# Can Dark Energy Emerge from a Varying G and Spacetime Geometry?

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Varying **G** in Einstein’s Equations

## 3. Analysis and Results

## 4. Conclusions and Outlook

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Note

1 |

## References

- Blanchard, A. Evidence for the fifth element. Astron. Astrophys. Rev.
**2010**, 18, 595–645. [Google Scholar] [CrossRef] [Green Version] - Weinberg, D.H.; Mortonson, M.J.; Eisenstein, D.J.; Hirata, C.; Riess, A.G.; Rozo, E. Observational probes of cosmic acceleration. Phys. Rep.
**2013**, 530, 87–255. [Google Scholar] [CrossRef] [Green Version] - Perivolaropoulos, L.; Skara, F. Challenges for ΛCDM: An update. arXiv
**2021**, arXiv:2105.05208. [Google Scholar] - Bull, P.; Akrami, Y.; Adamek, J.; Baker, T.; Bellini, E.; Jimenez, J.B.; Bentivegna, E.; Camera, S.; Clesse, S.; Davis, J.H.; et al. Beyond ΛCDM: Problems, solutions, and the road ahead. Phys. Dark Univ.
**2016**, 12, 56–99. [Google Scholar] [CrossRef] [Green Version] - Weinberg, S. The cosmological constant problem. Rev. Mod. Phys.
**1989**, 61, 1–23. [Google Scholar] [CrossRef] - Carroll, S.M.; Press, W.H.; Turner, E.L. The cosmological constant. Annu. Rev. Astron. Astrophys.
**1992**, 30, 499–542. [Google Scholar] [CrossRef] - Lemaitre, G. Evolution of the Expanding Universe. Proc. Natl. Acad. Sci. USA
**1934**, 20, 12–17. [Google Scholar] [CrossRef] [Green Version] - Wang, Q.; Zhu, Z.; Unruh, W.G. How the huge energy of quantum vacuum gravitates to drive the slow accelerating expansion of the Universe. Phys. Rev. D
**2017**, 95, 103504. [Google Scholar] [CrossRef] [Green Version] - Cree, S.S.; Davis, T.M.; Ralph, T.C.; Wang, Q.; Zhu, Z.; Unruh, W.G. Can the fluctuations of the quantum vacuum solve the cosmological constant problem? Phys. Rev. D
**2018**, 98, 063506. [Google Scholar] [CrossRef] [Green Version] - Bengochea, G.R.; León, G.; Okon, E.; Sudarsky, D. Can the quantum vacuum fluctuations really solve the cosmological constant problem? Eur. Phys. J. C
**2020**, 80, 18. [Google Scholar] [CrossRef] [Green Version] - Brans, C.; Dicke, R.H. Mach’s Principle and a Relativistic Theory of Gravitation. Phys. Rev.
**1961**, 124, 925–935. [Google Scholar] [CrossRef] - Hanımeli, E.T.; Lamine, B.; Blanchard, A.; Tutusaus, I. Time-dependent G in Einstein’s equations as an alternative to the cosmological constant. Phys. Rev. D
**2020**, 101, 063513. [Google Scholar] [CrossRef] [Green Version] - Beutler, F.; Blake, C.; Colless, M.; Jones, D.H.; Staveley-Smith, L.; Campbell, L.; Parker, Q.; Saunders, W.; Watson, F. The 6dF Galaxy Survey: Baryon acoustic oscillations and the local Hubble constant. Mon. Not. R. Astron. Soc.
**2011**, 416, 3017–3032. [Google Scholar] [CrossRef] - Ross, A.J.; Samushia, L.; Howlett, C.; Percival, W.J.; Burden, A.; Manera, M. The clustering of the SDSS DR7 main Galaxy sample—I. A 4 per cent distance measure at z = 0.15. Mon. Not. R. Astron. Soc.
**2015**, 449, 835–847. [Google Scholar] [CrossRef] [Green Version] - Alam, S.; Ata, M.; Bailey, S.; Beutler, F.; Bizyaev, D.; Blazek, J.A.; Bolton, A.S.; Brownstein, J.R.; Burden, A.; Chuang, C.H.