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Abstract: This paper investigates the geometry of a gravitational vacuum star (also known as a
gravastar) from the perspective of f(R,T?) gravity. The gravastar can be treated as a black hole
substitute with three domains: (i) the inner domain, (ii) the intrinsic shell, and (iii) the outer domain.
We examine these geometries using Kuchowicz ansatz for temporal metric function corresponding to
a specific f(R, T?) model. We compute a nonsingular radial metric potential for both the interior and
intermediate domains. The matching of these domains with exterior Schwarzschild vacuum results in
boundary conditions that assist in the evaluation of unknown constants. Finally, we examine various
attributes of gravastar domains, such as the equation of state parameter, proper length, energy, and
surface redshift. We conclude that the gravastar model is a viable alternative to the black hole in the
background of this gravity.
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Cosmic systems comprised of small- and large-scale structures impact the evolution
of the universe and serve as the foundation for cosmological research. Different theories
were proposed to study the structure and mechanism of these celestial objects. In this
context, Einstein proposed the general theory of relativity (GR) to examine the dynamical

interaction between matter, curvature, space, and time, which opened new gateways to
cosmology as well as astrophysics. Later on, in 1929, Edwin Hubble proposed that the
universe is expanding rapidly as all the galaxies are moving far from us. Many recent
observations of the cosmos, such as supernova type 1la, cosmic microwave background
radiation, and large-scale structures agree with the rapid expansion of the cosmos [1,2].
An unknown force (termed as dark energy) with large negative pressure is responsible for
this cosmic behavior.

One of the leading cosmological models in GR used to describe expansion of cosmos is
the ACDM model, which includes dark energy (A), cold dark matter (CDM), and ordinary
matter. However, there are well-known problems in ACDM model: cosmic coincidence
and fine-tuning hinder the discussion of cosmos in GR. Furthermore, singularities in the
high-energy region cannot be explained by GR due to quantum phenomena. To resolve
these issues, modified versions of GR were developed to solve the singularity problem as
well as the characteristics of enigmatic dark energy. A natural extension of GR called f(R)
gravity is obtained by incorporating the corresponding function of curvature invariant (R )
in the geometric part of the Einstein—Hilbert action. This theory effectively addresses a
variety of astrophysical and cosmological challenges [3-5].

Harko et al. [6] established f(R,T) gravity as a generalization of f(R) theory by
introducing a nonminimal coupling between matter and geometry via product of Ricci
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scalar and trace of the energy—momentum tensor (EMT) T. The particles experience an
additional force in nonminimally curvature-matter coupled theories, which shows the
violation of conservation law. As a consequence, under the impact of this force, particles
follow nongeodesic motion. Nonminimal coupling models yield complex field equations
whose solutions are difficult to obtain. Therefore, minimal coupling models are employed
to reduce degrees of freedom. In literature, the correlation between accelerated expansion
and dark cosmic components was extensively investigated by employing minimal as well
as nonminimal coupling between matter and curvature. Furthermore, these interactions
provide an efficient description of the rotation curves of galaxies and different cosmic ages.

Many researchers attempted to develop acceptable cosmic models describing the
origin, evolution, and transition of the universe through various cosmological eras. In this
regard, the Big-Bang model proposed that matter and energy of the universe were confined
to a single point (referred to as a singularity), with infinite energy density and temperature.
Due to some unknown phenomena, the singularity expanded exponentially leading to the
beginning of the universe about 13.8 billion years ago. Despite the wide acceptance of
the Big-Bang proposal, researchers put forward other captivating proposals to understand
the origin and evolution of the universe. One of them is the bounce theory, which is an
alternate approach that describes the evolutionary changes of the universe as a series of
bounces (expanding and shrinking repeatedly) with no start or end state. Katirci and
Kavuk [7] incorporated the idea of bouncing cosmos in a modification of GR and presented
energy-momentum squared gravity (EMSG). In this theory, the Einstein—Hilbert action
is modified by incorporating the analytic function of the form T, T*” = T2. This theory
suggests that the universe with maximum energy density and a minimum scale factor in
the early times bounces to a phase of expansion [8]. As a result, this proposal overcomes
the problem of Big-Bang singularity in nonquantum prescription without influencing the
cosmic evolution.

