Milky Way Star Clusters and Gaia: A Review of the Ongoing Revolution
Abstract
:1. Introduction
1.1. The Gaia Mission
1.2. Star Clusters
2. The Cluster Census and the Galactic Structure
2.1. Discoveries of New Clusters
2.2. Globular Clusters
3. Young Clusters and Associations
3.1. Orion
3.2. Scorpius–Centaurus (Sco–Cen OB2)
3.3. Vela–Puppis
3.4. Other Gaia Studies of Young Aggregates
3.5. Strings, Pearls, and Other Extended Structures
4. Old Clusters
4.1. Dynamical Evolution
4.2. Stellar Evolution
5. Synergies with Other Instruments
5.1. Spectroscopy and Chemical Abundances
5.2. Light Curves and Gyrochronology
6. Tools and Methods
7. Conclusions and Future Prospects
Funding
Acknowledgments
Conflicts of Interest
1 | https://gea.esac.esa.int/archive/ (accessed on 15 December 2021). |
2 | See the introduction of Cantat-Gaudin and Anders [55] for a historical overview of cluster catalogues. |
3 | |
4 | Some of the reported structures are so vast in coordinate and kinematic space that automated matches with other cluster catalogues fail. A number of clusters mentioned in Section 2.1 might be rediscoveries of groupings first reported by Kounkel and Covey [207] and Kounkel et al. [74] under the denomination Theia. |
5 | https://astroquery.readthedocs.io/en/latest/gaia/gaia.html (accessed on 15 December 2021). |
6 | https://pypi.org/project/pygacs/ (accessed on 15 December 2021). |
7 | https://www.aanda.org/articles/aa/olm/2019/01/aa34003-18/aa34003-18.html (accessed on 15 December 2021). |
8 | http://mkounkel.com/mw3d/ (accessed on 15 December 2021). |
9 | https://faun.rc.fas.harvard.edu/czucker/Paper_Figures/3D_Cloud_Topologies/gallery.html (accessed on 15 December 2021). |
10 | https://faun.rc.fas.harvard.edu/czucker/Paper_Figures/orion_movie.html (accessed on 15 December 2021). |
References
- Perryman, M.A.C.; de Boer, K.S.; Gilmore, G.; Høg, E.; Lattanzi, M.G.; Lindegren, L.; Luri, X.; Mignard, F.; Pace, O.; de Zeeuw, P.T. GAIA: Composition, formation and evolution of the Galaxy. Astron. Astrophys. 2001, 369, 339–363. [Google Scholar] [CrossRef]
- Gaia Collaboration. The Gaia mission. Astron. Astrophys. 2016, 595, A1. [Google Scholar] [CrossRef] [Green Version]
- Gaia Collaboration. Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties. Astron. Astrophys. 2016, 595, A2. [Google Scholar] [CrossRef] [Green Version]
- Høg, E.; Fabricius, C.; Makarov, V.V.; Urban, S.; Corbin, T.; Wycoff, G.; Bastian, U.; Schwekendiek, P.; Wicenec, A. The Tycho-2 catalogue of the 2.5 million brightest stars. Astron. Astrophys. 2000, 355, L27–L30. [Google Scholar]
- Gaia Collaboration. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 2018, 616, A1. [Google Scholar] [CrossRef] [Green Version]
- Gaia Collaboration. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 2021, 649, A1. [Google Scholar] [CrossRef]
- Brown, A.G.A. Microarcsecond Astrometry: Science Highlights from Gaia. arXiv 2021, arXiv:2102.11712. [Google Scholar] [CrossRef]
- Bok, B.J. The Stability of Moving Clusters. Harv. Coll. Obs. Circ. 1934, 384, 1–41. [Google Scholar]
- Blaauw, A. The evolution of expanding stellar associations; the age and origin of the Scorpio-Centaurus group. Bull. Astron. Inst. Neth. 1952, 11, 414. [Google Scholar]
- Blaauw, A. The O Associations in the Solar Neighborhood. Annu. Rev. Astron. Astrophys. 1964, 2, 213. [Google Scholar] [CrossRef]
- Lada, C.J.; Lada, E.A. The nature, origin and evolution of embedded star clusters. In The Formation and Evolution of Star Clusters; Janes, K., Ed., Astronomical Society of the Pacific Conference Series; 1991; Volume 13, pp. 3–22. Available online: https://adsabs.harvard.edu/pdf/1991ASPC...13....3L (accessed on 15 December 2021).
- Lada, C.J.; Lada, E.A. Embedded Clusters in Molecular Clouds. Annu. Rev. Astron. Astrophys. 2003, 41, 57–115. [Google Scholar] [CrossRef] [Green Version]
- Kruijssen, J.M.D.; Pelupessy, F.I.; Lamers, H.J.G.L.M.; Portegies Zwart, S.F.; Icke, V. Modelling the formation and evolution of star cluster populations in galaxy simulations. Mon. Not. R. Astron. Soc. 2011, 414, 1339–1364. [Google Scholar] [CrossRef] [Green Version]
- Pfalzner, S.; Kaczmarek, T.; Olczak, C. Modes of clustered star formation. Astron. Astrophys. 2012, 545, A122. [Google Scholar] [CrossRef] [Green Version]
- Parmentier, G.; Pfalzner, S. Local-density-driven clustered star formation. Astron. Astrophys. 2013, 549, A132. [Google Scholar] [CrossRef]
- Kamdar, H.; Conroy, C.; Ting, Y.S.; Bonaca, A.; Smith, M.C.; Brown, A.G.A. Stars that Move Together Were Born Together. Astrophys. J. Lett. 2019, 884, L42. [Google Scholar] [CrossRef]
- Herschel, W. Catalogue of One Thousand New Nebulae and Clusters of Stars Philos. Trans. R. Soc. Lond. Ser. I 1786, 76, 457–499. [Google Scholar]
- Dreyer, J.L.E. A New General Catalogue of Nebulæ and Clusters of Stars, being the Catalogue of the late Sir John F. W. Herschel, Bart, revised, corrected, and enlarged. Mem. R. Astron. Soc. 1888, 49, 1. [Google Scholar]
- Liu, L.; Pang, X. A Catalog of Newly Identified Star Clusters in Gaia DR2. Astrophys. J. Suppl. Ser. 2019, 245, 32. [Google Scholar] [CrossRef] [Green Version]
- Trumpler, R.J. Spectral Types in Open Clusters. Publ. Astron. Soc. Pac. 1925, 37, 307. [Google Scholar] [CrossRef]
- Trumpler, R.J. Absorption of Light in the Galactic System. Publ. Astron. Soc. Pac. 1930, 42, 214. [Google Scholar] [CrossRef]
