CP Violation for the Heavens and the Earth
Abstract
:1. Introduction: Our Life and Times
2. General Two Higgs Doublet Model
2.1. Extra Yukawa Couplings
2.2. Extra Higgs Quartic Couplings
3. The Heavens: Electroweak BaryoGenesis
3.1. Cpv Top Interactions
3.2. Watch Your Back: eEDM
4. Under the Heavens on Earth: EDM
4.1. Cancellation Mechanism for Electron EDM
4.2. Facing ACME: Thorium Oxide EDM
4.3. The Flavor Enigma and NFC
O Lord, our Lord, |
How Majestic is Thy Name |
in all the Earth, |
Who have set Thy Splendor |
above the Heavens. |
4.4. Comments: On “The Heavens and the Earth”
In the context of EWBG driven by an extra top Yukawa coupling, the impressive ACME’18 bound suggests an extra electron Yukawa coupling that works in concert to give exquisite cancellation among dangerous diagrams. The cancellation mechanism calls for the extra Yukawas to echo the hierarchical pattern of SM Yukawa couplings. |
5. Phenomenological Consequences
5.1. Leading Search Modes at the LHC
5.2. Glimpse of the Coming New Flavor Era
5.3. Lattice Connection: Phase Transition and Landau Ghost
5.4. Possible Implications of Muon G-2 in g2HDM
6. Summary
A Decadal Mission |
Find the extra H, A, bosons and crack the flavor code. |
Go ATLAS/CMS and LHCb/BelleII (and others) |
and Lattice, too. |
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BSM | Beyond the Standard Model |
NNP | No New Physics, or No New Particles |
ALPs | Axion-like particles |
LLPs | Long-lived particles |
EFT | Effective Field Theory |
CPV | CP Violation |
EWBG | Electroweak Baryogenesis |
EWPT | Electroweak Phase Transition |
BAU | Baryon Asymmetry of the Universe |
LE | Low Energy |
HE | High Energy |
EDM | Electric Dipole Moment |
CKM | Cabibbo-Kobayashi-Maskawa |
NFC | Natural Flavor Conservation |
FCNH | Flavor Changing Neutral Higgs |
2HDM | Two Higgs Doublet Model |
g2HDM | general 2HDM |
Appendix A. CPV with Four Generations
Subtle is the Lord, but malicious He is not. |
Lucidity of Equation (10) vs. Equation (A2) is notable. |
First order EWPT is thrown in as a bonus. |
–So let us finish the walk at the LHC. |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | Note that has both tree level contributions mediated by neutral H, A, as well as couplings with and top in the loop. Although cancellations can be engineered, they are not ”stable” when combined with and mixings. Together they imply couplings are weaker than Equation (26), that is, () should be at the level or less. This also means that the , anomalies cannot be accounted for by g2HDM. Why the matrix should be near diagonal, precisely in the most sensitive sector, is part of the flavor enigma. |
References
- Reece, M. The Current State of SUSY and Ways Forward. In Proceedings of the LHCP2021, Paris, France, 7–12 June 2021. [Google Scholar]
- Irastorza, I.G.; Redondo, J. New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys. 2017, 102, 89–159. [Google Scholar] [CrossRef] [Green Version]
