Gravastars with Kuchowicz Metric in Energy-Momentum Squared Gravity
Abstract
:1. Introduction
2. Basic Formalism of Theory
3. Structure of Gravastar
- (A)
- Interior domain ,
- (B)
- Intrinsic shell ,
- (C)
- Exterior domain ,
3.1. The Inner Geometry
3.2. The Intrinsic Shell
3.3. The Exterior Geometry and Darmois–Israel Matching Constraint
4. Attributes of Gravastar Thin-Shell
4.1. The EoS Parameter of Intrinsic Shell
4.2. Proper Length for Intrinsic Shell
4.3. Energy of the Thin-Shell
4.4. Surface Redshift of Intrinsic Shell
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pietrobon, D.; Balbi, A.; Marinucci, D. Integrated Sachs-Wolfe effect from the cross correlation of WMAP 3 year and the NRAO VLA sky survey data: New results and constraints on dark energy. Phys. Rev. D 2006, 74, 043524. [Google Scholar] [CrossRef]
- Astieer, P.; Guy, J.; Regnault, N.; Pain, R.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R.G.; Fabbro, S.; Fouchez, D.; et al. The Supernova Legacy Survey: Measurement of ΩM, ΩΛ and w from the first year data set. Astron. Astrophys. 2006, 447, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Felice, A.D.; Tsujikawa, S.R. f(R) theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N. Palatini formulation of modified gravity with a nonminimal curvature-matter coupling. Mod. Phys. Lett. A 2011, 26, 1467–1480. [Google Scholar] [CrossRef]
- Katirci, N.; Kavuk, M. f(,TμνTμν) gravity and Cardassian-like expansion as one of its consequences. Eur. Phys. J. Plus 2014, 129, 163. [Google Scholar] [CrossRef]
- Roshan, M.; Shojai, F. Energy-momentum squared gravity. Phys. Rev. D 2016, 94, 044002. [Google Scholar] [CrossRef] [Green Version]
- Board, C.V.R.; Barrow, J.D. Cosmological models in energy-momentum-squared gravity. Phys. Rev. D 2017, 96, 123517. [Google Scholar] [CrossRef] [Green Version]
- Nari, N.; Roshan, M. Compact stars in energy-momentum squared gravity. Phys. Rev. D 2018, 98, 024031. [Google Scholar] [CrossRef] [Green Version]
- Akarsu, O.; Katirci, N.; Kumar, S.; Nunes, R.C.; Sami, M. Cosmological implications of scale-independent energy-momentum squared gravity: Pseudo nonminimal interactions in dark matter and relativistic relics. Phys. Rev. D 2018, 98, 063522. [Google Scholar] [CrossRef] [Green Version]
- Bahamonde, S.; Marciu, M.; Rudra, P. Dynamical system analysis of generalized energy-momentum-squared gravity. Phys. Rev. D 2019, 100, 083511. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.; Gul, M.Z. Noether symmetry approach in energy-momentum squared gravity. Phys. Scr. 2020, 96, 025002. [Google Scholar] [CrossRef]
- Sharif, M.; Gul, M.Z. Noether symmetries and anisotropic universe in energy-momentum squared gravity. Phys. Scr. 2020, 96, 125007. [Google Scholar] [CrossRef]
- Sharif, M.; Gul, M.Z. Dynamics of spherical collapse in energy-momentum squared gravity. Int. J. Mod. Phys. A 2021, 36, 2150004. [Google Scholar] [CrossRef]
- Sharif, M.; Gul, M.Z. Compact stars admitting Noether symmetry in energy-momentum squared gravity. Adv. Astron. 2021, 2021, 6663502. [Google Scholar] [CrossRef]
- Sharif, M.; Gul, M.Z. Viable wormhole solutions in energy-momentum squared gravity. Eur. Phys. J. Plus 2021, 136, 503. [Google Scholar] [CrossRef]
- Sharif, M.; Gul, M.Z. Dynamics of charged anisotropic spherical collapse in energy-momentum squared gravity. Chin. J. Phys. 2021, 71, 365–374. [Google Scholar] [CrossRef]
- Sharif, M.; Gul, M.Z. Dynamical analysis of charged dissipative cylindrical collapse in energy-momentum squared gravity. Universe 2021, 7, 154. [Google Scholar]
- Sharif, M.; Gul, M.Z. Stability of the closed Einstein universe in energy-momentum squared gravity. Phys. Scr. 2021, 96, 105001. [Google Scholar] [CrossRef]
- Sharif, M.; Gul, M.Z. Study of stellar structures in f(,TμνTμν) theory. Int. J. Geom. Methods Mod. Phys. 2022, 19, 2250012. [Google Scholar] [CrossRef]
- Sharif, M.; Gul, M.Z. Role of energy–momentum squared gravity on the dynamics of charged dissipative plane symmetric collapse. Mod. Phys. Lett. A 2022, 37, 2250005. [Google Scholar] [CrossRef]
- Mazur, P.; Mottola, E. Gravitational vacuum condensate stars. Proc. Natl. Acad. Sci. USA 2004, 101, 9545–9550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, N.; Saida, H.; Tamaki, T. Gravastar shadows. Phys. Rev. D 2014, 90, 104013. [Google Scholar] [CrossRef] [Green Version]
- Kubo, T.; Sakai, N. Gravitational lensing by gravastars. Phys. Rev. D 2016, 93, 084051. [Google Scholar] [CrossRef]
- Cardoso, V.; Franzin, E.; Pani, P. Is the gravitational-wave ringdown a probe of the event horizon? Phys. Rev. Lett. 2016, 116, 171101. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, V.; Franzin, E.; Pani, P. Erratum: Is the gravitational-wave ringdown a probe of the event horizon? [Phys. Rev. Lett. 2016, 171101]. Phys. Rev. Lett. 2016, 117, 089902. [Google Scholar] [CrossRef]
