Hidden Conformal Symmetry in Higher Derivative Dynamics for the Kerr Black Hole
Abstract
:1. Introduction
2. Hidden Conformal Symmetry from the Klein–Gordon Equation
2.1. Near-Region Limit
2.2. Monodromy Method
3. A Standard Form for the Klein–Gordon Operator
4. Hidden Conformal Symmetry in Higher Derivative Dynamics
4.1. Monodromy Analysis
4.1.1. Case
4.1.2. Case and Higher n
4.2. Holographic Correspondence with Higher Derivative Dynamics
4.2.1. AdS/logCFT
4.2.2. Kerr
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Other Standard Form Examples
1 | |
2 | |
3 | |
4 | The key elements of this discussion were also presented in [23]. |
5 | This basically comes down to the square root in (16) and the analogy between this coordinate transformation and the vacuum between the Minkowski space and the Rindler wedge. In the end, we chose the transformation laws for , such that this analogy holds. |
6 | These roots are nothing but the roots of the equation for a scalar field with mass m in AdS. Here, we set and used instead of in order to be consistent with the notation used in this work. |
7 | We should stress that we are only discussing formal similarities. In the Kerr black hole case, we zoomed in on a region close to the horizon, while in the AdS case, we were interested in the boundary behavior where the CFT lives. |
References
- Bekenstein, J.D. Black Holes and Entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. In Euclidean Quantum Gravity; World Scientific: Singapore, 1975; pp. 167–188. [Google Scholar]
- Hooft, G.T. Dimensional reduction in quantum gravity. arXiv 1993, arXiv:gr-qc/9310026. [Google Scholar]
- Susskind, L. The World as a hologram. J. Math. Phys. 1995, 36, 6377–6396. [Google Scholar] [CrossRef] [Green Version]
- Bousso, R. The Holographic principle. Rev. Mod. Phys. 2002, 74, 825–874. [Google Scholar] [CrossRef] [Green Version]
- Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252. [Google Scholar] [CrossRef]
- Witten, E. Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 1998, 2, 253–291. [Google Scholar] [CrossRef]
- Hartnoll, S.A.; Lucas, A.; Sachdev, S. Holographic Quantum Matter. arXiv 2016, arXiv:1612.07324. [Google Scholar]
- Ryu, S.; Takayanagi, T. Holographic derivation of entanglement entropy from the anti–de sitter space/conformal field theory correspondence. Phys. Rev. Lett. 2006, 96, 181602. [Google Scholar] [CrossRef] [Green Version]
- Ryu, S.; Takayanagi, T. Aspects of holographic entanglement entropy. J. High Energy Phys. 2006, 2006, 045. [Google Scholar] [CrossRef] [Green Version]
- Maldacena, J.; Susskind, L. Cool horizons for entangled black holes. Fortschritte Phys. 2013, 61, 781–811. [Google Scholar] [CrossRef] [Green Version]
- Penington, G. Entanglement Wedge Reconstruction and the Information Paradox. J. High Energy Phys. 2020, 9, 2. [Google Scholar] [CrossRef]
- Almheiri, A.; Engelhardt, N.; Marolf, D.; Maxfield, H. The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole. J. High Energy Phys. 2019, 12, 63. [Google Scholar] [CrossRef] [Green Version]
- Shenker, S.H.; Stanford, D. Black holes and the butterfly effect. J. High Energy Phys. 2014, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Maldacena, J.; Shenker, S.H.; Stanford, D. A bound on chaos. J. High Energy Phys. 2016, 8, 106. [Google Scholar] [CrossRef] [Green Version]
- Kerr, R.P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 1963, 11, 237. [Google Scholar] [CrossRef]
- Guica, M.; Hartman, T.; Song, W.; Strominger, A. The Kerr/CFT Correspondence. Phys. Rev. D 2009, 80, 124008. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.; Maloney, A.; Strominger, A. Hidden Conformal Symmetry of the Kerr Black Hole. Phys. Rev. D 2010, 82, 024008. [Google Scholar] [CrossRef] [Green Version]
- Hioki, K.; Miyamoto, U. Hidden symmetries, null geodesics, and photon capture in the Sen black hole. Phys. Rev. D 2008, 78, 044007. [Google Scholar] [CrossRef] [Green Version]