This theory possesses a true sequence of cosmological eras. In the context of the
standard cosmological model, the cosmological constant does not play an important role
in the early times and becomes important only after the matter-dominated era. In this
theory, the repulsive nature of the cosmological constant plays a crucial role at early times
in resolving the singularity. The EMSG represents an interesting modified gravity model
that can explain the current evolution of the universe and the emergence of accelerated
expansion as a geometrical physical effect. The f(R,T) gravity defines the coupling
between matter and geometry. On the other hand, (R, T?) gravity is based on the inclusion
of analytic function of the form T, T#' = T2. In contrast to f(R, T) gravity, the EMSG
gravity supports bounce theory and is an optimistic approach to study cosmic evolution by
resolving the Big-Bang singularity.

Astrophysical and cosmological issues were discussed in the presence of squared
matter components in EMSG field equations. Board and Barrow [9] observed that the uni-
verse is expanding uniformly in all directions in the context of higher-order matter theories.
Nari and Roshan [10] constructed pressureless compact stellar models in the framework
of EMSG which were less compact in comparison to that of their GR counterparts. In the
perspective of EMSG, Akarsu et al. [11] examined nonminimal couplings for relativistic
stellar objects as well as dark matter and obtained appropriate constraints on the ACDM
model. Bahamonde et al. [12] described the expansion of the universe utilizing various
coupling models and concluded that these models are a great fit for understanding the
current accelerated expanding behavior of the universe. Sharif and Gul [13-22] employed
Noether symmetries to study the effects of various physical factors on viable astrophysical
structures in the background of the same theory. They also investigated the viability and
stability of collapsing stellar configurations and observed that gravity correction terms
decrease the collapse rate.

Stars composed of hydrogen and helium are the basic building blocks of galaxies
arranged systematically in a cosmic web. The star burns its fuel to maintain the equilibrium
against the inward directed force of gravity. The outward pressure disappears when a
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star runs out of fuel within its core. As a consequence, the star experiences gravitational
collapse, which results in the formation of new compact objects. One of the compact objects
is a completely collapsed structure known as a black hole. Its geometry comprises an
event horizon covering the singularity where all laws of physics break down. To address
singularity and event horizon issues, Mazur and Motolla [23] proposed a hypothetical
compact model (dubbed as a gravitational vacuum star or gravastar) as a replacement for
black hole. The most fascinating feature of this hypothetical compact object is its singularity-
free structure. The singularity is prevented by using the de Sitter (dS) spacetime in the
inner domain, while a layer of baryonic fluid lies between the exterior Schwarzschild and
dS spacetimes. The properties of each domain are governed by a particular equation of
state (EoS).

Currently, no observable evidence exists in favor of gravastar; however, various
studies predict gravastar’s existence and detection in future. In this regard, Sakai et al. [24]
proposed a method for detecting gravastar by examining gravastar shadows. Kubo and
Sakai [25] found that gravastar could be detected by applying the technique of gravitational
lensing (total change in luminosity of nearby or companion stars). They concluded that a
gravastar structure having same mass as that of a black hole might have maximal luminosity
effect in contrast to a black hole. The occurrence of ringdown signals produced by an object
without an event horizon was hinted by the observation of GW150914 using interferometric
LIGO detectors [26,27]. A recent study of the images obtained by the First M87 Event
Horizon Telescope (EHT) also hinted towards the possibility that these existing shadows
may belong to gravastar structure [28].

Many astrophysicists directed their efforts towards investigating the structure and
mechanism of gravastars. Visser and Wiltshire [29] explored gravastar’s stability against
radial pertubations and found dynamically stable geometries corresponding to different EoS
parameter. Carter [30] extended this work by determining the bounds of vacuum energy
related to inner and outer domains. Bili¢ et al. [31] developed gravatar’s core solutions by
replacing dS geometry in the interior region by Born-Infeld phantom spacetime and found
solutions for a wider range of radii and masses. Ghosh et al. [32] used the singularity-free
Kuchowicz metric function to discuss the various aspects of stable gravastar structure in the
background of GR. Ghosh and his collaborators [33] obtained a distinct gravastar solution
via embedding class 1 technique using Karmarkar condition. They found exact solutions for
intrinsic shell and calculated finite nonsingular solutions for the interior region of gravastar.

