Google Scholar] [CrossRef]
- Chakraborti, M.; Heinemeyer, S.; Saha, I.; Schappacher, C. (g - 2)μ and SUSY Dark Matter: Direct Detection and Collider Search Complementarity. Eur. Phys. J. C 2022, 82, 483. [Google Scholar] [CrossRef]
- Chakraborti, M.; Heinemeyer, S.; Saha, I. Improved (g - 2)μ measurements and supersymmetry. Eur. Phys. J. 2020, 80, 984. [Google Scholar]
- Slavich, P.; Heinemeyer, S.; Bagnaschi, E.; Bahl, H.; Goodsell, M.; Haber, H.E.; Hahn, T.; Harlander, R.; Hollik, W.; Lee, G.; et al. Higgs-mass predictions in the MSSM and beyond. Eur. Phys. J. 2021, 81, 450. [Google Scholar] [CrossRef]
- Chakraborti, M.; Heinemeyer, S.; Saha, I. Improved (g - 2)μ measurements and wino/higgsino dark matter. Eur. Phys. J. 2021, 8, 1069. [Google Scholar] [CrossRef]
- Chakraborti, M.; Heinemeyer, S.; Saha, I. The new “MUON G-2” result and supersymmetry. Eur. Phys. J. 2021, 81, 1114. [Google Scholar] [CrossRef]
- Aoyama, T.; Aoyama, T.; Asmussen, N.; Benayoun, M.; Bijnens, J.; Blum, T.; Bruno, M.; Caprini, I.; Calame, C.C.; Cè, M.; et al. The anomalous magnetic moment of the muon in the Standard Model. Phys. Rept. 2020, 887, 1–166. [Google Scholar] [CrossRef]
- [Muon g-2 Collaboration]. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Phys. Rev. Lett. 2021, 126, 141801. [Google Scholar] [CrossRef] [PubMed]
- [Muon g-2 Collaboration]. Final report of the E821 muon anomalous magnetic moment measurement at BNL. Phys. Rev. 2006, 73, 72003. [Google Scholar]
- Athron, P.; Bach, M.; Fargnoli, H.G.; Gnendiger, C.; Greifenhagen, R.; Park, J.H.; Pabehr, S.; Stockinger, D.; Stockinger-Kim, H. GM2Calc: Precise MSSM prediction for (g - 2) of the muon. Eur. Phys. J. 2016, 76, 62. [Google Scholar]
- Von Weitershausen, P.; Schafer, M.; Stöckinger-Kim, H.; Stöckinger, D. Photonic supersymmetric two-loop corrections to the muon magnetic moment. Phys. Rev. 2010, 81, 093004. [Google Scholar] [CrossRef]
- Fargnoli, H.; Gnendiger, C.; Pabehr, S.; Stockinger, D.; Stockinger-Kim, H. Two-loop corrections to the muon magnetic moment from fermion/sfermion loops in the MSSM: Detailed results. J. High Energy Phys. 2014, 1402, 70. [Google Scholar] [CrossRef]
- Bach, M.; Park, J.H.; Stockinger, D.; Stockinger-Kim, H. Large muon (g − 2) with TeV-scale SUSY masses for tan β→∞. J. High Energy Phys. 2015, 1510, 26. [Google Scholar] [CrossRef]
- Heinemeyer, S.; Stöckinger, D.; Weiglein, G. Two-loop SUSY corrections to the anomalous magnetic moment of the muon. Nucl. Phys. 2004, 690, 62–80. [Google Scholar] [CrossRef]
- Heinemeyer, S.; Stöckinger, D.; Weiglein, G. Electroweak and supersymmetric two-loop corrections to (g - 2)μ. Nucl. Phys. 2004, 699, 103–123. [Google Scholar] [CrossRef][Green Version]
- Hollik, W.G.; Weiglein, G.; Wittbrodt, J. Impact of vacuum stability constraints on the phenomenology of supersymmetric models. J. High Energy Phys. 2019, 3, 109. [Google Scholar] [CrossRef]
- Ferreira, P.M.; Mühlleitner, M.; Santos, R.; Weiglein, G.; Wittbrodt, J. Vacuum instabilities in the N2HDM. J. High Energy Phys. 2019, 9, 6. [Google Scholar] [CrossRef]
- Drees, M.; Dreiner, H.; Schmeier, D.; Tattersall, J.; Kim, J.S. CheckMATE: Confronting your favourite new physics model with LHC data. Comput. Phys. Commun. 2015, 187, 227–265. [Google Scholar] [CrossRef]
- Kim, J.S.; Schmeier, D.; Tattersall, J.; Rolbiecki, K. A framework to create customised LHC analyses within CheckMATE. Comput. Phys. Commun. 2015, 196, 535–562. [Google Scholar] [CrossRef]
- Dercks, D.; Desai, N.; Kim, J.S.; Rolbiecki, K.; Tattersall, J.; Weber, T. CheckMATE 2: From the model to the limit. Comput. Phys. Commun. 2017, 221, 383–418. [Google Scholar] [CrossRef]
