Binary X-ray Sources in Massive Brans–Dicke Gravity
Abstract
1. Introduction
2. X-ray Binary Models
3. General Considerations
3.1. Accretion Disk Model
- There are no magnetic fields.
- Advection is negligible.
- The accretion velocity, , has a radial component only; i.e.,
- The disk is geometrically thin, namely:
- The disk is optically thick, as the opacity, , is dominated by the Thomson scattering:where is the proton mass; is the Thomson cross section; and the disc is opaque, characterized by a large optical depth, , and therefore, it is optically thick.
- The disk is cool: In geometrically thin, optically thick (Shakura–Sunyaev) accretion disks, radiation is extremely efficient, and nearly all of the heat generated within the disk is emitted (i.e., radiated) locally. Thus, the disk is considered to be cold; i.e.,where M is the mass of the black hole and T is the temperature of the disk. Additionally, notice that generically, when matter is optically thick , the accretion disk can be quite luminous and also (efficiently) cooled by radiation. Moreover, radiation is relevant in accretion disks as an efficient way to carry excess energy away from the system.
- The total pressure, P, has two contributions: the first one from the gas and the second one from radiation; i.e.,with being the radiation constant, and being the Stefan–Boltzmann constant.
- Accretion rate at the Eddingron limit: For a steady state disk, when a balance between gravity and pressure is reached, the accretion rate takes a constant value, , given by the Eddington limit [72]
3.2. Accretion in Spherically Symmetric Geometries
4. Stellar-Mass Black Hole X-ray Binary in Massive Brans–Dicke Gravity
Flux of X-ray Emission
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fleury, P.; Clarkson, C.; Maartens, R. How does the cosmic large-scale structure bias the Hubble diagram? J. Cosmol. Astropart. Phys. 2017, 2017. [Google Scholar] [CrossRef]
- Mukherjee, P.; Chakrabarti, S. Exact solutions and accelerating universe in modified Brans–Dicke theories. Eur. Phys. J. Vol. 2019, 79, 681. [Google Scholar] [CrossRef]
- Perivolaropoulos, L. PPN Parameter gamma and Solar System Constraints of Massive Brans-Dicke Theories. Phys. Rev. 2010, 81, 047501. [Google Scholar]
- Alsing, J.; Berti, E.; Will, C.M.; Zaglauer, H. Gravitational radiation from compact binary systems in the massive Brans-Dicke theory of gravity. Phys. Rev. 2012, 85, 064041. [Google Scholar] [CrossRef]
- Einstein, A. The Foundation of the General Theory of Relativity. Ann. Phys. 1916, 7, 769–822. [Google Scholar] [CrossRef]
- Turyshev, S.G. Experimental Tests of General Relativity. Annu. Rev. Nucl. Part. Sci. 2008, 58, 207–248. [Google Scholar] [CrossRef]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef]
- Asmodelle, E. Tests of General Relativity: A Review. arXiv 2004, arXiv:1705.04397. [Google Scholar]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories Of Gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef]
- Felice, A.D.; Tsujikawa, S. f(R) theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef]
- Horava, P. Quantum Gravity at a Lifshitz Point. Phys. Rev. D 2009, 79, 084008. [Google Scholar] [CrossRef]
- Bellorín, J.; Restuccia, A.; Tello-Ortiz, F. Anisotropic coupling of gravity and electromagnetism in Hořava-Lifshitz theory. Phys. Rev. D 2018, 98, 104018. [Google Scholar] [CrossRef]