- Curtin, D.; Drewes, M.; McCullough, M.; Meade, P.; Mohapatra, R.N.; Shelton, J.; Shuve, B.; Accomando, E.; Alpigiani, C.; Antusch, S.; et al. Long-Lived Particles at the Energy Frontier: The MATHUSLA Physics Case. Rept. Prog. Phys. 2019, 82, 116201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arcadi, G.; Dutra, M.; Ghosh, P.; Lindner, M.; Mambrini, Y.; Pierre, M.; Profumo, S.; Queiroz, F.S. The waning of the WIMP? A review of models, searches, and constraints. Eur. Phys. J. C 2018, 78, 203. [Google Scholar] [CrossRef] [PubMed]
- Pomarol, A. The SM EFT & new physics. In Proceedings of the LHCP2021, Paris, France, 7–12 June 2021. [Google Scholar]
- Branco, G.C.; Ferreira, P.M.; Lavoura, L.; Rebelo, M.N.; Sher, M.; Silva, J.P. Theory and phenomenology of two-Higgs-doublet models. Phys. Rept. 2012, 516, 1. [Google Scholar] [CrossRef] [Green Version]
- Gunion, J.F.; Haber, H.E. The CP conserving two Higgs doublet model: The Approach to the decoupling limit. Phys. Rev. D 2003, 67, 075019. [Google Scholar] [CrossRef] [Green Version]
- Davidson, S.; Haber, H.E. Basis-independent methods for the two-Higgs-doublet model. Phys. Rev. D 2005, 72, 035004. [Google Scholar] [CrossRef] [Green Version]
- Gunion, J.F.; Haber, H.E. Conditions for CP-violation in the general two-Higgs-doublet model. Phys. Rev. D 2005, 72, 095002. [Google Scholar] [CrossRef] [Green Version]
- Haber, H.E.; O’Neil, D. Basis-independent methods for the two-Higgs-doublet model. II. The Significance of tanβ. Phys. Rev. D 2006, 74, 015018. [Google Scholar] [CrossRef] [Green Version]
- Haber, H.E.; O’Neil, D. Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry, and the oblique parameters S, T, U. Phys. Rev. D 2011, 83, 055017. [Google Scholar] [CrossRef] [Green Version]
- Morrissey, D.E.; Ramsey-Musolf, M.J. Electroweak baryogenesis. New J. Phys. 2012, 14, 125003. [Google Scholar] [CrossRef]
- Zyla, P.A.; et al. [Particle Data Group]. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar]
- Sakharov, A. Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 1967, 5, 32–35. [Google Scholar]
- Andreev, V.; et al. [ACME]. Improved limit on the electric dipole moment of the electron. Nature 2018, 7727, 355–360. [Google Scholar]
- Lees, J.P.; et al. [BaBar]. Evidence for an excess of B¯→D(*)τ-ν¯τ Decays. Phys. Rev. Lett. 2012, 108, 101802. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; et al. [LHCb]. `Test Lepton Universality Using B+→K+ℓ+ℓ- Decays. Phys. Rev. Lett. 2014, 113, 151601. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; et al. [LHCb]. Measurement of the ratio of branching fractions B(B¯0→D*+τ-ν¯τ)/B(B¯0→D*+μ-ν¯μ). Phys. Rev. Lett. 2015, 115, 111803. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; et al. [LHCb]. Angular analysis of the B0→K*0μ+μ- Decay Using 3 Fb-1 Integr. Luminosity. JHEP 2016, 02, 104. [Google Scholar] [CrossRef]
- Aaij, R.; et al. [LHCb]. Test Lepton Universality B0→K*0ℓ+ℓ- Decays. JHEP 2017, 8, 055. [Google Scholar] [CrossRef] [Green Version]
- Hou, G.W.-S. Perspectives and Outlook from HEP Window on the Universe. Int. J. Mod. Phys. A 2019, 34, 1930002. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.-S. Source of CP Violation for the Baryon Asymmetry of the Universe. Chin. J. Phys. 2009, 47, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Glashow, S.L.; Weinberg, S. Natural Conservation Laws for Neutral Currents. Phys. Rev. D 1977, 15, 1958–1965. [Google Scholar] [CrossRef]