- Moffat, A.F.J.; Vogt, N. An up-to-date picture of galactic spiral features based on young open star clusters. Astron. Astrophys. 1973, 23, 317. [Google Scholar]
- Janes, K.; Adler, D. Open clusters and galactic structure. Astrophys. J. Suppl. Ser. 1982, 49, 425–446. [Google Scholar] [CrossRef]
- Friel, E.D. The Old Open Clusters Of The Milky Way. Annu. Rev. Astron. Astrophys. 1995, 33, 381–414. [Google Scholar] [CrossRef]
- Moitinho, A. Observational properties of the open cluster system of the Milky Way and what they tell us about our Galaxy. In Star Clusters: Basic Galactic Building Blocks Throughout Time and Space; de Grijs, R., Lépine, J.R.D., Eds.; Cambridge University Press: Cambridge, UK, 2010; Volume 266, pp. 106–116. [Google Scholar]
- Moraux, E. Open clusters and associations in the Gaia era. EAS Publ. Ser. 2016, 80–81, 73–114. [Google Scholar] [CrossRef] [Green Version]
- Janes, K.A. Evidence for an abundance gradient in the galactic disk. Astrophys. J. Suppl. Ser. 1979, 39, 135–156. [Google Scholar] [CrossRef]
- Twarog, B.A.; Ashman, K.M.; Anthony-Twarog, B.J. Some Revised Observational Constraints on the Formation and Evolution of the Galactic Disk. Astron. J. 1997, 114, 2556. [Google Scholar] [CrossRef]
- Yong, D.; Carney, B.W.; Friel, E.D. Elemental Abundance Ratios in Stars of the Outer Galactic Disk. IV. A New Sample of Open Clusters. Astron. J. 2012, 144, 95. [Google Scholar] [CrossRef] [Green Version]
- Magrini, L.; Sestito, P.; Randich, S.; Galli, D. The evolution of the Galactic metallicity gradient from high-resolution spectroscopy of open clusters. Astron. Astrophys. 2009, 494, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Cantat-Gaudin, T.; Donati, P.; Vallenari, A.; Sordo, R.; Bragaglia, A.; Magrini, L. Abundances and kinematics for ten anticentre open clusters. Astron. Astrophys. 2016, 588, A120. [Google Scholar] [CrossRef]
- Jacobson, H.R.; Friel, E.D.; Jílková, L.; Magrini, L.; Bragaglia, A.; Vallenari, A.; Tosi, M.; Randich, S.; Donati, P.; Cantat-Gaudin, T.; et al. The Gaia-ESO Survey: Probes of the inner disk abundance gradient. Astron. Astrophys. 2016, 591, A37. [Google Scholar] [CrossRef]
- Casamiquela, L.; Carrera, R.; Blanco-Cuaresma, S.; Jordi, C.; Balaguer-Núñez, L.; Pancino, E.; Anders, F.; Chiappini, C.; Díaz-Pérez, L.; Aguado, D.S.; et al. OCCASO—II. Physical parameters and Fe abundances of red clump stars in 18 open clusters. Mon. Not. R. Astron. Soc. 2017, 470, 4363–4381. [Google Scholar] [CrossRef] [Green Version]
- Donor, J.; Frinchaboy, P.M.; Cunha, K.; Thompson, B.; O’Connell, J.; Zasowski, G.; Jackson, K.M.; Meyer McGrath, B.; Almeida, A.; Bizyaev, D.; et al. The Open Cluster Chemical Abundances and Mapping Survey. II. Precision Cluster Abundances for APOGEE Using SDSS DR14. Astron. J. 2018, 156, 142. [Google Scholar] [CrossRef] [Green Version]
- Spina, L.; Ting, Y.S.; de Silva, G.M.; Frankel, N.; Sharma, S.; Cantat-Gaudin, T.; Joyce, M.; Stello, D.; Karakas, A.I.; Asplund, M.B.; et al. The GALAH survey: Tracing the Galactic disc with open clusters. Mon. Not. R. Astron. Soc. 2021, 503, 3279–3296. [Google Scholar] [CrossRef]
- Weidner, C.; Kroupa, P. The Variation of Integrated Star Initial Mass Functions among Galaxies. Astrophys. J. 2005, 625, 754–762. [Google Scholar] [CrossRef]
- Mor, R.; Robin, A.C.; Figueras, F.; Lemasle, B. Constraining the thin disc initial mass function using Galactic classical Cepheids. Astron. Astrophys. 2017, 599, A17.0. [Google Scholar] [CrossRef]
- Calura, F.; Recchi, S.; Matteucci, F.; Kroupa, P. Effects of the integrated galactic IMF on the chemical evolution of the solar neighbourhood. Mon. Not. R. Astron. Soc. 2010, 406, 1985–1999. [Google Scholar] [CrossRef] [Green Version]
- Bastian, N.; Covey, K.R.; Meyer, M.R. A Universal Stellar Initial Mass Function? A Critical Look at Variations. Annu. Rev. Astron. Astrophys. 2010, 48, 339–389. [Google Scholar] [CrossRef] [Green Version]
- Zonoozi, A.H.; Mahani, H.; Kroupa, P. Was the Milky Way a chain galaxy? Using the IGIMF theory to constrain the thin-disc star formation history and mass. Mon. Not. R. Astron. Soc. 2019, 483, 46–56. [Google Scholar] [CrossRef]
- Elmegreen, B.G. Variability in the stellar initial mass function at low and high mass: Three-component IMF models. Mon. Not. R. Astron. Soc. 2004, 354, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Dib, S.; Schmeja, S.; Hony, S. Massive stars reveal variations of the stellar initial mass function in the Milky Way stellar clusters. Mon. Not. R. Astron. Soc. 2017, 464, 1738–1752. [Google Scholar] [CrossRef] [Green Version]
- Arenou, F.; Luri, X.; Babusiaux, C.; Fabricius, C.; Helmi, A.; Robin, A.C.; Vallenari, A.; Blanco-Cuaresma, S.; Cantat-Gaudin, T.; Findeisen, K.; et al. Gaia Data Release 1. Catalogue validation. Astron. Astrophys. 2017, 599, A50. [Google Scholar] [CrossRef] [Green Version]
- Arenou, F.; Luri, X.; Babusiaux, C.; Fabricius, C.; Helmi, A.; Muraveva, T.; Robin, A.C.; Spoto, F.; Vallenari, A.; Antoja, T.; et al. Gaia Data Release 2. Catalogue validation. Astron. Astrophys. 2018, 616, A17. [Google Scholar] [CrossRef] [Green Version]
- Gaia Collaboration. Gaia Data Release 2. Observational Hertzsprung-Russell diagrams. Astron. Astrophys. 2018, 616, A10. [Google Scholar] [CrossRef] [Green Version]
- Fabricius, C.; Luri, X.; Arenou, F.; Babusiaux, C.; Helmi, A.; Muraveva, T.; Reylé, C.; Spoto, F.; Vallenari, A.; Antoja, T.; et al. Gaia Early Data Release 3. Catalogue validation. Astron. Astrophys. 2021, 649, A5. [Google Scholar] [CrossRef]
