Emergence of Minkowski Spacetime by Simple Deterministic Graph Rewriting
Abstract
:1. Introduction
- -
- (3+1)-dimensionality: one temporal and three spatial dimensions.
- -
- Apparent continuity of space and time.
- -
- Lorentz symmetry, which includes the following:
- -
- Isotropy, i.e., rotational invariance.
- -
- Constancy of the maximal speed, i.e., the speed of light.
- -
- Geodesics with accurate time dilations for all possible velocities.
- -
- Euclidean distance (Pythagorean Theorem can be derived).
2. The Emergent Euclidean Plane
2.1. One Pair of Interlaced Lattice Graphs
- -
- Path on : Starting at A, take two steps in direction D, then take a right turn and one step to arrive at B.
- -
- Path on : Starting at A, take two steps in direction D, then take a left turn and one step to arrive at B.
2.2. Multitudinous Interlaced Lattice Graphs
- (1)
- Shortest path from U to
- (2)
- Straight path within on line
- (3)
- Shortest path from in to in
- (4)
- Straight path within on line
- (5)
- Shortest path from to V
2.3. Variations, Generalizations, and Alternatives
2.3.1. Alternative Angles
2.3.2. Alternative Lattice Graphs
2.3.3. Non-Unit Distance Graphs
3. The Emergent Minkowski Spacetime
3.1. Single Frame-Grid
3.2. Interlaced Pair of Frame-Grids
3.2.1. Primitive Local Rules
3.2.2. Reformulation through Coordinates
3.3. Multitudinous Interlaced Frame-Grids
3.3.1. Emergent Isotropy
3.3.2. Speed of Light
- (1)
- Quickest path from at location to .
- (2)
- Straight light-like path within on line .
- (3)
- Quickest path from in to in .
- (4)
- Straight light-like path within on line .
- (5)
- Quickest path from in to in .
- (6)
- Straight light-like path within on line .
- (7)
- Quickest path from to at location .
3.3.3. Examples for Theorem 3
3.3.4. Proper Time Interval
3.3.5. Discussion of the Theorems
4. Conclusions
Future Research
Funding
Conflicts of Interest
Appendix A. Illustration with Greater Detail
Appendix B. Bonus GRIDS
1 |
References
- Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R.D. Space-time as a causal set. Phys. Rev. Lett. 1987, 59, 521. [Google Scholar] [CrossRef] [PubMed]
- Reid, D.D. Introduction to causal sets: An alternate view of spacetime structure. arXiv 1999, arXiv:gr-qc/9909075. [Google Scholar]
- Dribus, B.F. Discrete Causal Theory; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Dribus, B.F. On the axioms of causal set theory. arXiv 2013, arXiv:1311.2148. [Google Scholar]
- Wolfram, S. A New Kind of Science; Wolfram Media: Champaign, IL, USA, 2002; Volume 5. [Google Scholar]
- Wolfram, S. A Class of Models with the Potential to Represent Fundamental Physics. arXiv 2020, arXiv:2004.08210. [Google Scholar]
- Bombelli, L.; Henson, J.; Sorkin, R.D. Discreteness without symmetry breaking: A theorem. Mod. Phys. Lett. A 2009, 24, 2579–2587. [Google Scholar] [CrossRef] [Green Version]
- Bolognesi, T. Algorithmic Causal Sets for a Computational Spacetime; World Scientific: Singapore, 2013. [Google Scholar]
- Bolognesi, T. Spacetime computing: Towards algorithmic causal sets with special-relativistic properties. In Advances in Unconventional Computing; Springer: Berlin/Heidelberg, Germany, 2017; pp. 267–304. [Google Scholar]
- Zuse, K. Rechnender Raum (calculating space). Schriften Dataverarbeitung 1969, 1, VIII. [Google Scholar]
- Cortês, M.; Smolin, L. Quantum energetic causal sets. Phys. Rev. D 2014, 90, 044035. [Google Scholar] [CrossRef] [Green Version]
- Cortês, M.; Smolin, L. The universe as a process of unique events. Phys. Rev. D 2014, 90, 084007. [Google Scholar] [CrossRef] [Green Version]
- Gorard, J. Some Relativistic and Gravitational Properties of the Wolfram Model. arXiv 2020, arXiv:2004.14810. [Google Scholar] [CrossRef]
- Smolin, L. The case for background independence. In The Structural Foundations of Quantum Gravity; Oxford University Press: Oxford, UK, 2006; pp. 196–239. [Google Scholar]
- Church, A. The Calculi of Lambda-Conversion; Princeton University Press: Princeton, NJ, USA, 1941. [Google Scholar]