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc.
**2017**, 470, 2617–2652. [Google Scholar] [CrossRef] [Green Version] - Gil-Marín, H.; Guy, J.; Zarrouk, P.; Burtin, E.; Chuang, C.H.; Percival, W.J.; Ross, A.J.; Ruggeri, R.; Tojerio, R.; Zhao, G.B.; et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: Structure growth rate measurement from the anisotropic quasar power spectrum in the redshift range 0.8 < z < 2.2. Mon. Not. R. Astron. Soc.
**2018**, 477, 1604–1638. [Google Scholar] [CrossRef] - Bautista, J.E.; Guy, J.; Rich, J.; Blomqvist, M.; Des Bourboux, H.D.M.; Pieri, M.M.; Font-Ribera, A.; Bailey, S.; Delubac, T. Measurement of baryon acoustic oscillation correlations at z = 2.3 with SDSS DR12 Lyα-forests. Astron. Astrophys.
**2017**, 603, A12. [Google Scholar] [CrossRef] [Green Version] - Des Bourboux, H.D.M.; Le Goff, J.M.; Blomqvist, M.; Guy, J.; Rich, J.; Yèche, C.; Bautista, J.E.; Burtin, É.; Dawson, K.S.; Eisenstein, D.J.; et al. Baryon acoustic oscillations from the complete SDSS-III Lyα-quasar cross-correlation function at z = 2.4. Astron. Astrophys.
**2017**, 608, A130. [Google Scholar] [CrossRef] [Green Version] - Betoule, M.E.A.; Kessler, R.; Guy, J.; Mosher, J.; Hardin, D.; Biswas, R.; Astier, P.; El-Hage, P.; Konig, M.; Kuhlmann, S.; et al. Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astron. Astrophys.
**2014**, 568, A22. [Google Scholar] [CrossRef] - Gaztañaga, E.; García-Berro, E.; Isern, J.; Bravo, E.; Domínguez, I. Bounds on the possible evolution of the gravitational constant from cosmological type-Ia supernovae. Phys. Rev. D
**2001**, 65, 023506. [Google Scholar] [CrossRef] [Green Version] - Wright, B.S.; Li, B. Type Ia supernovae, standardizable candles, and gravity. Phys. Rev. D
**2018**, 97, 083505. [Google Scholar] [CrossRef] [Green Version] - Sakstein, J.; Desmond, H.; Jain, B. Screened fifth forces mediated by dark matter–Baryon interactions: Theory and astrophysical probes. Phys. Rev. D
**2019**, 530, 104035. [Google Scholar] [CrossRef] [Green Version] - Williams, J.G.; Turyshev, S.G.; Boggs, D.H. Progress in Lunar Laser Ranging Tests of Relativistic Gravity. Phys. Rev. Lett.
**2004**, 93, 261101. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 1.**Evolution of G vs redshift. The line is drawn using the best fit values for ${b}_{1}$, ${b}_{2}$, and ${b}_{3}$ while the blue lines are some sample error lines with one ${\chi}^{2}$ difference ($\Delta {\chi}^{2}=1$) from the black line.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hanımeli, E.T.; Tutusaus, I.; Lamine, B.; Blanchard, A.
Can Dark Energy Emerge from a Varying *G* and Spacetime Geometry? *Universe* **2022**, *8*, 148.
https://doi.org/10.3390/universe8030148

**AMA Style**

Hanımeli ET, Tutusaus I, Lamine B, Blanchard A.
Can Dark Energy Emerge from a Varying *G* and Spacetime Geometry? *Universe*. 2022; 8(3):148.
https://doi.org/10.3390/universe8030148

**Chicago/Turabian Style**

Hanımeli, Ekim Taylan, Isaac Tutusaus, Brahim Lamine, and Alain Blanchard.
2022. "Can Dark Energy Emerge from a Varying *G* and Spacetime Geometry?" *Universe* 8, no. 3: 148.
https://doi.org/10.3390/universe8030148