In the context of f(R, T) theory, Das et al. [34] examined gravastar geometry and
discussed its attributes graphically in relation to EoS. To discuss various features of thin-
shell gravastar structure in f(G, T) theory (where G is the Gauss—Bonnet invariant), Shamir
and Ahmad [35] obtained solutions by solving field equations corresponding to a particular
minimal coupling model of this gravity. Sharif and Waseem [36] employed conformal
motion to explore charged gravastar structure and found that the internal sector acts as an
electromagnetic mass model that assists in the creation of singularity-free structure. The
same authors [37] considered Kuchowicz metric function in the background of curvature—
matter coupled theory to analyze various features of gravastar. Recently, gravastar solutions
were discussed through the gravitational decoupling technique [38,39].

In the present work, we examine solutions of gravastars by adopting the Kuchowicz
ansatz in the perspective of f(R, T?) gravity. We evaluate the radial metric component
for the intrinsic shell as well as gravastar’s internal geometry. For a specific model, we
also discuss the graphical behavior of different attributes corresponding to the intrinsic
shell of gravastar. The following pattern is adopted for presenting this paper. Section 2
provides basic formulation of f(R, T?) field equations with Kuchowicz metric function.
Section 3 describes three regions of the gravastar model along with corresponding EoS. The
graphical analysis of evaluated solutions corresponding to obtained values of unknown
constants as well as model parameters are given in Section 4. The concluding remarks are
presented in the last section.
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2. Basic Formalism of f(R,T?) Theory

In this section, we construct field equations of f(R, T?) theory by taking isotropic
matter configuration. The modified action of this theory is [7]:

I:ﬁ(/d4x[f(R,Tz>+£m} V-3 (1)

where ¢ denotes the determinant of the metric tensor, £,, indicates the matter Lagrangian
and x> = 1 is a coupling constant. The corresponding field equations become:

1
Rexfr — Qgéxf + 8exUfR — VeV fr = Tey — Oy f12, 2
where f = f(R,T%),d = V¢V¢, fro = aTz’fR = jr,and Og, is

02Ly,

Oy = — agé‘xag%

1

0 0

T% — 28, (Téx - 2g§XT> — TTey + 2Tz Ty (©)]
The EMT defines the correlation between matter distribution and energy. Its nonvan-

ishing components provide physical variables that characterize various dynamical aspects

of a self-gravitating systems. Nonconserved EMT in f(R, T?) gravity implies the existence

of an extra force that determines nongeodesic motion of particles as follows:

1
ViTy = 5[~ frogex VT2 +2V4 (200, @

We consider perfect matter distribution:

Té)( = UéZ)X(P + Q) — Pgéfx, (5)

where P, ¢ and vz describes the pressure, energy density, and four-velocity of the fluid,
respectively. For matter configuration, there are two choices of £, i.e., either £,, = P or
£m = —o. The choice of matter Lagrangian does not affect the matter distribution in context
of minimally coupled theories of gravity [40]. Here, we assume £,, = P and manipulate
Equations (3) and (5) to obtain:

Oy = — (0 +3P? + 4Pg | vzvy.

Within the framework of multivariate function (R, T?) = R + 0T? and its derivative,
the field Equation (2) is complex and nonlinear. Therefore, we consider a particular
function that illustrates minimal/nonminimal interactions between geometry and matter
components. The field equations corresponding to nonminimal model turns out to be
extremely complicated, making their solution more difficult. Therefore, we take a minimal
model of the form [7]:

f(R,T?) = R+ 0T?, (6)

where T? = ¢ + 3P? and ¢ is the model parameter. It describes the current cosmic
expansion and evolutionary picture of the universe. Inclusion of T? extends the boundaries
of GR farther than f(R) and f(R, T) theories. The functional form (6) was used to study
various aspects of self-gravitating objects. It solves a number of cosmological issues [41]
and corresponds to three key eras of the universe; namely, the dS-dominated, radiation-
dominated, and matter-dominated epochs. Plugging this form of f(R, T?) in Equation (2),
we have:

1
Gy = Tex + EﬂngTz — 0f12O¢y, @)

where Gg, is the Einstein tensor.
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To investigate the interior region of gravastar, we use static spherically symmetric
geometry as:
ds? = Y dr2 — 1 dr? — 2(d6% + sin® 0dp?). 8)