- Pich, A.; Tuzón, P. Yukawa Alignment in the Two-Higgs-Doublet Model. Phys. Rev. D 2009, 80, 091702. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Pich, A.; Tuzón, P. Yukawa Alignment in the Two-Higgs-Doublet Model. JHEP 2009, 11, 003. [Google Scholar]
- Celis, A.; Ilisie, V.; Pich, P. LHC constraints on two-Higgs doublet models. JHEP 2013, 7, 053. [Google Scholar] [CrossRef] [Green Version]
- Aad, G.; et al. [ATLAS and CMS]. Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at s=7 8 TeV. JHEP 2016, 8, 045. [Google Scholar] [CrossRef]
- Tumasyan, A.; et al. [CMS]. Search for flavor-changing neutral current interactions of the top quark and Higgs boson in final states with two photons in proton-proton collisions at s = 13 TeV. arXiv 2021, arXiv:2111.02219. [Google Scholar]
- Kanemura, S.; Okada, Y.; Senaha, E. Electroweak baryogenesis and quantum corrections to the triple Higgs boson coupling. Phys. Lett. B 2005, 606, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.-S.; Kikuchi, M. Approximate Alignment in Two Higgs Doublet Model with Extra Yukawa Couplings. EPL 2018, 123, 11001. [Google Scholar] [CrossRef] [Green Version]
- Bernon, J.; Gunion, J.F.; Haber, H.E.; Jiang, Y.; Kraml, S. Scrutinizing the alignment limit in two-Higgs-doublet models: Mh=125 GeV. Phys. Rev. D 2015, 92, 075004. [Google Scholar] [CrossRef] [Green Version]
- Bernon, J.; Gunion, J.F.; Haber, H.E.; Jiang, Y.; Kraml, S. Scrutinizing the alignment limit in two-Higgs-doublet models. II. mH=125 GeV. Phys. Rev. D 2016, 93, 035027. [Google Scholar] [CrossRef] [Green Version]
- Fuyuto, K.; Hou, W.-S.; Senaha, E. Electroweak baryogenesis driven by extra top Yukawa couplings. Phys. Lett. B 2018, 776, 402–406. [Google Scholar] [CrossRef]
- Chiang, C.W.; Fuyuto, K.; Senaha, E. Electroweak Baryogenesis with Lepton Flavor Violation. Phys. Lett. B 2016, 762, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Ade, P.A.; et al. [Planck]. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014, 571, A16. [Google Scholar]
- Guo, H.-K.; Li, Y.-Y.; Liu, T.; Ramsey-Musolf, M.; Shu, J. Lepton-Flavored Electroweak Baryogenesis. Phys. Rev. D 2017, 96, 115034. [Google Scholar] [CrossRef] [Green Version]
- Altunkaynak, B.; Hou, W.-S.; Kao, C.; Kohda, M.; McCoy, B. Flavor Changing Heavy Higgs Interactions at the LHC. Phys. Lett. B 2015, 751, 135–142. [Google Scholar] [CrossRef]
- Modak, T.; Senaha, E. Electroweak baryogenesis via bottom transport. Phys. Rev. D 2019, 99, 115022. [Google Scholar] [CrossRef]
- Modak, T.; Senaha, E. Probing Electroweak Baryogenesis induced by extra bottom Yukawa coupling via EDMs and collider signatures. JHEP 2020, 11, 025. [Google Scholar] [CrossRef]
- Modak, T.; Senaha, E. Electroweak baryogenesis via bottom transport: Complementarity between LHC and future lepton collider probes. Phys. Lett. B 2021, 822, 136695. [Google Scholar] [CrossRef]
- Cline, J.M.; Laurent, B. Electroweak baryogenesis from light fermion sources: A critical study. Phys. Rev. D 2021, 104, 083507. [Google Scholar] [CrossRef]
- Barr, S.M.; Zee, A. Electric Dipole Moment of the Electron and of the Neutron. Phys. Rev. Lett. 1990, 65, 21–24. [Google Scholar] [CrossRef]