- Charalambous, P.; Dubovsky, S.; Ivanov, M.M. Hidden Symmetry of Vanishing Love Numbers. Phys. Rev. Lett. 2021, 127, 101101. [Google Scholar] [CrossRef]
- Porfyriadis, A.P.; Shi, Y.; Strominger, A. Photon Emission Near Extreme Kerr Black Holes. Phys. Rev. D 2017, 95, 064009. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.; Krtous, P.; Kubiznak, D. Black holes, hidden symmetries, and complete integrability. Living Rev. Rel. 2017, 20, 6. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.; Lapan, J.M.; Maloney, A.; Rodriguez, M.J. Black Hole Monodromy and Conformal Field Theory. Phys. Rev. D 2013, 88, 044003. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.; Lapan, J.M.; Maloney, A.; Rodriguez, M.J. Black Hole Scattering from Monodromy. Class. Quant. Grav. 2013, 30, 165005. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, A.; Castro, A.; Detournay, S. Warped Symmetries of the Kerr Black Hole. J. High Energy Phys. 2020, 1, 16. [Google Scholar] [CrossRef] [Green Version]
- Chanson, A.B.; Ciafre, J.; Rodriguez, M.J. Emergent black hole thermodynamics from monodromy. Phys. Rev. D 2021, 104, 024055. [Google Scholar] [CrossRef]
- Sakti, M.F.A.R.; Ghezelbash, A.M.; Suroso, A.; Zen, F.P. Hidden conformal symmetry for Kerr-Newman-NUT-AdS black holes. Nucl. Phys. B 2020, 953, 114970. [Google Scholar] [CrossRef]
- Keeler, C.; Martin, V.; Priya, A. Hidden Conformal Symmetries from Killing Towers with an Application to Large-D/CFT. arXiv 2021, arXiv:2110.10723. [Google Scholar]
- Cardy, J.L. Operator Content of Two-Dimensional Conformally Invariant Theories. Nucl. Phys. B 1986, 270, 186–204. [Google Scholar] [CrossRef]
- Strominger, A. Black hole entropy from near horizon microstates. J. High Energy Phys. 1998, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, C. Hidden Conformal Symmetries of Five-Dimensional Black Holes. J. High Energy Phys. 2010, 7, 39. [Google Scholar] [CrossRef] [Green Version]
- Littlefield, D.L.; Desai, P.V. Frobenius analysis of higher order equations: Incipient buoyant thermal convection. Siam J. Appl. Math. 1990, 50, 1752–1763. [Google Scholar] [CrossRef]
- Gurarie, V. Logarithmic operators in conformal field theory. Nucl. Phys. B 1993, 410, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Hogervorst, M.; Paulos, M.; Vichi, A. The ABC (in any D) of Logarithmic CFT. J. High Energy Phys. 2017, 10, 201. [Google Scholar] [CrossRef] [Green Version]
- Cardy, J. Logarithmic correlations in quenched random magnets and polymers. arXiv 1999, arXiv:cond-mat/9911024. [Google Scholar]
- Caux, J.S.; Kogan, I.I.; Tsvelik, A.M. Logarithmic operators and hidden continuous symmetry in critical disordered models. Nucl. Phys. B 1996, 466, 444–462. [Google Scholar] [CrossRef] [Green Version]
- Maassarani, Z.; Serban, D. Nonunitary conformal field theory and logarithmic operators for disordered systems. Nucl. Phys. B 1997, 489, 603–625. [Google Scholar] [CrossRef] [Green Version]
- Caux, J.S.; Taniguchi, N.; Tsvelik, A.M. Disordered Dirac fermions: Multifractality termination and logarithmic conformal field theories. Nucl. Phys. B 1998, 525, 671–696. [Google Scholar] [CrossRef] [Green Version]
- Cardy, J. Logarithmic conformal field theories as limits of ordinary CFTs and some physical applications. J. Phys. A 2013, 46, 494001. [Google Scholar] [CrossRef]
- Haco, S.; Hawking, S.W.; Perry, M.J.; Strominger, A. Black Hole Entropy and Soft Hair. J. High Energy Phys. 2018, 12, 98. [Google Scholar] [CrossRef] [Green Version]
- Frolov, V.P.; Kubiznak, D. Hidden Symmetries of Higher Dimensional Rotating Black Holes. Phys. Rev. Lett. 2007, 98, 011101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, M.; Rodriguez, M.J. Central Charges for AdS Black Holes. In Classical and Quantum Gravity; IOP Publishing Ltd.: Bristol, UK, 2020. [Google Scholar]
- Maldacena, J.M.; Strominger, A. AdS(3) black holes and a stringy exclusion principle. J. High Energy Phys. 1998, 12, 5. [Google Scholar] [CrossRef] [Green Version]