The corresponding field equations are:

e” 1 17,6_17 3.,2.9,,
_ il = - ~9P° +48%0oP

) +72 1 Q+219@ +219 + 48%0P, 9)
__ 1 ’)/, 1 19 2 3 2

| — Il | =p_ = _
e <r2+ r) 2 P 2Q 219P, (10)
r /2 ! ! " /A

L G I S S 5 3.5

m L 21 LA —p__ _ -
e <4 +2r 2r+ 5 1 )] P ZQ 219P, (11

where prime denotes the radial derivative. We assume that the metric function ¢?(") has the
form suggested by Kuchowicz [42]. Thus, we have:

ey(r) _ eArz+2]nB’ (12)

where A (having dimension %) and B (having no dimension) are unknown constants,
L is the dimension of length. Kuchowicz devised this nonsingular metric function to
study celestial configurations. Ghosh et al. [32] used this metric ansatz to investigate
characteristics of gravastar in GR. Inserting Equation (12) in (9)—(11), we have:

1 (1 7 3 9
- n{ = T — Y 9.2 Z 2
2 <r2 r) 0+ 2199 + 219P +49%0P, (13)
1 1 % 3
-n{ = I v 2 v 2
e (r2 +2A> ) 5@ 219P , (14)
! Ary’ 4 3
“nloa_ T L2222\ _ p_Yp_ Sup2
e (ZA o + A%r 5 ) ¢ 219P . (15)
The nonconserved Equation (4) yields:
apP ! .
7 T e+ P)+R"=0, (16)

where N* represents the additional influence of EMSG as follows:
* l/ 2 2 / /
R _192 3P° + ¢~ +4Pg) + ®(00" + 3PP").

3. Structure of Gravastar

The interior region of gravastar is enclosed by a thin-shell consisting of ultra-relativistic
fluid, while the exterior region is fully vacuum described by the Schwarzschild metric. The
entire structure of gravastar is specified by the following three domains:

(A) Interior domain (S;) (0<r<R;=R) = o=-P,
(B) Intrinsicshell (Sp) (Ry <r<Rp;) = ¢=0P,
(C) Exterior domain (S3) (r >Ry =R+¢€) = o¢=P=0,

where € is very small thickness of thin-shell.

3.1. The Inner Geometry

Following Mazur and Mottola’s [23] idea, we adopt the EoS, P = W¢ with W being
the EoS parameter. We employ the dark energy EoS —¢ = P (for W = —1) to describe
the innermost region of gravastar. Consequently, the inward acting gravitational pull
on the intrinsic shell is counter balanced by a substantial negative pressure directed out-
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ward from the core of the spherical object. This EoS, along with Equation (16), provides
0 = 0c(constant), which implies:
P: 7@: —QC' (17)

This equation illustrates that the pressure and matter density remains constant through-
out the inner geometry. Plugging this equation in Equation (13), the radial metric function
is acquired as:

e T=1

2012 C
— 2L (474 900) + 2, (18)
where the arbitrary integration constant (C;) is taken to be zero to obtain regular solution
at the core (r = 0) of gravastar. As a consequence, Equation (18) takes the form:

2
e =1— ZQT“(M + d0q). (19)
The gravitational mass in the inner region is given by:

3

3.2. The Intrinsic Shell

The intermediate gravastar thin-shell is assumed to be made up of stiff matter which
follows the relation P = ¢. Zel’dovich [43] introduced this EoS to describe stiff fluid
distribution in connection with the cold baryonic universe. In this scenario, it may occur as
a result of gravitational quanta at low temperatures or as a result of thermal perturbations
with no chemical potential. Several researchers [44-48] utilized this fluid to solve a variety
of astrophysical and cosmological issues. Plugging stiff fluid EoS in Equations (13) and (14)
yields:
8A (e 4+ 8A2C,)

8A2r?

el = Ar2 —In , (21)

where C; denotes the integration constant. Inserting Equation (21) along with the stiff
fluid EoS and Kuchowicz metric function in Equation (16), the density turns out to be of
the form:

—Ar? 2
_ ¢ 8AC, 2,Ar% (AP (@ 29,4 4 2
¢ = Aes (8AZC, + A7) { — Arce™ (e”" (8A“Or* — Ar* + 8A0%r
> Ar? 2 2
- 819) — 64A219C2) + m - AT"Z(?A, (EAr (8A219T4
2 e

2
—  Art +8A08r —89) — 64A219C2)} + AP, (22)

As the shell of gravastar is extremely thin, its thickness therefore ranges between 0
and 1, ie., 0 < e77 < 1. Furthermore, the equations corresponding to this domain are
highly nonlinear, which makes it difficult to obtain an exact solution of the field equations.
The plot of energy density against the thickness of shell is presented in Figure 1, which
shows that it is positive throughout the region.
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Figure 1. Behavior of energy density and metric function against thickness of thin-shell for ¢ = 0.2.