- Anders, F.; Khalatyan, A.; Chiappini, C.; Queiroz, A.B.; Santiago, B.X.; Jordi, C.; Girardi, L.; Brown, A.G.A.; Matijevič, G.; Monari, G.; et al. Photo-astrometric distances, extinctions, and astrophysical parameters for Gaia DR2 stars brighter than G = 18. Astron. Astrophys. 2019, 628, A94. [Google Scholar] [CrossRef] [Green Version]
- Portegies Zwart, S.F.; McMillan, S.L.W.; Gieles, M. Young Massive Star Clusters. Annu. Rev. Astron. Astrophys. 2010, 48, 431–493. [Google Scholar] [CrossRef] [Green Version]
- Krumholz, M.R.; McKee, C.F.; Bland -Hawthorn, J. Star Clusters Across Cosmic Time. Annu. Rev. Astron. Astrophys. 2019, 57, 227–303. [Google Scholar] [CrossRef] [Green Version]
- Krause, M.G.H.; Offner, S.S.R.; Charbonnel, C.; Gieles, M.; Klessen, R.S.; Vázquez-Semadeni, E.; Ballesteros-Paredes, J.; Girichidis, P.; Kruijssen, J.M.D.; Ward, J.L.; et al. The Physics of Star Cluster Formation and Evolution. Space Sci. Rev. 2020, 216, 64. [Google Scholar] [CrossRef]
- Adamo, A.; Zeidler, P.; Kruijssen, J.M.D.; Chevance, M.; Gieles, M.; Calzetti, D.; Charbonnel, C.; Zinnecker, H.; Krause, M.G.H. Star Clusters Near and Far; Tracing Star Formation Across Cosmic Time. Space Sci. Rev. 2020, 216, 69. [Google Scholar] [CrossRef]
- Wright, N.J. OB Associations and their origins. New Astron. Rev. 2020, 90, 101549. [Google Scholar] [CrossRef]
- Dias, W.S.; Alessi, B.S.; Moitinho, A.; Lépine, J.R.D. New catalogue of optically visible open clusters and candidates. Astron. Astrophys. 2002, 389, 871–873. [Google Scholar] [CrossRef] [Green Version]
- Kharchenko, N.V.; Piskunov, A.E.; Schilbach, E.; Röser, S.; Scholz, R.D. Global survey of star clusters in the Milky Way. II. The catalogue of basic parameters. Astron. Astrophys. 2013, 558, A53. [Google Scholar] [CrossRef] [Green Version]
- Cantat-Gaudin, T.; Anders, F. Clusters and mirages: Cataloguing stellar aggregates in the Milky Way. Astron. Astrophys. 2020, 633, A99. [Google Scholar] [CrossRef] [Green Version]
- Cantat-Gaudin, T.; Vallenari, A.; Sordo, R.; Pensabene, F.; Krone-Martins, A.; Moitinho, A.; Jordi, C.; Casamiquela, L.; Balaguer-Núnez, L.; Soubiran, C.; et al. Characterising open clusters in the solar neighbourhood with the Tycho-Gaia Astrometric Solution. Astron. Astrophys. 2018, 615, A49. [Google Scholar] [CrossRef] [Green Version]
- Zacharias, N.; Finch, C.T.; Girard, T.M.; Henden, A.; Bartlett, J.L.; Monet, D.G.; Zacharias, M.I. UCAC4 Catalogue (Zacharias+, 2012). VizieR Online Data Catalog 2012, 1322, I-322A. [Google Scholar]
- Krone-Martins, A.; Moitinho, A. UPMASK: Unsupervised photometric membership assignment in stellar clusters. Astron. Astrophys. 2014, 561, A57. [Google Scholar] [CrossRef]
- Skrutskie, M.F.; Cutri, R.M.; Stiening, R.; Weinberg, M.D.; Schneider, S.; Carpenter, J.M.; Beichman, C.; Capps, R.; Chester, T.; Elias, J.; et al. The Two Micron All Sky Survey (2MASS). Astron. J. 2006, 131, 1163–1183. [Google Scholar] [CrossRef]
- Von Hippel, T.; Jefferys, W.H.; Scott, J.; Stein, N.; Winget, D.E.; de Gennaro, S.; Dam, A.; Jeffery, E. Inverting Color-Magnitude Diagrams to Access Precise Star Cluster Parameters: A Bayesian Approach. Astrophys. J. 2006, 645, 1436–1447. [Google Scholar] [CrossRef]
- Cantat-Gaudin, T.; Jordi, C.; Vallenari, A.; Bragaglia, A.; Balaguer-Núñez, L.; Soubiran, C.; Bossini, D.; Moitinho, A.; Castro-Ginard, A.; Krone-Martins, A.; et al. A Gaia DR2 view of the open cluster population in the Milky Way. Astron. Astrophys. 2018, 618, A93. [Google Scholar] [CrossRef] [Green Version]
- Kos, J.; de Silva, G.; Buder, S.; Bland-Hawthorn, J.; Sharma, S.; Asplund, M.; D’Orazi, V.; Duong, L.; Freeman, K.; Lewis, G.F.; et al. The GALAH survey and Gaia DR2: (Non-)existence of five sparse high-latitude open clusters. Mon. Not. R. Astron. Soc. 2018, 480, 5242–5259. [Google Scholar] [CrossRef]
- Anders, F.; Cantat-Gaudin, T.; Quadrino-Lodoso, I.; Gieles, M.; Jordi, C.; Castro-Ginard, A.; Balaguer-Núñez, L. The star cluster age function in the Galactic disc with Gaia DR2. Fewer old clusters and a low cluster formation efficiency. Astron. Astrophys. 2021, 645, L2. [Google Scholar] [CrossRef]
- Soubiran, C.; Cantat-Gaudin, T.; Romero-Gómez, M.; Casamiquela, L.; Jordi, C.; Vallenari, A.; Antoja, T.; Balaguer-Núñez, L.; Bossini, D.; Bragaglia, A.; et al. Open cluster kinematics with Gaia DR2. Astron. Astrophys. 2018, 619, A155. [Google Scholar] [CrossRef] [Green Version]
- Carrera, R.; Bragaglia, A.; Cantat-Gaudin, T.; Vallenari, A.; Balaguer-Núñez, L.; Bossini, D.; Casamiquela, L.; Jordi, C.; Sordo, R.; Soubiran, C. Open clusters in APOGEE and GALAH. Combining Gaia and ground-based spectroscopic surveys. Astron. Astrophys. 2019, 623, A80. [Google Scholar] [CrossRef] [Green Version]
- Tarricq, Y.; Soubiran, C.; Casamiquela, L.; Cantat-Gaudin, T.; Chemin, L.; Anders, F.; Antoja, T.; Romero-Gómez, M.; Figueras, F.; Jordi, C.; et al. 3D kinematics and age distribution of the open cluster population. Astron. Astrophys. 2021, 647, A19. [Google Scholar] [CrossRef]
- Bossini, D.; Vallenari, A.; Bragaglia, A.; Cantat-Gaudin, T.; Sordo, R.; Balaguer-Núñez, L.; Jordi, C.; Moitinho, A.; Soubiran, C.; Casamiquela, L.; et al. Age determination for 269 Gaia DR2 open clusters. Astron. Astrophys. 2019, 623, A108. [Google Scholar] [CrossRef] [Green Version]