- Baron, J.; et al. [ACME]. Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron. Science 2014, 343, 269–272. [Google Scholar] [PubMed] [Green Version]
- Baron, J.; et al. [ACME]. Methods, Analysis, and the Treatment of Systematic Errors for the Electron Electric Dipole Moment Search in Thorium Monoxide. New J. Phys. 2017, 19, 073029. [Google Scholar] [CrossRef] [Green Version]
- Fuyuto, K.; Hou, W.-S.; Senaha, E. Cancellation mechanism for the electron electric dipole moment connected with the baryon asymmetry of the Universe. Phys. Rev. D 2020, 101, 011901(R). [Google Scholar] [CrossRef] [Green Version]
- Abe, T.; Hisano, J.; Kitahara, T.; Tobioka, K. Gauge invariant Barr-Zee type contributions to fermionic EDMs in the two-Higgs doublet models. JHEP 2014, 1, 106. [Google Scholar] [CrossRef] [Green Version]
- Chupp, T.; Fierlinger, P.; Ramsey-Musolf, M.; Singh, J. Electric dipole moments of atoms, molecules, nuclei, and particles. Rev. Mod. Phys. 2019, 91, 015001. [Google Scholar] [CrossRef] [Green Version]
- Fuyuto, K.; Ramsey-Musolf, M.; Shen, T. Electric Dipole Moments from CP-Violating Scalar Leptoquark Interactions. Phys. Lett. B 2019, 788, 52–57. [Google Scholar] [CrossRef]
- Dekens, W.; de Vries, J.; Jung, M.; Vos, K.K. The phenomenology of electric dipole moments in models of scalar leptoquarks. JHEP 2019, 1, 069. [Google Scholar] [CrossRef] [Green Version]
- Cesarotti, C.; Lu, Q.; Nakai, Y.; Parikh, A.; Reece, M. Interpreting the Electron EDM Constraint. JHEP 2019, 05, 059. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, H.; et al. [ARGUS]. Observation of B0-B¯0 Mixing. Phys. Lett. B 1987, 192, 245–252. [Google Scholar] [CrossRef]
- Wolfenstein, L. Parametrization of the Kobayashi-Maskawa Matrix. Phys. Rev. Lett. 1983, 51, 1945–1947. [Google Scholar] [CrossRef]
- Cheng, T.P.; Sher, M. Mass Matrix Ansatz and Flavor Nonconservation in Models with Multiple Higgs Doublets. Phys. Rev. D 1987, 35, 3484–3491. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.-S. Tree level t→ch or h→tc¯ decays. Phys. Lett. B 1992, 296, 179–184. [Google Scholar] [CrossRef]
- Jung, M.; Pich, A. Electric Dipole Moments in Two-Higgs-Doublet Models. Phys. Lett. B 2014, 4, 076. [Google Scholar] [CrossRef] [Green Version]
- Kanemura, S.; Kubota, M.; Yagyu, K. Aligned CP-violating Higgs sector canceling the electric dipole moment. JHEP 2020, 8, 026. [Google Scholar] [CrossRef]
- Enomoto, K.; Kanemura, S.; Mura, Y. Electroweak baryogenesis in aligned two Higgs doublet models. JHEP 2022, 1, 104. [Google Scholar] [CrossRef]
- Cairncross, W.B.; Gresh, D.N.; Grau, M.; Cossel, K.C.; Roussy, T.S.; Ni, Y.; Zhou, Y.; Ye, J.; Cornell, E.A. Precision Measurement of the Electron’s Electric Dipole Moment Using Trapped Molecular Ions. Phys. Rev. Lett. 2017, 119, 153001. [Google Scholar] [CrossRef] [Green Version]
- Bean, A.; et al. [CLEO]. Limits on B0-B¯0 Mixing τB0/τB+. Phys. Rev. Lett. 1987, 58, 183–186. [Google Scholar] [CrossRef]
- Hou, W.-S.; Kumar, G. Muon Flavor Violation in Two Higgs Doublet Model with Extra Yukawa Couplings. Phys. Rev. D 2020, 102, 115017. [Google Scholar] [CrossRef]
- Hou, W.-S.; Kumar, G.; Teunissen, S. Charged Lepton EDM with Extra Yukawa Couplings. JHEP 2022, 1, 092. [Google Scholar] [CrossRef]