- Carlip, S. The (2+1)-Dimensional black hole. Class. Quant. Grav. 1995, 12, 2853–2880. [Google Scholar] [CrossRef]
- Carter, B. Global structure of the Kerr family of gravitational fields. Phys. Rev. 1968, 174, 1559. [Google Scholar] [CrossRef] [Green Version]
- Wald, R.M. Black hole entropy is the Noether charge. Phys. Rev. D 1993, 48, R3427–R3431. [Google Scholar] [CrossRef] [Green Version]
- Bergshoeff, E.A.; de Haan, S.; Merbis, W.; Porrati, M.; Rosseel, J. Unitary Truncations and Critical Gravity: A Toy Model. J. High Energy Phys. 2012, 4, 134. [Google Scholar] [CrossRef] [Green Version]
- Coddington, E.A.; Levinson, N. Theory of Ordinary Differential Equations; McGraw-Hill: New York, NY, USA, 1955. [Google Scholar]
- Ghezelbash, A.M.; Khorrami, M.; Aghamohammadi, A. Logarithmic conformal field theories and AdS correspondence. Int. J. Mod. Phys. A 1999, 14, 2581–2592. [Google Scholar] [CrossRef] [Green Version]
- Kogan, I.I. Singletons and Logarithmic CFT in ADS/CFT correspondence. Phys. Lett. B 1999, 458, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Flohr, M.A.I. Fusion and tensoring of conformal field theory and composite fermion picture of fractional quantum Hall effect. Mod. Phys. Lett. A 1996, 11, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Gurarie, V.; Flohr, M.; Nayak, C. The Haldane-Rezayi quantum Hall state and conformal field theory. Nucl. Phys. B 1997, 498, 513–538. [Google Scholar] [CrossRef] [Green Version]
- Cappelli, A.; Georgiev, L.S.; Todorov, I.T. A Unified conformal field theory description of paired quantum Hall states. Commun. Math. Phys. 1999, 205, 657–689. [Google Scholar] [CrossRef] [Green Version]
- Ino, K. The Haldane-Rezayi quantum Hall state and magnetic flux. Phys. Rev. Lett. 1999, 82, 4902–4905. [Google Scholar] [CrossRef] [Green Version]
- Saleur, H. Polymers and percolation in two-dimensions and twisted N = 2 supersymmetry. Nucl. Phys. B 1992, 382, 486–531. [Google Scholar] [CrossRef] [Green Version]
- Duplantier, B.; Saleur, H. Exact Critical Properties of Two-dimensional Dense Selfavoiding Walks. Nucl. Phys. B 1987, 290, 291–326. [Google Scholar] [CrossRef]
- Rozansky, L.; Saleur, H. S and T matrices for the superU(1,1) WZW model: Application to surgery and three manifolds invariants based on the Alexander-Conway polynomial. Nucl. Phys. B 1993, 389, 365–423. [Google Scholar] [CrossRef] [Green Version]
- Grumiller, D.; Riedler, W.; Rosseel, J.; Zojer, T. Holographic applications of logarithmic conformal field theories. J. Phys. A 2013, 46, 494002. [Google Scholar] [CrossRef] [Green Version]
- Gubser, S.S.; Klebanov, I.R.; Polyakov, A.M. Gauge theory correlators from noncritical string theory. Phys. Lett. B 1998, 428, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Detournay, S.; Hartman, T.; Hofman, D.M. Warped Conformal Field Theory. Phys. Rev. D 2012, 86, 124018. [Google Scholar] [CrossRef] [Green Version]
- Myers, R.C.; Perry, M.J. Black holes in higher dimensional space-times. Ann. Phys. 1986, 172, 304–347. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giangreco M. Puletti, V.; Martin, V.L. Hidden Conformal Symmetry in Higher Derivative Dynamics for the Kerr Black Hole. Universe 2022, 8, 155. https://doi.org/10.3390/universe8030155
Giangreco M. Puletti V, Martin VL. Hidden Conformal Symmetry in Higher Derivative Dynamics for the Kerr Black Hole. Universe. 2022; 8(3):155. https://doi.org/10.3390/universe8030155
Chicago/Turabian StyleGiangreco M. Puletti, Valentina, and Victoria L. Martin. 2022. "Hidden Conformal Symmetry in Higher Derivative Dynamics for the Kerr Black Hole" Universe 8, no. 3: 155. https://doi.org/10.3390/universe8030155
APA StyleGiangreco M. Puletti, V., & Martin, V. L. (2022). Hidden Conformal Symmetry in Higher Derivative Dynamics for the Kerr Black Hole. Universe, 8(3), 155. https://doi.org/10.3390/universe8030155