- Perren, G.I.; Giorgi, E.E.; Moitinho, A.; Carraro, G.; Pera, M.S.; Vázquez, R.A. Sixteen overlooked open clusters in the fourth Galactic quadrant. A combined analysis of UBVI photometry and Gaia DR2 with ASteCA. Astron. Astrophys. 2020, 637, A95. [Google Scholar] [CrossRef]
- Perren, G.I.; Vázquez, R.A.; Piatti, A.E. ASteCA: Automated Stellar Cluster Analysis. Astron. Astrophys. 2015, 576, A6. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, H.; Dias, W.S. Distances and ages from isochrone fits of 150 open clusters using Gaia DR2 data. Mon. Not. R. Astron. Soc. 2019, 487, 2385–2406. [Google Scholar] [CrossRef]
- Dias, W.S.; Monteiro, H.; Moitinho, A.; Lépine, J.R.D.; Carraro, G.; Paunzen, E.; Alessi, B.; Villela, L. Updated parameters of 1743 open clusters based on Gaia DR2. Mon. Not. R. Astron. Soc. 2021, 504, 356–371. [Google Scholar] [CrossRef]
- Cantat-Gaudin, T.; Anders, F.; Castro-Ginard, A.; Jordi, C.; Romero-Gómez, M.; Soubiran, C.; Casamiquela, L.; Tarricq, Y.; Moitinho, A.; Vallenari, A.; et al. Painting a portrait of the Galactic disc with its stellar clusters. Astron. Astrophys. 2020, 640, A1. [Google Scholar] [CrossRef]
- Castro-Ginard, A.; Jordi, C.; Luri, X.; Cantat-Gaudin, T.; Carrasco, J.M.; Casamiquela, L.; Anders, F.; Balaguer-Núñez, L.; Badia, R.M. Hunting for open clusters in Gaia EDR3: 664 new open clusters found with OCfinder. arXiv 2021, arXiv:2111.01819. [Google Scholar]
- Kounkel, M.; Covey, K.; Stassun, K.G. Untangling the Galaxy. II. Structure within 3 kpc. Astron. J. 2020, 160, 279. [Google Scholar] [CrossRef]
- Kounkel, M. Auriga. 2020. Available online: https://zenodo.org/record/4086029#.YgS0W_gRVPY (accessed on 15 December 2021). [CrossRef]
- Castro-Ginard, A.; McMillan, P.J.; Luri, X.; Jordi, C.; Romero-Gómez, M.; Cantat-Gaudin, T.; Casamiquela, L.; Tarricq, Y.; Soubiran, C.; Anders, F. Milky Way spiral arms from open clusters in Gaia EDR3. Astron. Astrophys. 2021, 652, A162. [Google Scholar] [CrossRef]
- Lin, C.C.; Shu, F.H. On the Spiral Structure of Disk Galaxies. Astrophys. J. 1964, 140, 646. [Google Scholar] [CrossRef]
- Toomre, A. On the gravitational stability of a disk of stars. Astrophys. J. 1964, 139, 1217–1238. [Google Scholar] [CrossRef]
- Dobbs, C.; Baba, J. Dawes Review 4: Spiral Structures in Disc Galaxies. Publ. Astron. Soc. Aust. 2014, 31, 35. [Google Scholar] [CrossRef] [Green Version]
- Shu, F.H. Six Decades of Spiral Density Wave Theory. Annu. Rev. Astron. Astrophys. 2016, 54, 667–724. [Google Scholar] [CrossRef]
- Xu, Y.; Hou, L.G.; Wu, Y.W. The spiral structure of the Milky Way. Res. Astron. Astrophys. 2018, 18, 146. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Zheng, X.W. The bar and spiral arms in the Milky Way: Structure and kinematics. Res. Astron. Astrophys. 2020, 20, 159. [Google Scholar] [CrossRef]
- Cantat-Gaudin, T.; Krone-Martins, A.; Sedaghat, N.; Farahi, A.; de Souza, R.S.; Skalidis, R.; Malz, A.I.; Macêdo, S.; Moews, B.; Jordi, C.; et al. Gaia DR2 unravels incompleteness of nearby cluster population: New open clusters in the direction of Perseus. Astron. Astrophys. 2019, 624, A126. [Google Scholar] [CrossRef] [Green Version]
- Castro-Ginard, A.; Jordi, C.; Luri, X.; Cantat-Gaudin, T.; Balaguer-Núñez, L. Hunting for open clusters in Gaia DR2: The Galactic anticentre. Astron. Astrophys. 2019, 627, A35. [Google Scholar] [CrossRef] [Green Version]
- Peek, J.E.G.; Tchernyshyov, K.; Miville-Deschenes, M.A. Burton’s Curse: The Impact of Bulk Flows on the Galactic Longitude-Velocity Diagram and the Illusion of a Continuous Perseus Arm. arXiv 2021, arXiv:2112.07677. [Google Scholar] [CrossRef]
- Tchernyshyov, K.; Peek, J.E.G.; Zasowski, G. Kinetic Tomography. II. A Second Method for Mapping the Velocity Field of the Milky Way Interstellar Medium and a Comparison with Spiral Structure Models. Astron. J. 2018, 156, 248. [Google Scholar] [CrossRef] [Green Version]
- Baba, J.; Kawata, D.; Matsunaga, N.; Grand, R.J.J.; Hunt, J.A.S. Gaia DR1 Evidence of Disrupting the Perseus Arm. Astrophys. J. Lett. 2018, 853, L23. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Reid, M.; Dame, T.; Menten, K.; Sakai, N.; Li, J.; Brunthaler, A.; Moscadelli, L.; Zhang, B.; Zheng, X. The local spiral structure of the Milky Way. Sci. Adv. 2016, 2, e1600878. [Google Scholar] [CrossRef] [Green Version]
- Poggio, E.; Drimmel, R.; Cantat-Gaudin, T.; Ramos, P.; Ripepi, V.; Zari, E.; Andrae, R.; Blomme, R.; Chemin, L.; Clementini, G.; et al. Galactic spiral structure revealed by Gaia EDR3. Astron. Astrophys. 2021, 651, A104. [Google Scholar] [CrossRef]
- Reid, M.J.; Menten, K.M.; Brunthaler, A.; Zheng, X.W.; Dame, T.M.; Xu, Y.; Li, J.; Sakai, N.; Wu, Y.; Immer, K.; et al. Trigonometric Parallaxes of High-mass Star-forming Regions: Our View of the Milky Way. Astrophys. J. 2019, 885, 131. [Google Scholar] [CrossRef] [Green Version]
- Pantaleoni González, M.; Maíz Apellániz, J.; Barbá, R.H.; Reed, B.C. The Alma catalogue of OB stars—II. A cross-match with Gaia DR2 and an updated map of the solar neighbourhood. Mon. Not. R. Astron. Soc. 2021, 504, 2968–2982. [Google Scholar] [CrossRef]
- Kuhn, M.A.; Benjamin, R.A.; Zucker, C.; Krone-Martins, A.; de Souza, R.S.; Castro-Ginard, A.; Ishida, E.E.O.; Povich, M.S.; Hillenbrand, L.A. A high pitch angle structure in the Sagittarius Arm. Astron. Astrophys. 2021, 651, L10. [Google Scholar] [CrossRef]
- Gaia Collaboration. Gaia Early Data Release 3. The Galactic anticentre. Astron. Astrophys. 2021, 649, A8. [Google Scholar] [CrossRef]