- Koch, B.; Reyes, I.A.; Rincón, A. A scale dependent black hole in three-dimensional space–time. Class. Quantum Gravity 2016, 33, 22. [Google Scholar] [CrossRef]
- Rincón, Á.; Contreras, E.; Bargueño, P.; Koch, B.; Panotopoulos, G.; Hernández-Arboleda, A. Scale dependent three-dimensional charged black holes in linear and non-linear electrodynamics. Eur. Phys. J. 2017, 77, 494. [Google Scholar] [CrossRef]
- Rincón, Á.; Panotopoulos, G. Quasinormal modes of scale dependent black holes in ( 1+2 )-dimensional Einstein-power-Maxwell theory. Phys. Rev. D 2018, 97, 024027. [Google Scholar] [CrossRef]
- Contreras, E.; Rincón, Á.; Panotopoulos, G.; Bargueño, P.; Koch, B. Black hole shadow of a rotating scale–dependent black hole. Phys. Rev. D 2020, 101, 064053. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Rincón, Á.; Lopes, I. Interior solutions of relativistic stars in the scale-dependent scenario. Eur. Phys. J. 2020, 80, 318. [Google Scholar] [CrossRef]
- Rincón, Á.; Koch, B. Scale-dependent rotating BTZ black hole. Eur. Phys. J. 2018, 78, 1022. [Google Scholar] [CrossRef]
- Rincón, Á.; Panotopoulos, G. Scale-dependent slowly rotating black holes with flat horizon structure. Phys. Dark Universe 2020, 30, 100725. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Rincón, Á. Quasinormal spectra of scale-dependent Schwarzschild-de Sitter black holes. Phys. Dark Universe 2021, 31, 100743. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Rincón, Á. Growth of structures and redshift-space distortion data in scale-dependent gravity. Eur. Phys. J. Plus 2021, 136, 622. [Google Scholar] [CrossRef]
- Bargueño, P.; Contreras, E.; Rincón, Á. Thermodynamics of scale-dependent Friedmann equations. Eur. Phys. J. Plus 2021, 81, 477. [Google Scholar] [CrossRef]
- Alvarez, P.D.; Koch, B.; Laporte, C.; Rincón, Á. Can scale-dependent cosmology alleviate the H0 tension? J. Cosmol. Astropart. Phys. 2021, 6, 19. [Google Scholar] [CrossRef]
- Fathi, M.; Rincón, Á.; Villanueva, J.R. Photon trajectories on a first order scale-dependent static BTZ black hole. Class. Quantum Gravity 2020, 37, 075004. [Google Scholar] [CrossRef]
- Rincón, Á.; Villanueva, J.R. The Sagnac effect on a scale-dependent rotating BTZ black hole background. Class. Quantum Gravity 2020, 37, 175003. [Google Scholar] [CrossRef]
- Canales, F.; Koch, B.; Laporte, C.; Rincon, A. Cosmological constant problem: Deflation during inflation. J. Cosmol. Astropart. Phys. 2020, 1, 21. [Google Scholar] [CrossRef]
- Contreras, E.; Bargueño, P. Scale–dependent Hayward black hole and the generalized uncertainty principle. Mod. Phys. Lett. 2018, 33, 1850184. [Google Scholar] [CrossRef]
- Bonanno, A.; Reuter, M. Renormalization group improved black hole space-times. Phys. Rev. D 2000, 62, 043008. [Google Scholar] [CrossRef]
- Rincón, Á.; Panotopoulos, G. Quasinormal modes of an improved Schwarzschild black hole. Phys. Dark Universe 2020, 30, 100639. [Google Scholar] [CrossRef]
- González, C.; Koch, B. Improved Reissner–Nordström–(A)dS black hole in asymptotic safety. Int. J. Mod. Phys. 2016, 31, 1650141. [Google Scholar] [CrossRef]
- Kazanas, D.; Mannheim, P.D. General Structure of the Gravitational Equations of Motion in Conformal Weyl Gravity. Astrophys. J. Suppl. Ser. 1991, 76, 431. [Google Scholar] [CrossRef]