- [Planck Collaboration]. Planck 2018 results-VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- [XENON Collaboration]. Projected WIMP sensitivity of the XENONnT dark matter experiment. J. Cosmol. Astropart. Phys. 2020, 11, 31. [Google Scholar]
- Akerib, D.S.; Akerlof, C.W.; Alsum, S.K.; Araújo, H.M.; Arthurs, M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Balashov, S.; Bauer, D.; et al. Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment. Phys. Rev. 2020, 101, 052002. [Google Scholar] [CrossRef]
- Aalseth, C.E.; Acerbi, F.; Agnes, P.; Albuquerque, I.F.M.; Alexander, T.; Alici, A.; Alton, A.K.; Antonioli, P.; Arcelli, S.; Ardito, R.; et al. DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. Eur. Phys. J. Plus 2018, 133, 131. [Google Scholar] [CrossRef]
- Billard, J.; Boulay, M.; Cebrián, S.; Covi, L.; Fiorillo, G.; Green, A.M.; Kopp, J.; Majorovits, B.; Palladino, K.; Petricca, F.; et al. Direct detection of dark matter—APPEC committee report. arXiv 2021, arXiv:2104.07634. [Google Scholar] [CrossRef]
- Ruppin, F.; Billard, J.; Figueroa-Feliciano, E.; Strigari, L. Complementarity of dark matter detectors in light of the neutrino background. Phys. Rev. 2014, 90, 083510. [Google Scholar] [CrossRef]
- Baer, H.; Barklow, T.; Fuji, K.; Gao, Y.; Hoang, A.; Kanemura, S.; List, J.; Logan, H.E.; Nomerotski, A.; Perelstein, M. The International Linear Collider Technical Design Report-Volume 2: Physics. CERN: Geneva, Switzerland, 2013. arXiv 2013, arXiv:1306.6352. [Google Scholar]
- Moortgat-Pick, G.; Baer, H.; Battaglia, M.; Belanger, G.; Fujii, K.; Kalinowski, J.; Heinemeyer, S.; Kiyo, Y.; Olive, K.; Simon, F.; et al. Physics at e+e− Linear Collider. Eur. Phys. J. 2015, 75, 371. [Google Scholar] [CrossRef] [PubMed]
- Barklow, T.; Brau, J.; Fujii, K.; Gao, J.; List, J.; Walker, N.; Yokoya, K. ILC Operating Scenarios. arXiv 2015, arXiv:1506.07830. [Google Scholar]
- Fujii, K.; Grojean, C.; Peskin, M.E.; Barklow, T.; Gao, Y.; Kanemura, S.; Kim, H.; List, J.; Nojiri, M.; Perelstein, M.; et al. Physics Case for the 250 GeV Stage of the International Linear Collider. arXiv 2017, arXiv:1710.07621. [Google Scholar]
- Heinemeyer, S.; Schappacher, C. Chargino and neutralino production at e+e− colliders in the complex MSSM: A full one-loop analysis. Eur. Phys. J. 2017, 77, 649. [Google Scholar] [CrossRef]
- Heinemeyer, S.; Schappacher, C. Slepton production at e+e− colliders in the complex MSSM: A full one-loop analysis. Eur. Phys. J. 2018, 78, 536. [Google Scholar] [CrossRef]
- Berggren, M. Simplified SUSY at the ILC. arXiv 2021, arXiv:1308.1461. [Google Scholar]
- De Vera, M.T.N.P.; Berggren, M.; List, J. Chargino production at the ILC. arXiv 2019, arXiv:2002.01239. [Google Scholar]
- Berggren, M. What pp SUSY limits mean for future e+e- colliders. arXiv 2022, arXiv:2003.12391. [Google Scholar]
- Pagels, H.; Primack, J.R. Supersymmetry, Cosmology, and New Physics at Teraelectronvolt Energies. Phys. Rev. Lett. 1982, 48, 223. [Google Scholar] [CrossRef]
- Weinberg, S. Cosmological Constraints on the Scale of Supersymmetry Breaking. Phys. Rev. Lett. 1982, 48, 1303. [Google Scholar] [CrossRef]
- Khlopov, M.Y.; Linde, A. Is it easy to save the gravitino? Phys. Lett. B. 1984, 138, 265. [Google Scholar] [CrossRef]
- Ellis, J.R.; Kim, J.E.; Nanopoulos, D.V. Cosmological gravitino regeneration and decay. Phys. Rev. Lett. 1984, 145, 181–186. [Google Scholar] [CrossRef]
- Ellis, J.R.; Olive, K.A.; Santoso, Y.; Spanos, V.C. Gravitino dark matter in the CMSSM. Phys. Rev. Lett. B 2004, 588, 7–16. [Google Scholar] [CrossRef][Green Version]
- Borgani, S.; Masiero, A.; Yamaguchi, M. Light gravitinos as mixed dark matter. Phys. Rev. Lett. B 1996, 386, 189–197. [Google Scholar] [CrossRef]
- Takayama, F.; Yamaguchi, M. Gravitino dark matter without R-parity. Phys. Rev. Lett. B 2000, 485, 388–392. [Google Scholar] [CrossRef]