- Ferreira, F.A.; Santos, J.F.C.; Corradi, W.J.B.; Maia, F.F.S.; Angelo, M.S. Three new Galactic star clusters discovered in the field of the open cluster NGC 5999 with Gaia DR2. Mon. Not. R. Astron. Soc. 2019, 483, 5508–5517. [Google Scholar] [CrossRef] [Green Version]
- Jaehnig, K.; Bird, J.; Holley-Bockelmann, K. Membership lists for 431 open clusters in Gaia DR2 using extreme deconvolution gaussian mixture models. arXiv 2021, arXiv:2108.02783. [Google Scholar] [CrossRef]
- Negueruela, I.; Chené, A.N.; Tabernero, H.M.; Dorda, R.; Borissova, J.; Marco, A.; Kurtev, R. A massive open cluster hiding in full sight. Mon. Not. R. Astron. Soc. 2021, 505, 1618–1628. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Machine Learning Res. 2011, 12, 2825–2830. [Google Scholar]
- Meingast, S.; Alves, J.; Fürnkranz, V. Extended stellar systems in the solar neighborhood. II. Discovery of a nearby 120° stellar stream in Gaia DR2. Astron. Astrophys. 2019, 622, L13. [Google Scholar] [CrossRef] [Green Version]
- Fürnkranz, V.; Meingast, S.; Alves, J. Extended stellar systems in the solar neighborhood. III. Like ships in the night: The Coma Berenices neighbor moving group. Astron. Astrophys. 2019, 624, L11. [Google Scholar] [CrossRef] [Green Version]
- Coronado, J.; Rix, H.W.; Trick, W.H.; El-Badry, K.; Rybizki, J.; Xiang, M. From birth associations to field stars: Mapping the small-scale orbit distribution in the Galactic disc. Mon. Not. R. Astron. Soc. 2020, 495, 4098–4112. [Google Scholar] [CrossRef]
- Coronado, J.; Fürnkranz, V.; Rix, H.W. Pearls on a String: Numerous Stellar Clusters Strung along the Same Orbit. arXiv 2021, arXiv:2107.00036. [Google Scholar]
- Koposov, S.E.; Belokurov, V.; Torrealba, G. Gaia 1 and 2. A pair of new Galactic star clusters. Mon. Not. R. Astron. Soc. 2017, 470, 2702–2709. [Google Scholar] [CrossRef] [Green Version]
- Castro-Ginard, A.; Jordi, C.; Luri, X.; Julbe, F.; Morvan, M.; Balaguer-Núñez, L.; Cantat-Gaudin, T. A new method for unveiling open clusters in Gaia. New nearby open clusters confirmed by DR2. Astron. Astrophys. 2018, 618, A59. [Google Scholar] [CrossRef] [Green Version]
- He, Z.H.; Xu, Y.; Hao, C.J.; Wu, Z.Y.; Li, J.J. A catalogue of 74 new open clusters found in Gaia Data-Release 2. arXiv 2020, arXiv:2010.14870. [Google Scholar] [CrossRef]
- Sim, G.; Lee, S.H.; Ann, H.B.; Kim, S. 207 New Open Star Clusters within 1 kpc from Gaia Data Release 2. J. Korean Astron. Soc. 2019, 52, 145–158. [Google Scholar]
- Ferreira, F.A.; Corradi, W.J.B.; Maia, F.F.S.; Angelo, M.S.; Santos, J.F.C., Jr. Discovery and astrophysical properties of Galactic open clusters in dense stellar fields using Gaia DR2. Mon. Not. R. Astron. Soc. 2020, 496, 2021–2038. [Google Scholar] [CrossRef]
- Hunt, E.L.; Reffert, S. Improving the open cluster census. I. Comparison of clustering algorithms applied to Gaia DR2 data. Astron. Astrophys. 2021, 646, A104. [Google Scholar] [CrossRef]
- Castro-Ginard, A.; Jordi, C.; Luri, X.; Álvarez Cid-Fuentes, J.; Casamiquela, L.; Anders, F.; Cantat-Gaudin, T.; Monguió, M.; Balaguer-Núñez, L.; Solà, S.; et al. Hunting for open clusters in Gaia DR2: 582 new open clusters in the Galactic disc. Astron. Astrophys. 2020, 635, A45. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Price-Whelan, A.M.; Hogg, D.W.; Morton, T.D.; Spergel, D.N. Comoving Stars in Gaia DR1: An Abundance of Very Wide Separation Comoving Pairs. Astron. J. 2017, 153, 257. [Google Scholar] [CrossRef] [Green Version]
- Price-Whelan, A.M.; Oh, S.; Spergel, D.N. Spectroscopic confirmation of very-wide stellar binaries and large-separation comoving pairs from Gaia DR1. arXiv 2017, arXiv:1709.03532. [Google Scholar]
- Simpson, J.D.; Martell, S.L.; da Costa, G.; Casey, A.R.; Freeman, K.C.; Horner, J.; Ting, Y.S.; Nataf, D.M.; Lewis, G.F.; Ness, M.K.; et al. The GALAH survey: Co-orbiting stars and chemical tagging. Mon. Not. R. Astron. Soc. 2019, 482, 5302–5315. [Google Scholar] [CrossRef] [Green Version]
- Kamdar, H.; Conroy, C.; Ting, Y.S.; El-Badry, K. Spatial and Kinematic Clustering of Stars in the Galactic Disk. Astrophys. J. 2021, 922, 49. [Google Scholar] [CrossRef]
- Ryu, J.; Lee, M.G. Discovery of Two New Globular Clusters in the Milky Way. Astrophys. J. Lett. 2018, 863, L38. [Google Scholar] [CrossRef]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 2010, 140, 1868–1881. [Google Scholar] [CrossRef]
- Camargo, D. Five New Globular Clusters Discovered in the Galactic Bulge. Astrophys. J. Lett. 2018, 860, L27. [Google Scholar] [CrossRef]
- Barbá, R.H.; Minniti, D.; Geisler, D.; Alonso-García, J.; Hempel, M.; Monachesi, A.; Arias, J.I.; Gómez, F.A. A Sequoia in the Garden: FSR 1758—Dwarf Galaxy or Giant Globular Cluster? Astrophys. J. Lett. 2019, 870, L24. [Google Scholar] [CrossRef] [Green Version]
- Schlafly, E.F.; Green, G.M.; Lang, D.; Daylan, T.; Finkbeiner, D.P.; Lee, A.; Meisner, A.M.; Schlegel, D.; Valdes, F. The DECam Plane Survey: Optical Photometry of Two Billion Objects in the Southern Galactic Plane. Astrophys. J. Suppl. Ser. 2018, 234, 39. [Google Scholar] [CrossRef]