3.3. The Exterior Geometry and Darmois—Israel Matching Constraint
This vacuum region is described by the Schwarzschild metric obeying ¢ = P = 0. It is
characterized as follows:
dr?
Y*(r)

(ds)% = Y*(r)dt* — — 12(d6? + sin® 0d¢?), (23)

where Y*(r) =1 — # Gravastar structure has two boundaries, one interlinks the interior
domain and thin-shell while thin-shell is connected to external spacetime by other boundary.
The continuity of metric potentials at these boundaries must hold for a physically well-
behaved system. These metric components are matched at the interface to determine the
values of arbitrary constants A, B and C; as follows:

M
A = ) 24
()2 (R, — ZM) =
_ 2MYN oty
B = \/(1—]:&2>32 2, (25)
eA(RZ)Z 2 A 2 ZM
_ R2AMR) (1 2M
C —— —RgeA: (1 R ) (26)

The obtained values of these constants are A = 0.007479786394 km 2, B = 0.01575179010
and C, = 156.84005 km?. Figure 1 presents graphical analysis of the metric function as
well as density. We observe that the metric function is singularity-free, whereas density
and pressure have positive behavior throughout the thin-shell of gravastar and sharply
decrease with shell thickness.

It is necessary to acquire the constraints that permit the smooth matching of internal
and external geometries. In achieving these constraints, Israel’s formalism plays a vital
role in obtaining the appropriate conditions for smooth matching. At the hypersurface
(r = R), the continuity of metric coefficients is necessary but their differentials may not be
continuous. To determine the surface stress-energy tensor, we utilize the Lanczos equation

as follows: .

&7
where 7, = K, — Ky, presents the discontinuity of the extrinsic curvature. Here, +

sign corresponds to the external region while — indicates the internal region of gravastar,
respectively. The extrinsic curvature components at hypersurface are characterized by:

L 4 0%f ¢ (9xM [0x°
K = ¢ g + 1 () (5| )

So =0ty — 5 (27)
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where ¢7 denotes the intrinsic shell coordinates and ngjE presents the unit normal at > which
is given as:
1
15 90 0@ |2 00
dxM 9xd | 9xt’
For isotropic matter distribution, EMT takes the form S5 = diag(®, —P, —P), where

@ is the surface energy density and P being the surface pressure are given by Lanczos
equations as:

E

ne ngng =1 (29)

B 1 2M (471 4 d0.)20.R?
CD__47T]R{\/1_R_ - 3 } (30)
(4r+90c )40 R?
p_ 1 [ 1- 11— —— } 31)
8ntR \/ \/1 87r+219gc )ocR2
Using surface energy density, we evaluate mass of the intermediate shell as:
Mg = ATR?® = R[\/ 1 4t O0c)20.R2 \/ 1- &} (32)
3 R
Ultimately, the total gravastar’s mass is provided as:
AT+ 00c)20cR? (47 + 00c)20.R®  m2
M—mshell\/l—( Tt é’C) oR® | G+ §C) Qe _ el (33)

4. Attributes of Gravastar Thin-Shell

This section examines certain important gravastar characteristics such as the EoS
parameter, length, energy, and surface redshift in relation to thickness of shell.

4.1. The EoS Parameter of Intrinsic Shell

For thin-shell region of gravastar, the EoS parameter is obtained by utilizing
Equations (30) and (31) at r = R as:

\/1 27r+19 \/17%
2[ 1— 4(27r+319 R%0. /1 B %}

The positive values of matter variables (density and pressure) provide positive value of

2
W. For real value of this parameter, the suitable constraints are 2¥ < 1 and (87#43& <L
Furthermore, binomial series is used to expand the square- root entities of Equation (34)

[1 8(271+19)]R2gc 1M 1

W(R) = (34)

4(21+9)R%, . .
along with the constramts < 1, =3~ <1, and taking only the first-order terms,
we can obtain: 3
W(R) ~ . (35)
e
2(8+27)R3¢,

This mathematical expression provides two choices for W(R), i.e., either W(R) turns

out to be negative if M > %, or W(R) has positive value if wzﬂ < %.
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4.2. Proper Length for Intrinsic Shell

The length of gravastar is determined from the boundary of the inner region R; to the
boundary of intrinsic shell R,. Thus, we have:

8A(eA” +8A2C,)
8A2r?