- Kohda, M.; Modak, T.; Hou, W.-S. Searching for new scalar bosons via triple-top signature in cg→tS0→ttt¯. Phys. Lett. B 2018, 776, 379–384. [Google Scholar] [CrossRef]
- Hou, W.-S.; Modak, T. Probing Top Changing Neutral Higgs Couplings at Colliders. Mod. Phys. Lett. A 2021, 36, 21300064. [Google Scholar] [CrossRef]
- Hou, W.-S.; Kohda, M.; Modak, T. Implications of Four-Top and Top-Pair Studies on Triple-Top Production. Phys. Lett. B 2019, 798, 134953. [Google Scholar] [CrossRef]
- Ghosh, D.K.; Hou, W.-S.; Modak, T. Sub-TeV H+ Boson Production as Probe of Extra Top Yukawa Couplings. Phys. Rev. Lett. 2020, 1256, 221801. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, D.; Rathsman, J.; Stal, O. 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual. Comput. Phys. Commun. 2010, 181, 189–205. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, D.; Rathsman, J.; Stal, O. 2HDMC: Two-Higgs-doublet model calculator. Comput. Phys. Commun. 2010, 181, 833–834. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.; Hou, W.-S.; Keung, W.-Y. Two loop contributions of flavor changing neutral Higgs bosons to μ→eγ. Phys. Rev. D 1993, 48, 217–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordone, M.; Cornella, C.; Fuentes-Martín, J.; Isidori, G. Low-energy signatures of the PS3 model: From B-physics anomalies to LFV. JHEP 2018, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.-S. Enhanced charged Higgs boson effects in B→τν¯,μν¯ and b→τν¯+X. Phys. Rev. D 1993, 48, 2342–2344. [Google Scholar] [CrossRef]
- Hou, W.-S.; Kohda, M.; Modak, T.; Wong, G.-G. Enhanced B→μν¯ decay at tree level as probe of extra Yukawa couplings. Phys. Lett. B 2020, 800, 135105. [Google Scholar] [CrossRef]
- Chang, P.; Chen, K.-F.; Hou, W.-S. Flavor Physics and CP Violation. Prog. Part. Nucl. Phys. 2017, 97, 261–311. [Google Scholar] [CrossRef] [Green Version]
- Crivellin, A.; Greub, C.; Kokulu, A. Explaining B→Dτν, B→D*τν and B→τν in a 2HDM of type III. Phys. Rev. D 2012, 86, 054014. [Google Scholar] [CrossRef] [Green Version]
- Alonso, R.; Grinstein, B.; Martin Camalich, J. Lifetime of Bc- Constrains Explanations for Anomalies in B→D(*)τν. Phys. Rev. Lett. 2017, 118, 081802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanke, M.; Crivellin, A.; de Boer, S.; Kitahara, T.; Moscati, M.; Nierste, U.; Nišandžić, I. Impact of polarization observables and Bc→τν on new physics explanations of the b→cτν anomaly. Phys. Rev. D 2019, 99, 075006. [Google Scholar] [CrossRef] [Green Version]
- Aebischer, J.; Grinstein, B. Standard Model prediction of the Bc lifetimel. JHEP 2021, 07, 130. [Google Scholar] [CrossRef]
- Athron, P.; Balazs, C.; Gonzalo, T.E.; Jacob, D.; Mahmoudi, F.; Sierra, C. Likelihood analysis of the flavour anomalies and g - 2 in the general two Higgs doublet model. JHEP 2022, 1, 037. [Google Scholar] [CrossRef]
- Iguro, S. Revival of H- interpretation of RD(*) anomaly and closing low mass window. arXiv 2022, arXiv:2201.06565. [Google Scholar]
- Blanke, M.; Iguro, S.; Zhang, H. Towards ruling out the charged Higgs interpretation of the RD(*) anomaly. arXiv 2022, arXiv:2202.10468. [Google Scholar]
- Kainulainen, K.; Keus, V.; Niemi, L.; Rummukainen, K.; Tenkanen, T.V.I.; Vaskonen, V. On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model. JHEP 2019, 6, 075. [Google Scholar] [CrossRef] [Green Version]