- Minniti, D.; Lucas, P.W.; Emerson, J.P.; Saito, R.K.; Hempel, M.; Pietrukowicz, P.; Ahumada, A.V.; Alonso, M.V.; Alonso-Garcia, J.; Arias, J.I.; et al. VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way. New Astron. 2010, 15, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Minniti, D.; Geisler, D.; Alonso-García, J.; Palma, T.; Beamín, J.C.; Borissova, J.; Catelan, M.; Clariá, J.J.; Cohen, R.E.; Contreras Ramos, R.; et al. New VVV Survey Globular Cluster Candidates in the Milky Way Bulge. Astrophys. J. Lett. 2017, 849, L24. [Google Scholar] [CrossRef] [Green Version]
- Minniti, D.; Palma, T.; Dékány, I.; Hempel, M.; Rejkuba, M.; Pullen, J.; Alonso-García, J.; Barbá, R.; Barbuy, B.; Bica, E.; et al. FSR 1716: A New Milky Way Globular Cluster Confirmed Using VVV RR Lyrae Stars. Astrophys. J. Lett. 2017, 838, L14. [Google Scholar] [CrossRef] [Green Version]
- Borissova, J.; Ivanov, V.D.; Lucas, P.W.; Kurtev, R.; Alonso-Garcia, J.; Ramírez Alegría, S.; Minniti, D.; Froebrich, D.; Hempel, M.; Medina, N.; et al. New Galactic star clusters discovered in the disc area of the VVVX survey. Mon. Not. R. Astron. Soc. 2018, 481, 3902–3920. [Google Scholar] [CrossRef] [Green Version]
- Gran, F.; Zoccali, M.; Contreras Ramos, R.; Valenti, E.; Rojas-Arriagada, A.; Carballo-Bello, J.A.; Alonso-Garcia, J.; Minniti, D.; Rejkuba, M.; Surot, F. Globular cluster candidates in the Galactic bulge: Gaia and VVV view of the latest discoveries. Astron. Astrophys. 2019, 628, A45. [Google Scholar] [CrossRef] [Green Version]
- Palma, T.; Minniti, D.; Alonso-García, J.; Crestani, J.; Netzel, H.; Clariá, J.J.; Saito, R.K.; Dias, B.; Fernández-Trincado, J.G.; Kammers, R.; et al. Analysis of the physical nature of 22 New VVV Survey Globular Cluster candidates in the Milky Way bulge. Mon. Not. R. Astron. Soc. 2019, 487, 3140–3149. [Google Scholar] [CrossRef]
- Minniti, D.; Navarro, M.G. The VVV Survey: Globular Clusters and more. In Galactic Dynamics in the Era of Large Surveys; Valluri, M., Sellwood, J.A., Eds.; 2020; Volume 353, pp. 31–34. Available online: https://www.cambridge.org/core/journals/proceedings-of-the-international-astronomical-union/article/vvv-survey-globular-clusters-and-more/D897E3D4C1A9B02ACA16146FA3355AB8 (accessed on 15 December 2021). [CrossRef]
- Garro, E.R.; Minniti, D.; Gómez, M.; Alonso-García, J.; Barbá, R.H.; Barbuy, B.; Clariá, J.J.; Chené, A.N.; Dias, B.; Hempel, M.; et al. VVVX-Gaia discovery of a low luminosity globular cluster in the Milky Way disk. Astron. Astrophys. 2020, 642, L19. [Google Scholar] [CrossRef]
- Fernández-Trincado, J.G.; Minniti, D.; Souza, S.O.; Beers, T.C.; Geisler, D.; Moni Bidin, C.; Villanova, S.; Majewski, S.R.; Barbuy, B.; Pérez-Villegas, A.; et al. VVV CL001: Likely the Most Metal-poor Surviving Globular Cluster in the Inner Galaxy. Astrophys. J. Lett. 2021, 908, L42. [Google Scholar] [CrossRef]
- Garro, E.R.; Minniti, D.; Gómez, M.; Alonso-García, J.; Palma, T.; Smith, L.C.; Ripepi, V. Confirmation and physical characterization of the new bulge globular cluster Patchick 99 from the VVV and Gaia surveys. Astron. Astrophys. 2021, 649, A86. [Google Scholar] [CrossRef]
- Garro, E.R.; Minniti, D.; Gómez, M.; Alonso-García, J.; Ripepi, V.; Fernández-Trincado, J.G.; Vivanco Cádiz, F. Inspection of 19 globular cluster candidates in the Galactic bulge with the VVV survey. arXiv 2021, arXiv:2111.08317. [Google Scholar] [CrossRef]
- Minniti, D.; Palma, T.; Camargo, D.; Chijani-Saballa, M.; Alonso-García, J.; Clariá, J.J.; Dias, B.; Gómez, M.; Pullen, J.B.; Saito, R.K. An intriguing globular cluster in the Galactic bulge from the VVV survey. Astron. Astrophys. 2021, 652, A129. [Google Scholar] [CrossRef]
- Minniti, D.; Fernández-Trincado, J.G.; Gómez, M.; Smith, L.C.; Lucas, P.W.; Contreras Ramos, R. Discovery of a new nearby globular cluster with extreme kinematics located in the extension of a halo stream. Astron. Astrophys. 2021, 650, L11. [Google Scholar] [CrossRef]
- Obasi, C.; Gómez, M.; Minniti, D.; Alonso-García, J. Confirmation of two new Galactic bulge globular clusters: FSR 19 and FSR 25. Astron. Astrophys. 2021, 654, A39. [Google Scholar] [CrossRef]
- Kuhn, M.A.; Hillenbrand, L.A.; Sills, A.; Feigelson, E.D.; Getman, K.V. Kinematics in Young Star Clusters and Associations with Gaia DR2. Astrophys. J. 2019, 870, 32. [Google Scholar] [CrossRef] [Green Version]
- Melnik, A.M.; Dambis, A.K. Internal motions in OB associations with Gaia DR2. Mon. Not. R. Astron. Soc. 2020, 493, 2339–2351. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.L.; Kruijssen, J.M.D. Not all stars form in clusters—Measuring the kinematics of OB associations with Gaia. Mon. Not. R. Astron. Soc. 2018, 475, 5659–5676. [Google Scholar] [CrossRef]
- Ward, J.L.; Kruijssen, J.M.D.; Rix, H.W. Not all stars form in clusters—Gaia-DR2 uncovers the origin of OB associations. Mon. Not. R. Astron. Soc. 2020, 495, 663–685. [Google Scholar] [CrossRef]
- Kruijssen, J.M.D. On the fraction of star formation occurring in bound stellar clusters. Mon. Not. R. Astron. Soc. 2012, 426, 3008–3040. [Google Scholar] [CrossRef] [Green Version]
- Majewski, S.R.; Schiavon, R.P.; Frinchaboy, P.M.; Allende Prieto, C.; Barkhouser, R.; Bizyaev, D.; Blank, B.; Brunner, S.; Burton, A.; Carrera, R.; et al. The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astron. J. 2017, 154, 94. [Google Scholar] [CrossRef]
- Kounkel, M.; Covey, K.; Suárez, G.; Román-Zúñiga, C.; Hernandez, J.; Stassun, K.; Jaehnig, K.O.; Feigelson, E.D.; Peña Ramírez, K.; Roman-Lopes, A.; et al. The APOGEE-2 Survey of the Orion Star-forming Complex. II. Six-dimensional Structure. Astron. J. 2018, 156, 84. [Google Scholar] [CrossRef]