R+ R+
EZ/]R e\/e’7(r)dr:/]R ‘ Ar2 —1n

dr. (36)

The plot of the proper length against small thickness of intermediate shell gravastar
is shown in Figure 2, which describes the increasing profile of length against thickness of
intrinsic shell.

0.2

0.2

0.2

L

0.2}

0.2}

0.25. ! ! ! ! A
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

r (km)

Figure 2. Behavior of length against thickness of thin-shell for ¢ = 0.2.

4.3. Energy of the Thin-Shell

The gravastar’s interior region is occupied by dark energy, resulting in the repulsive
behavior. The energy present within intrinsic shell is given as:

8A2C,
(8A2C; + e4r?)

o
|

Rte y2p—Ar?
/]R 8AVr3

{ — Ap2eAr (e"”2 (8A%8r* — Art

2 Ar2
2 2 e 2 Ar?

dr.

X

2
(e (8A20r* — Ar* + 8AB? — 80) — 64A219C2)} AP

The graphical trend of energy against thickness provides the increasing behavior of
the energy within the intermediate thin-shell as shown in Figure 3.

0.207

0.206

0.2051

0.204
&

0.203

0.202

0.201

0.200E- . . ! ; A
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

r (km)

Figure 3. Energy of intermediate thin-shell for ¢ = 0.2.
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4.4. Surface Redshift of Intrinsic Shell

In the structural study of gravastar, the surface redshift is viewed as an essential
source of information associated with the detection as well as stability of gravastars. For
perfect matter configuration, it is suggested that the maximum value of redshift parameter
is 2 [49,50]. The mathematical expression of surface redshift is given as [32]:

1

Ar?

e 2

=1
Zs:|gtt|7_1: —1. (37)

The plot of surface redshift (by inserting the numerical values of constants A and B)
is shown in Figure 4, which indicates that the value of the redshift parameter does not
exceed the bound 2 within the shell of gravastar. Thus, the obtained solutions of gravastar
structure are physically consistent and stable.

1.21694 -

Zy 1.21694

1.21694

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
r (km)

Figure 4. Surface redshift in relation to thickness of shell for ¢ = 0.2.

5. Concluding Remarks

In this paper, we used the Kuchowicz metric function to calculate a new solution for
studying an astrophysical compact object known as gravitational vacuum star (gravas-
tar) in f(R,T?) gravity. The Kuchowicz metric potential is employed due to its non-
singular and regular behavior throughout gravastar structure. To investigate various
features of gravastar, we constructed solutions for each domain of the specific model
f(R,T?) = R + 0T2. In the inner sector of gravastar, we calculated the metric function as
well as energy density. Dark energy EoS was used in the conservation equation to obtain
the constant energy density for the innermost region. The gravastar avoids singularity by
maintaining constant density throughout the interior region. Consequently, at the center
of gravastar, the singularity is eliminated as the behavior of metric function ¢’7(") remains
finite. Moreover, we calculated the gravitational mass which turned out to be zero at the
center and positive within the inner region.

In the intrinsic shell of gravastar, we evaluated the radial metric function by solv-
ing the field equations corresponding to ultra-relativistic matter distribution. We used
Schwarzschild metric as an exterior domain to determine the unknown constants through
boundary conditions. Using Darmois—Israel criterion for smooth matching of spacetimes,
density as well as pressure are obtained at the surface. We also analyzed characteristics
of gravastar, such as matter density, pressure, EoS parameter, proper length, energy, and
surface redshift corresponding to the thickness of the intermediate shell. All these quanti-
ties indicate that the obtained structure is stable and physically acceptable in the context of
f(R,T?) gravity.

Das et al. [34] presented different features of gravastar in f(R,T) framework and
obtained a direct relation of physical features corresponding to the thickness of shell. We
found that the gravastar features follow similar physical behavior as given in [34]; further,
the value of length decreases and the energy increases in our case. Pressure in the interior
region is negative and positive in the shell region, while the pressure vanishes in the
outermost region, which is completely vacuumed. Thus the pressure in all regions follows
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a similar trend as given in [51]. We conclude that the formation of a gravastar-like stellar
model admitting the Kuchowicz metric potential is physically consistent and viable, similar
to GR [32].
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