- Abi, B.; et al. [Muon G-2]. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Phys. Rev. Lett. 2021, 126, 141801. [Google Scholar] [CrossRef]
- Aoyama, T.; Asmussen, N.; Benayoun, M.; Bijnens, J.; Blum, T.; Bruno, M.; Caprini, I.; Carloni Calame, C.M.; Ce, M.; Colangelo, G.; et al. The anomalous magnetic moment of the muon in the Standard Model. Model. Phys. Rept. 2020, 887, 1–166. [Google Scholar] [CrossRef]
- Hou, W.-S.; Jain, R.; Kao, C.; Kumar, G.; Modak, T. Collider Prospects for Muon g-2 in General Two Higgs Doublet Model. Phys. Rev. D 2021, 104, 075036. [Google Scholar] [CrossRef]
- Hou, W.-S.; Jain, R.; Kao, C.; Kohda, M.; McCoy, B.; Soni, A. Flavor Changing Heavy Higgs Interactions with Leptons at Hadron Colliders. Phys. Lett. B 2019, 795, 371–378. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; et al. [CMS]. Search for lepton flavour violating decays of a neutral heavy Higgs boson to μτ and τ in protonproton collisions at s= 13 TeV. JHEP 2020, 3, 103. [Google Scholar]
- Uno, K.; et al. [Belle]. Search for lepton-flavor-violating tau-lepton decays to ℓγ at Belle. JHEP 2021, 10, 19. [Google Scholar]
- Hou, W.-S.; Kumar, G. Charged lepton flavor violation in light of muon g-2. Eur. Phys. J. C 2021, 81, 1132. [Google Scholar] [CrossRef]
- Jarlskog, C. Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Violation. Phys. Rev. Lett. 1985, 55, 1039–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, W.-S.; Nagashima, M.; Soddu, A. Difference in B+ and B0 direct CP asymmetry as effect of a fourth generation. Phys. Rev. Lett. 2005, 95, 141601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.-W.; Unno, Y.; Hou, W.-S.; Chang, P.; et al. [Belle] Differ. Direct Charg.-Parit. Viol. Charg. Neutral B Meson Decays. Nat. 2008, 452, 332–335. [Google Scholar]
- Hou, W.-S.; Nagashima, M.; Soddu, A. Large time-dependent CP violation in Bs0 system and finite D0–D¯0 mass difference in four generation standard model. Phys. Rev. D 2007, 76, 016004. [Google Scholar] [CrossRef] [Green Version]
- Aaltonen, T.; et al. [CDF]. First Flavor-Tagged Determination of Bounds on Mixing-Induced CP Violation in Bs0→J/ψϕ Decays. Phys. Rev. Lett. 2008, 100, 161802. [Google Scholar] [CrossRef] [Green Version]
- Holdom, B.; Hou, W.-S.; Hurth, T.; Mangano, M.L.; Sultansoy, S.; Ünel, G. Four Statements about the Fourth Generation. PMC Phys. A 2009, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Aaij, R.; et al. [LHCb]. Measurement of the CP-violating phase ϕs Decay Bs0→J/ψϕ. Phys. Rev. Lett. 2012, 108, 101803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, G.W.-S. CP Violation for the Heavens and the Earth. Universe 2022, 8, 234. https://doi.org/10.3390/universe8040234
Hou GW-S. CP Violation for the Heavens and the Earth. Universe. 2022; 8(4):234. https://doi.org/10.3390/universe8040234
Chicago/Turabian StyleHou, George Wei-Shu. 2022. "CP Violation for the Heavens and the Earth" Universe 8, no. 4: 234. https://doi.org/10.3390/universe8040234
APA StyleHou, G. W. -S. (2022). CP Violation for the Heavens and the Earth. Universe, 8(4), 234. https://doi.org/10.3390/universe8040234