- Rham, C.D.; Gabadadze, G.; Tolley, A.J. Resummation of Massive Gravity. Phys. Rev. Lett. 2011, 106, 231101. [Google Scholar] [CrossRef] [PubMed]
- Schwarzschild, K. On the gravitational field of a mass point according to Einstein’s theory. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1916, 1916, 189–196. [Google Scholar]
- Bousso, R. Adventures in de Sitter space. arXiv 2002, arXiv:hep-th/0205177. [Google Scholar]
- Giacconi, E.; Gursky, H.; Paolini, F.R.; Rossi, B.B. Evidence for x Rays From Sources Outside the Solar System. Phys. Rev. Lett. 1962, 9, 439. [Google Scholar] [CrossRef]
- Hoyle, F.; Lyttleton, R.A. The effect of interstellar matter on climatic variation. Math. Proc. Camb. Philos. Soc. 2008, 35, 405–415. [Google Scholar] [CrossRef]
- Bondi, H.; Hoyle, F. On the mechanism of accretion by stars. Mon. Not. R. Astron. Soc. 1994, 104, 273. [Google Scholar] [CrossRef]
- Bondi, H. On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 1952, 112, 195. [Google Scholar] [CrossRef]
- Michel, F.C. Accretion of Matter by Condensed Objects. Astrophys. Space Sci. 1972, 15, 153–160. [Google Scholar] [CrossRef]
- Korol, V.; Ciotti, L.; Pellegrini, S. Bondi accretion in early-type galaxies. Mon. Not. R. Astron. Soc. 2016, 460, 1188–1200. [Google Scholar] [CrossRef]
- Ciotti, L.; Pellegrini, S. Isothermal Bondi accretion in Jaffe and Hernquist galaxies with a central black hole: Fully analytical solutions. Astrophys. J. 2017, 848, 29. [Google Scholar] [CrossRef]
- Ciotti, L.; Lorzad, A.Z. Two-component Jaffe models with a central black hole - I. The spherical case. Mon. Not. R. Astron. Soc. 2018, 473, 5476. [Google Scholar] [CrossRef]
- Begelman, M. Accretion of V > 5/3 Gas by a Schwarzschild Black Hole. Astron. Astrophys. 1978, 70, 583. [Google Scholar]
- Petrich, L.I.; Shapiro, S.L.; Teukolsky, S.A. Accretion onto a moving black hole: An exact solution. Phys. Rev. Lett. 1988, 60, 1781–1784. [Google Scholar] [CrossRef] [PubMed]
- Malec, E. Fluid accretion onto a spherical black hole: Relativistic description versus Bondi model. Phys. Rev. D 1999, 60, 104043. [Google Scholar] [CrossRef]
- Babichev, E.; Dokuchaev, V.; Eroshenko, Y. Black hole mass decreasing due to phantom energy accretion. Phys. Rev. Lett. 2004, 93, 021102. [Google Scholar] [CrossRef] [PubMed]
- Babichev, E.; Dokuchaev, V.; Eroshenko, Y. The Accretion of dark energy onto a black hole. J. Exp. Theor. Phys. 2005, 100, 528–538. [Google Scholar] [CrossRef]
- Karkowski, J.; Kinasiewicz, B.; Mach, P.; Malec, E.; Swierczynski, Z. Universality and backreaction in a general-relativistic accretion of steady fluids. Phys. Rev. D 2006, 73, 021503. [Google Scholar] [CrossRef]
- Mach, P.; Malec, E. On the stability of self-gravitating accreting flows. Phys. Rev. D 2008, 78, 124016. [Google Scholar] [CrossRef]
- Gao, C.; Chen, X.; Faraoni, V.; Shen, Y.G. Does the mass of a black hole decrease due to the accretion of phantom energy. Phys. Rev. D 2008, 78, 024008. [Google Scholar] [CrossRef]
- Jamil, M.; Rashid, M.A.; Qadir, A. Charged Black Holes in Phantom Cosmology. Eur. Phys. J. 2008, 58, 325–329. [Google Scholar] [CrossRef]
- Giddings, S.B.; Mangano, M.L. Astrophysical implications of hypothetical stable TeV-scale black holes. Phys. Rev. D 2008, 78, 035009. [Google Scholar] [CrossRef]
- Jimenez Madrid, J.A.; Gonzalez-Diaz, P.F. Evolution of a kerr-newman black hole in a dark energy universe. Gravit. Cosmol. 2008, 14, 213–225. [Google Scholar] [CrossRef]