- Addazi, A.; Khlopov, M.Y. Dark matter and inflation in R+ζR2 supergravity. Phys. Lett. B 2017, 766, 17. [Google Scholar] [CrossRef]
- Fermi-LAT Collaboration; Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; et al. The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071. [Google Scholar] [CrossRef]
- De Angelis, A.; Tatischeff, V.; Grenier, I.A.; McEnery, J.; Mallamaci, M.; Tavani, M.; Oberlack, U.; Hanlon, L.; Walter, R.; Argan, A.; et al. Science with e-ASTROGAM (A space mission for MeV-GeV gamma-ray astrophysics). arXiv 2021, arXiv:1711.01265. [Google Scholar]
- Caputo, R.; Meyer, M.; Sanchez-Conde, M. AMEGO: Dark Matter Prospects. In Proceedings of the 35th International Cosmic Ray Conference (PoS ICRC), Hamme, Belgium, 12–20 July 2017; p. 910. [Google Scholar]
- Shifman, M.A.; Vainshtein, A.; Zakharov, V.I. Can confinement ensure natural CP invariance of strong interactions? Nucl. Phys. B 1980, 166, 493–506. [Google Scholar] [CrossRef]
- Brandenburg, A.; Steffen, F.D. Axino dark matter from thermal production. J. Cosmol. Astropart. Phys. 2004, 8, 8. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W.; Srednicki, M. A simple solution to the strong CP problem with a harmless axion. Phys. Lett. B 1981, 104, 199–202. [Google Scholar] [CrossRef]
- Zhitnitsky, A.R. On possible supression of the axion hadron interactions. Sov. J. Nucl. Phys. 1980, 31, 260. [Google Scholar]
- Boyarsky, A.; Drewes, M.; Lasserre, T.; Mertens, S.; Ruchayskiy, O. Sterile neutrino dark matter. Prog. Part. Nucl. Phys. 2019, 104, 1–45. [Google Scholar] [CrossRef]
- Asaka, T.; Shaposhnikov, M. The νMSM, dark matter and baryon asymmetry of the universe. Phys. Lett. B 2005, 620, 17–26. [Google Scholar] [CrossRef]
- Knees, P.; Lopez-Fogliani, D.E.; Muñoz, C. Phenomenological implications of sterile neutrinos in the μνSSM and dark matter. To be published in Astropart. Phys. arXiv 2022, arXiv:2207.10689. [Google Scholar]
- Bringmann, T.; Kahlhoefer, F.; Schmidt-Hoberg, K.; Walia, P. Converting nonrelativistic dark matter to radiation. Phys. Rev. D 2018, 98, 023543. [Google Scholar] [CrossRef]
- Aguilar-Saavedra, J.A.; Casas, J.; Quilis, J.; de Austri, R.R. Multilepton dark matter signals. J. High Energy Phys. 2020, 4, 69. [Google Scholar] [CrossRef]
- [XENON Collaboration]. Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Phys. Rev. Lett. 2018, 121, 111302. [Google Scholar] [CrossRef]
- Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F.D.; Amsler, C.; Aprile, E.; Arazi, L.; Arneodo, F.; Barrow, P.; Baudis, L.; et al. DARWIN: Towards the ultimate dark matter detector. J. Cosmol. Astropart. Phys. 2016, 11, 17. [Google Scholar] [CrossRef]
- Billard, J.; Figueroa-Feliciano, E.; Strigari, L. Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments. Phys. Rev. 2014, 89, 023524. [Google Scholar] [CrossRef]
- CTA Consortium. Science with the Cherenkov Telescope Array. arXiv 2017, arXiv:1709.07997. [Google Scholar]
Parameter | Range |
---|---|
(−4, 4) TeV | |
(0, 4) TeV | |
(−4, 4) TeV | |
(0, 4) TeV | |
(0, 4) TeV | |
(0, 2) TeV | |
(0, 2) TeV | |
(0, 4) TeV | |
A | (−5, 5) TeV |
(−5, 5) TeV | |
(1, 60) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heinemeyer, S.; Muñoz, C. Dark Matter in Supersymmetry. Universe 2022, 8, 427. https://doi.org/10.3390/universe8080427
Heinemeyer S, Muñoz C. Dark Matter in Supersymmetry. Universe. 2022; 8(8):427. https://doi.org/10.3390/universe8080427
Chicago/Turabian StyleHeinemeyer, Sven, and Carlos Muñoz. 2022. "Dark Matter in Supersymmetry" Universe 8, no. 8: 427. https://doi.org/10.3390/universe8080427
APA StyleHeinemeyer, S., & Muñoz, C. (2022). Dark Matter in Supersymmetry. Universe, 8(8), 427. https://doi.org/10.3390/universe8080427