- Kos, J.; Bland-Hawthorn, J.; Asplund, M.; Buder, S.; Lewis, G.F.; Lin, J.; Martell, S.L.; Ness, M.K.; Sharma, S.; de Silva, G.M.; et al. Discovery of a 21 Myr old stellar population in the Orion complex. Astron. Astrophys. 2019, 631, A166. [Google Scholar] [CrossRef]
- Großschedl, J.E.; Alves, J.; Meingast, S.; Ackerl, C.; Ascenso, J.; Bouy, H.; Burkert, A.; Forbrich, J.; Fürnkranz, V.; Goodman, A.; et al. 3D shape of Orion A from Gaia DR2. Astron. Astrophys. 2018, 619, A106. [Google Scholar] [CrossRef] [Green Version]
- Jerabkova, T.; Boffin, H.M.J.; Beccari, G.; Anderson, R.I. A stellar relic filament in the Orion star-forming region. Mon. Not. R. Astron. Soc. 2019, 489, 4418–4428. [Google Scholar] [CrossRef] [Green Version]
- Zari, E.; Brown, A.G.A.; de Zeeuw, P.T. Structure, kinematics, and ages of the young stellar populations in the Orion region. arXiv 2019, arXiv:1906.07002. [Google Scholar] [CrossRef] [Green Version]
- Swiggum, C.; D’Onghia, E.; Alves, J.; Großschedl, J.; Foley, M.; Zucker, C.; Meingast, S.; Chen, B.; Goodman, A. Evidence for Radial Expansion at the Core of the Orion Complex with Gaia EDR3. Astrophys. J. 2021, 917, 21. [Google Scholar] [CrossRef]
- Kounkel, M.; Stassun, K.G.; Covey, K.; Hartmann, L.; Bird, J. A gravitational and dynamical model of star formation in Orion. arXiv 2021, arXiv:2111.01159. [Google Scholar]
- De Zeeuw, P.T.; Hoogerwerf, R.; de Bruijne, J.H.J.; Brown, A.G.A.; Blaauw, A. A HIPPARCOS Census of the Nearby OB Associations. Astron. J. 1999, 117, 354–399. [Google Scholar] [CrossRef] [Green Version]
- Damiani, F. The low-mass pre-main sequence population of Scorpius OB1. Astron. Astrophys. 2018, 615, A148. [Google Scholar] [CrossRef] [Green Version]
- Gagné, J.; Roy-Loubier, O.; Faherty, J.K.; Doyon, R.; Malo, L. BANYAN. XII. New Members of Nearby Young Associations from GAIA-Tycho Data. Astrophys. J. 2018, 860, 43. [Google Scholar] [CrossRef] [Green Version]
- Wright, N.J.; Mamajek, E.E. The kinematics of the Scorpius-Centaurus OB association from Gaia DR1. Mon. Not. R. Astron. Soc. 2018, 476, 381–398. [Google Scholar] [CrossRef] [Green Version]
- Damiani, F.; Prisinzano, L.; Pillitteri, I.; Micela, G.; Sciortino, S. Stellar population of Sco OB2 revealed by Gaia DR2 data. Astron. Astrophys. 2019, 623, A112. [Google Scholar] [CrossRef] [Green Version]
- Röser, S.; Schilbach, E.; Goldman, B.; Henning, T.; Moor, A.; Derekas, A. A new compact young moving group around V1062 Scorpii. Astron. Astrophys. 2018, 614, A81. [Google Scholar] [CrossRef] [Green Version]
- Goldman, B.; Röser, S.; Schilbach, E.; Moór, A.C.; Henning, T. A Large Moving Group within the Lower Centaurus Crux Association. Astrophys. J. 2018, 868, 32. [Google Scholar] [CrossRef] [Green Version]
- Luhman, K.L.; Herrmann, K.A.; Mamajek, E.E.; Esplin, T.L.; Pecaut, M.J. New Young Stars and Brown Dwarfs in the Upper Scorpius Association. Astron. J. 2018, 156, 76. [Google Scholar] [CrossRef] [Green Version]
- Squicciarini, V.; Gratton, R.; Bonavita, M.; Mesa, D. Unveiling the star formation history of the Upper Scorpius association through its kinematics. Mon. Not. R. Astron. Soc. 2021, 507, 1381–1400. [Google Scholar] [CrossRef]
- Žerjal, M.; Ireland, M.J.; Crundall, T.D.; Krumholz, M.R.; Rains, A.D. Chronostar. II. Kinematic age and substructure of the Scorpius-Centaurus OB2 association. arXiv 2021, arXiv:2111.09897. [Google Scholar]
- Luhman, K.L.; Esplin, T.L. Refining the Census of the Upper Scorpius Association with Gaia. Astron. J. 2020, 160, 44. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, R.D.; Jackson, R.J.; Cottaar, M.; Koposov, S.E.; Lanzafame, A.C.; Meyer, M.R.; Prisinzano, L.; Randich, S.; Sacco, G.G.; Brugaletta, E.; et al. The Gaia-ESO Survey: Kinematic structure in the Gamma Velorum cluster. Astron. Astrophys. 2014, 563, A94. [Google Scholar] [CrossRef] [Green Version]
- Franciosini, E.; Sacco, G.G.; Jeffries, R.D.; Damiani, F.; Roccatagliata, V.; Fedele, D.; Randich, S. The Gaia DR2 view of the Gamma Velorum cluster: Resolving the 6D structure. Astron. Astrophys. 2018, 616, L12. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, J.J.; Wright, N.J.; Jeffries, R.D. The low-mass population of the Vela OB2 association from Gaia. Mon. Not. R. Astron. Soc. 2018, 480, L121–L125. [Google Scholar] [CrossRef]
- Beccari, G.; Boffin, H.M.J.; Jerabkova, T.; Wright, N.J.; Kalari, V.M.; Carraro, G.; de Marchi, G.; de Wit, W.J. A sextet of clusters in the Vela OB2 region revealed by Gaia. Mon. Not. R. Astron. Soc. 2018, 481, L11–L15. [Google Scholar] [CrossRef]
- Cantat-Gaudin, T.; Mapelli, M.; Balaguer-Núñez, L.; Jordi, C.; Sacco, G.; Vallenari, A. A ring in a shell: The large-scale 6D structure of the Vela OB2 complex. Astron. Astrophys. 2019, 621, A115. [Google Scholar] [CrossRef] [Green Version]
- Cantat-Gaudin, T.; Jordi, C.; Wright, N.J.; Armstrong, J.J.; Vallenari, A.; Balaguer-Núñez, L.; Ramos, P.; Bossini, D.; Padoan, P.; Pelkonen, V.M.; et al. Expanding associations in the Vela-Puppis region. 3D structure and kinematics of the young population. Astron. Astrophys. 2019, 626, A17. [Google Scholar] [CrossRef] [Green Version]
- Beccari, G.; Boffin, H.M.J.; Jerabkova, T. Uncovering a 260 pc wide, 35-Myr-old filamentary relic of star formation. Mon. Not. R. Astron. Soc. 2020, 491, 2205–2216. [Google Scholar] [CrossRef]