- Sharif, M.; Abbas, G. Phantom Accretion by Five Dimensional Charged Black Hole. Mod. Phys. Lett. 2011, 26, 1731–1736. [Google Scholar] [CrossRef]
- Dokuchaev, V.I.; Eroshenko, Y.N. Accretion with back reaction. Phys. Rev. D 2011, 84, 124022. [Google Scholar] [CrossRef]
- Babichev, E.; Dokuchaev, V.; Eroshenko, Y. Backreaction of accreting matter onto a black hole in the Eddington-Finkelstein coordinates. Class. Quantum Gravity 2012, 29, 115002. [Google Scholar] [CrossRef]
- Bhadra, J.; Debnath, U. Accretion of New Variable Modified Chaplygin Gas and Generalized Cosmic Chaplygin Gas onto Schwarzschild and Kerr-Newman Black holes. Eur. Phys. J. 2012, 72, 1912. [Google Scholar] [CrossRef]
- Mach, P.; Malec, E. Stability of relativistic Bondi accretion in Schwarzschild-(anti-)de Sitter spacetimes. Phys. Rev. D 2013, 88, 084055. [Google Scholar] [CrossRef]
- Mach, P.; Malec, E.; Karkowski, J. Spherical steady accretion flows: Dependence on the cosmological constant, exact isothermal solutions, and applications to cosmology. Phys. Rev. D 2013, 88, 084056. [Google Scholar] [CrossRef]
- Karkowski, J.; Malec, E. Bondi accretion onto cosmological black holes. Phys. Rev. D 2013, 87, 044007. [Google Scholar] [CrossRef]
- John, A.J.; Ghosh, S.G.; Maharaj, S.D. Accretion onto a higher dimensional black hole. Phys. Rev. D 2013, 88, 104005. [Google Scholar] [CrossRef]
- Ganguly, A.; Ghosh, S.G.; Maharaj, S.D. Accretion onto a black hole in a string cloud background. Phys. Rev. D 2014, 90, 064037. [Google Scholar] [CrossRef]
- Babichev, E.; Chernov, S.; Dokuchaev, V.; Eroshenko, Y. Ultra-hard fluid and scalar field in the Kerr-Newman metric. Phys. Rev. D 2008, 78, 104027. [Google Scholar] [CrossRef]
- Debnath, U. Accretion and Evaporation of Modified Hayward Black Hole. Eur. Phys. J. 2015, 75, 129. [Google Scholar] [CrossRef]
- Yang, R. Quantum gravity corrections to accretion onto a Schwarzschild black hole. Phys. Rev. D 2015, 92, 084011. [Google Scholar] [CrossRef]
- Jiao, L.; Yang, R.J. Accretion onto a moving Reissner-Nordström black hole. J. Cosmol. Astropart. Phys. 2017, 09, 23. [Google Scholar] [CrossRef][Green Version]
- Jiao, L.; Yang, R.J. Accretion onto a Kiselev black hole. J. Cosmol. Astropart. Phys. 2017, 77, 356. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Mandal, R.; Paik, B. Accretion onto a noncommutative inspired Schwarzschild black hole. Int. J. Mod. Phys. 2018, 33, 14n15. [Google Scholar] [CrossRef]
- Mitsuda, K.; Inoue, H.; Koyama, K.; Makishima, K.; Matsuoka, M.; Ogawara, Y.; Shibazaki, N.; Suzuki, K.; Tanaka, Y.; Hirano, T. Energy spectra of low-mass binary X-ray sources observed from TENMA. Publ. Astron. Soc. Jpn. 1984, 36, 741. [Google Scholar]
- Abramowicz, M.A.; Fragile, P.C. Foundations of Black Hole Accretion Disk Theory. Living Rev. Relativ. 2013, 16, 1. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337. [Google Scholar]
- Faraji, S.; Hackmann, E. Thin accretion disk around the distorted Schwarzschild black hole. Phys. Rev. D 2020, 101, 023002. [Google Scholar] [CrossRef]
- Kerr, R.P. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett. 1963, 11, 237. [Google Scholar] [CrossRef]
- Qin, Y.; Marchant, P.; Fragos, T.; Meynet, G.; Kalogera, V. On the Origin of Black-Hole Spin in High-Mass X-ray Binaries. Astrophys. J. Lett. 2019, 870, 2. [Google Scholar] [CrossRef]