- Akiyama, K.; Albredi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.-R.; Ball, D.; Baloković, M.; Barret, J.; Bintley, D.; et al. First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 2019, 875, 1. [Google Scholar]
- Visser, M.; Wiltshire, D.L. Stable gravastars—An alternative to black holes? Class. Quantum Grav. 2004, 21, 1135. [Google Scholar] [CrossRef]
- Carter, B.M.N. Stable gravastars with generalized exteriors. Class. Quantum Grav. 2005, 22, 4551. [Google Scholar] [CrossRef] [Green Version]
- Bilić, N.; Tupper, G.B.; Viollier, R.D. Born–Infeld phantom gravastars. J. Cosmol. Astropart. Phys. 2006, 2, 13. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Shee, D.; Ray, S.; Rahaman, F.; Guha, B.K. Gravastars with Kuchowicz metric potential. Res. Phys. 2019, 14, 102473. [Google Scholar] [CrossRef]
- Ghosh, S.; Biswas, S.; Guha, B.K.; Ray, S.; Rahaman, F. Gravastars in (3+1) dimensions admitting Karmarkar condition. Ann. Phys. 2019, 411, 167968. [Google Scholar] [CrossRef]
- Das, A.; Ghosh, S.; Guha, B.K.; Das, A.; Rahaman, F.; Ray, S. Gravastars in f(R,T) gravity. Phys. Rev. D 2017, 95, 124011. [Google Scholar] [CrossRef] [Green Version]
- Shamir, F.; Ahmad, M. Gravastars in f(G,T) gravity. Phys. Rev. D 2018, 97, 104031. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.; Waseem, A. Charged gravastars with conformal motion in f(R,T) gravity. Astrophys. Space Sci. 2019, 364, 189. [Google Scholar] [CrossRef] [Green Version]
- Sharif, M.; Waseem, A. Impact of Kuchowicz metric function on gravastars in f(R,T) theory. Eur. Phys. J. Plus 2020, 135, 930. [Google Scholar] [CrossRef]
- Ovalle, J.; Posada, C.; Stuchlk, Z. Anisotropic ultracompact Schwarzschild star by gravitational decoupling. Class. Quat. Grav. 2019, 36, 205010. [Google Scholar] [CrossRef] [Green Version]
- Azmat, H.; Zubair, M.; Ahmad, Z. Study of anisotropic and non-uniform gravastars by gravitational decoupling in f(R,T) gravity. Ann. Phys. 2022, 439, 168769. [Google Scholar] [CrossRef]
- Faraoni, V. Lagrangian description of perfect fluids and modified gravity with an extra force. Phys. Rev. D 2009, 80, 124040. [Google Scholar] [CrossRef] [Green Version]
- Akarsu, O.; Katirci, N.; Kumar, S. Cosmic acceleration in dust only universe via energy-momentum powered gravity. Phys. Rev. D 2018, 97, 024011. [Google Scholar] [CrossRef] [Green Version]
- Kuchowicz, B. General relativistic spheres. I. New solutions for spherically symmetric matter distributions. Acta Phys. Pol. 1968, 33, 541–563. [Google Scholar]
- Zel’dovich, Y.B. A hypothesis, unifying the structure and the entropy of the universe. Mon. Not. R. Astron. Soc. 1972, 160, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Carr, B.J. The primordial black hole mass spectrum. Astrophys. J. 1975, 201, 1–19. [Google Scholar] [CrossRef]
- Wesson, P.S. An exact solution to Einstein’s equations with a stiff equation of state. J. Math. Phys. 1978, 19, 2283–2284. [Google Scholar] [CrossRef]
- Madsen, M.S.; Mimoso, J.P.; Butcher, J.A.; Ellis, G.F. Evolution of the density parameter in inflationary cosmology reexamined. Phys. Rev. D 1992, 46, 1399. [Google Scholar] [CrossRef]
- Braje, T.M.; Romani, R.W. Evidence for a stiff equation of state. Astrophys. J. 2002, 580, 1043. [Google Scholar] [CrossRef]
- Linares, L.P.; Malheiro, M.; Ray, S. The importance of the relativistic corrections in hyperon stars. Int. J. Mod. Phys. D 2004, 13, 1355–1359. [Google Scholar] [CrossRef]
- Buchdahl, H.A. General relativistic fluid spheres. Phys. Rev. 1959, 116, 1027. [Google Scholar] [CrossRef]
- Barraco, D.E.; Hamity, V.H. Maximum mass of a spherically symmetric isotropic star. Phys. Rev. D 2002, 65, 124028. [Google Scholar] [CrossRef]
- Cattoen, C.; Faber, T.; Visser, M. Gravastars must have anisotropic pressures. Class. Quantum Grav. 2005, 22, 4189. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naz, S.; Sharif, M. Gravastars with Kuchowicz Metric in Energy-Momentum Squared Gravity. Universe 2022, 8, 142. https://doi.org/10.3390/universe8030142
Naz S, Sharif M. Gravastars with Kuchowicz Metric in Energy-Momentum Squared Gravity. Universe. 2022; 8(3):142. https://doi.org/10.3390/universe8030142
Chicago/Turabian StyleNaz, Saba, and Muhammad Sharif. 2022. "Gravastars with Kuchowicz Metric in Energy-Momentum Squared Gravity" Universe 8, no. 3: 142. https://doi.org/10.3390/universe8030142
APA StyleNaz, S., & Sharif, M. (2022). Gravastars with Kuchowicz Metric in Energy-Momentum Squared Gravity. Universe, 8(3), 142. https://doi.org/10.3390/universe8030142