- Rozenberg, G. Handbook of Graph Grammars and Computing by Graph Transformation; World Scientific: Singapore, 1997; Volume 1. [Google Scholar]
- Deza, M.M.; Deza, E. Encyclopedia of Distances; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Wolfram, S. Cellular automaton fluids 1: Basic theory. J. Stat. Phys. 1986, 45, 471–526. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhang, R.; Staroselsky, I.; Jhon, M. Recovery of full rotational invariance in lattice Boltzmann formulations for high Knudsen number flows. Phys. A Stat. Mech. Appl. 2006, 362, 125–131. [Google Scholar] [CrossRef]
- Plouffe, S. The computation of certain numbers using a ruler and compass. J. Integer Seq. 1998, 1, 3. [Google Scholar]
- Margolius, B.H. Plouffe’s Constant is Transcendental; Citeseer: Princeton, NJ, USA, 2003. [Google Scholar]
- Weyl, H. Über die Gleichverteilung von Zahlen mod. eins. Math. Ann. 1916, 77, 313–352. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.D. Pythagorean triples, rational angles, and space-filling simplices. Preprint 2003. [Google Scholar]
- Einstein, A. Zur Elektrodynamik bewegter Körper. Annalen Phys. 1905, 4, 1–28. [Google Scholar] [CrossRef]
- Minkowski, H. Raum und Zeit. Jahresber. Dtsch. Math.-Ver. 1909, 18, 75–88. [Google Scholar]
- Poincaré, H. On the dynamics of the electron, Rend. Circolo Mat. Palermo 1906, 21, 129–176. [Google Scholar] [CrossRef]
- Lorentz, H.A. Electromagnetic phenomena in a system moving with any velocity less than that of light p. 809 in. Proc. Acad. Sci. Amst. 1904, 6, 172–197. [Google Scholar]
- Li, M.; Vitányi, P. An Introduction to Kolmogorov Complexity and Its Applications; Springer: Berlin/Heidelberg, Germany, 2008; Volume 3. [Google Scholar]
- Beltrami, E. Teoria fondamentale degli spazii di curvatura costante. Ann. Mat. Pura Appl. 1868, 2, 232–255. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.H. The motion of the spinning electron. Nature 1926, 117, 514. [Google Scholar] [CrossRef]
- Wigner, E. On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 1939, 40, 149–204. [Google Scholar] [CrossRef]
- Leuenberger, G. Tree of Lorentz Boosts in Poincare Disk Model. 2021. GitHub Repository. Available online: https://github.com/Leuenberger/Tree-of-Lorentz-Boosts-in-Poincare-Disk-Model (accessed on 20 December 2021).
- Varona, J.L. Rational values of the arccosine function. Cent. Eur. J. Math. 2006, 4, 319–322. [Google Scholar] [CrossRef]
- Levine, D.; Steinhardt, P.J. Quasicrystals: A new class of ordered structures. Phys. Rev. Lett. 1984, 53, 2477. [Google Scholar] [CrossRef] [Green Version]
- Penrose, R. Pentaplexity a class of non-periodic tilings of the plane. Math. Intell. 1979, 2, 32–37. [Google Scholar] [CrossRef]
- Dewitt, B.S.; Everett, H.; Graham, N. The many-worlds interpretation of quantum mechanics. In The Many-Worlds Interpretation of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1973. [Google Scholar]
- Lloyd, S. A theory of quantum gravity based on quantum computation. arXiv 2005, arXiv:quant-ph/0501135. [Google Scholar]
- Konopka, T.; Markopoulou, F.; Smolin, L. Quantum graphity. arXiv 2006, arXiv:hep-th/0611197. [Google Scholar]
- Konopka, T.; Markopoulou, F.; Severini, S. Quantum graphity: A model of emergent locality. Phys. Rev. D 2008, 77, 104029. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C. Black hole entropy from loop quantum gravity. Phys. Rev. Lett. 1996, 77, 3288. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leuenberger, G. Emergence of Minkowski Spacetime by Simple Deterministic Graph Rewriting. Universe 2022, 8, 149. https://doi.org/10.3390/universe8030149
Leuenberger G. Emergence of Minkowski Spacetime by Simple Deterministic Graph Rewriting. Universe. 2022; 8(3):149. https://doi.org/10.3390/universe8030149
Chicago/Turabian StyleLeuenberger, Gabriel. 2022. "Emergence of Minkowski Spacetime by Simple Deterministic Graph Rewriting" Universe 8, no. 3: 149. https://doi.org/10.3390/universe8030149
APA StyleLeuenberger, G. (2022). Emergence of Minkowski Spacetime by Simple Deterministic Graph Rewriting. Universe, 8(3), 149. https://doi.org/10.3390/universe8030149