- Miller, M.C.; Miller, J.M. The Masses and Spins of Neutron Stars and Stellar-Mass Black Holes. Phys. Rep. 2014, 548, 1–34. [Google Scholar] [CrossRef]
- Bahamonde, S.; Jamil, M. Accretion Processes for General Spherically Symmetric Compact Objects. Eur. Phys. J. C 2015, 75, 508. [Google Scholar] [CrossRef]
- Jawad, A.; Shahzad, M.U. Accreting Fluids onto Regular Black Holes Via Hamiltonian Approach. Eur. Phys. J. C 2017, 77, 515. [Google Scholar] [CrossRef]
- Abbas, G.; Ditta, A. Accretion onto a charged Kiselev black hole. Mod. Phys. Lett. A 2018, 33, 1850070. [Google Scholar] [CrossRef]
- Karimov, R.K.; Izmailov, R.N.; Bhattacharya, A.; Nandi, K.K. Accretion disks around the Gibbons–Maeda–Garfinkle– Horowitz–Strominger charged black holes. Eur. Phys. J. C 2018, 78, 788. [Google Scholar] [CrossRef]
- Abbas, G.; Ditta, A. Matter accretion onto Einstein-power-Maxwell black hole. Gen. Rel. Grav. 2019, 51, 43. [Google Scholar] [CrossRef]
- Neves, J.C.S.; Saa, A. Accretion of perfect fluids onto a class of regular black holes. Annals Phys. 2020, 420, 168269. [Google Scholar] [CrossRef]
- Abbas, G.; Ditta, A. Matter accretion onto a conformal gravity black hole. Eur. Phys. J. C 2020, 80, 1212. [Google Scholar] [CrossRef]
- Contreras, E.; Rincón, Á.; Koch, B.; Bargueño, P. Scale-dependent polytropic black hole. Eur. Phys. J. C 2018, 78, 246. [Google Scholar] [CrossRef]
- Contreras, E.; Rincón, Á.; Ramírez-Velasquez, J.M. Relativistic dust accretion onto a scale–dependent polytropic black hole. Eur. Phys. J. C 2019, 79, 53. [Google Scholar] [CrossRef]
- Panotopoulos, G.; Rincon, A.; Lopes, I. Accretion of matter and spectra of binary X-ray sources in massive gravity. Annals Phys. 2021, 433, 168596. [Google Scholar] [CrossRef]
- Merloni, A.; Fabian, A.C.; Ross, R.R. On the interpretation of the multicolour disc model for black hole candidates. Mon. Not. R. Astron. Soc. 2000, 313, 193. [Google Scholar] [CrossRef]
- Davis, S.W.; El-Abd, S. Spectral Hardening in Black Hole Accretion: Giving Spectral Modelers an f. Astrophys. J. 2019, 874, 23. [Google Scholar] [CrossRef]
- Salvesen, G.; Miller, J.M. Black Hole Spin in X-ray Binaries: Giving Uncertainties an f. Mon. Not. R. Astron. Soc. 2020, 500, 3640. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, M. Innermost and outermost stable circular orbits in the presence of a positive cosmological constant. Phys. Rev. D 2020, 101, 024050. [Google Scholar] [CrossRef]
- Rincon, A.; Panotopoulos, G.; Lopes, I.; Cruz, N. ISCOs and OSCOs in the Presence of a Positive Cosmological Constant in Massive Gravity. Universe 2021, 7, 278. [Google Scholar] [CrossRef]




Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panotopoulos, G.; Rincón, Á.; Lopes, I. Binary X-ray Sources in Massive Brans–Dicke Gravity. Universe 2022, 8, 285. https://doi.org/10.3390/universe8050285
Panotopoulos G, Rincón Á, Lopes I. Binary X-ray Sources in Massive Brans–Dicke Gravity. Universe. 2022; 8(5):285. https://doi.org/10.3390/universe8050285
Chicago/Turabian StylePanotopoulos, Grigoris, Ángel Rincón, and Ilídio Lopes. 2022. "Binary X-ray Sources in Massive Brans–Dicke Gravity" Universe 8, no. 5: 285. https://doi.org/10.3390/universe8050285
APA StylePanotopoulos, G., Rincón, Á., & Lopes, I. (2022). Binary X-ray Sources in Massive Brans–Dicke Gravity. Universe, 8(5), 285. https://doi.org/10.3390/universe8050285