- Pang, X.; Yu, Z.; Tang, S.Y.; Hong, J.; Yuan, Z.; Pasquato, M.; Kouwenhoven, M.B.N. Disruption of Hierarchical Clustering in the Vela OB2 Complex and the Cluster Pair Collinder 135 and UBC7 with Gaia EDR3: Evidence of Supernova Quenching. arXiv 2021, arXiv:2106.07658. [Google Scholar]
- Wang, F.; Tian, H.J.; Qiu, D.; Xu, Q.; Fang, M.; Tian, H.; Li, D.; Bird, S.; Shi, J.R.; Fu, X.T.; et al. The Stellar “Snake” I: Whole Structure and Properties. arXiv 2021, arXiv:2109.05999. [Google Scholar]
- Luhman, K.L. The Stellar Membership of the Taurus Star-forming Region. Astron. J. 2018, 156, 271. [Google Scholar] [CrossRef] [Green Version]
- Galli, P.A.B.; Loinard, L.; Bouy, H.; Sarro, L.M.; Ortiz-León, G.N.; Dzib, S.A.; Olivares, J.; Heyer, M.; Hernandez, J.; Román-Zúñiga, C.; et al. Structure and kinematics of the Taurus star-forming region from Gaia-DR2 and VLBI astrometry. Astron. Astrophys. 2019, 630, A137. [Google Scholar] [CrossRef] [Green Version]
- Roccatagliata, V.; Franciosini, E.; Sacco, G.G.; Randich, S.; Sicilia-Aguilar, A. A 3D view of the Taurus star-forming region by Gaia and Herschel. Multiple populations related to the filamentary molecular cloud. Astron. Astrophys. 2020, 638, A85. [Google Scholar] [CrossRef]
- Roccatagliata, V.; Sacco, G.G.; Franciosini, E.; Randich, S. The double population of Chamaeleon I detected by Gaia DR2. Astron. Astrophys. 2018, 617, L4. [Google Scholar] [CrossRef] [Green Version]
- Karnath, N.; Prchlik, J.J.; Gutermuth, R.A.; Allen, T.S.; Megeath, S.T.; Pipher, J.L.; Wolk, S.; Jeffries, R.D. The Dynamics, Structure, and Fate of a Young Cluster during Gas Dispersal: Hectoschelle, Chandra, Spitzer, and Gaia Observations of Cep OB3b. Astrophys. J. 2019, 871, 46. [Google Scholar] [CrossRef] [Green Version]
- Santos-Silva, T.; Perottoni, H.D.; Almeida-Fernandes, F.; Gregorio-Hetem, J.; Jatenco-Pereira, V.; Mendes de Oliveira, C.; Montmerle, T.; Bica, E.; Bonatto, C.; Monteiro, H.; et al. Canis Major OB1 stellar group contents revealed by Gaia. Mon. Not. R. Astron. Soc. 2021, 508, 1033–1055. [Google Scholar] [CrossRef]
- Cánovas, H.; Cantero, C.; Cieza, L.; Bombrun, A.; Lammers, U.; Merín, B.; Mora, A.; Ribas, Á.; Ruíz-Rodríguez, D. Census of ρ Ophiuchi candidate members from Gaia Data Release 2. Astron. Astrophys. 2019, 626, A80. [Google Scholar] [CrossRef] [Green Version]
- Grasser, N.; Ratzenböck, S.; Alves, J.; Großschedl, J.; Meingast, S.; Zucker, C.; Hacar, A.; Lada, C.; Goodman, A.; Lombardi, M.; et al. The ρ Ophiuchi region revisited with Gaia EDR3. Two young populations, new members, and old impostors. Astron. Astrophys. 2021, 652, A2. [Google Scholar] [CrossRef]
- Manara, C.F.; Prusti, T.; Comeron, F.; Mor, R.; Alcalá, J.M.; Antoja, T.; Facchini, S.; Fedele, D.; Frasca, A.; Jerabkova, T.; et al. Gaia DR2 view of the Lupus V-VI clouds: The candidate diskless young stellar objects are mainly background contaminants. Astron. Astrophys. 2018, 615, L1. [Google Scholar] [CrossRef] [Green Version]
- Galli, P.A.B.; Bouy, H.; Olivares, J.; Miret-Roig, N.; Vieira, R.G.; Sarro, L.M.; Barrado, D.; Berihuete, A.; Bertout, C.; Bertin, E.; et al. Lupus DANCe. Census of stars and 6D structure with Gaia-DR2 data. Astron. Astrophys. 2020, 643, A148. [Google Scholar] [CrossRef]
- Damiani, F.; Prisinzano, L.; Micela, G.; Sciortino, S. Wide-area photometric and astrometric (Gaia DR2) study of the young cluster NGC 6530. Astron. Astrophys. 2019, 623, A25. [Google Scholar] [CrossRef] [Green Version]
- Zuckerman, B. The Nearby, Young, Argus Association: Membership, Age, and Dusty Debris Disks. Astrophys. J. 2019, 870, 27. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Chen, L.; Kouwenhoven, M.B.N.; Li, L.; Shao, Z.; Hou, J. Substructure and halo population of Double Cluster h and χ Persei. Astron. Astrophys. 2019, 624, A34. [Google Scholar] [CrossRef] [Green Version]
- Yalyalieva, L.; Carraro, G.; Vazquez, R.; Rizzo, L.; Glushkova, E.; Costa, E. A new look at Sco OB1 association with Gaia DR2. Mon. Not. R. Astron. Soc. 2020, 495, 1349–1359. [Google Scholar] [CrossRef]
- Berlanas, S.R.; Wright, N.J.; Herrero, A.; Drew, J.E.; Lennon, D.J. Disentangling the spatial substructure of Cygnus OB2 from Gaia DR2. Mon. Not. R. Astron. Soc. 2019, 484, 1838–1842. [Google Scholar] [CrossRef] [Green Version]
- Berlanas, S.R.; Herrero, A.; Comerón, F.; Simón-Díaz, S.; Lennon, D.J.; Pasquali, A.; Maíz Apellániz, J.; Sota, A.; Pellerín, A. Spectroscopic characterization of the known O-star population in Cygnus OB2. Evidence of multiple star-forming bursts. Astron. Astrophys. 2020, 642, A168. [Google Scholar] [CrossRef]
- Quintana, A.L.; Wright, N.J. Revisiting the Cygnus OB associations. Mon. Not. R. Astron. Soc. 2021, 508, 2370–2385. [Google Scholar] [CrossRef]
- Orellana, R.B.; de Biasi, M.S.; Paíz, L.G. New members of Cygnus OB2 from Gaia DR2. Mon. Not. R. Astron. Soc. 2021, 502, 6080–6093. [Google Scholar] [CrossRef]
- Miret-Roig, N.; Huélamo, N.; Bouy, H. Searching for debris discs in the 30 Myr open cluster IC 4665. Astron. Astrophys. 2020, 641, A156. [Google Scholar] [CrossRef]
- Pang, X.; Li, Y.; Tang, S.Y.; Pasquato, M.; Kouwenhoven, M.B.N. Different Fates of Young Star Clusters after Gas Expulsion. Astrophys. J. Lett. 2020, 900, L4. [Google Scholar] [CrossRef]
- Miret-Roig, N.; Galli, P.A.B.; Brandner, W.; Bouy, H.; Barrado, D.; Olivares, J.; Antoja, T.; Romero-Gómez, M.; Figueras, F.; Lillo-Box, J. Dynamical traceback age of the β Pictoris moving group. Astron. Astrophys. 2020, 642, A179. [Google Scholar] [CrossRef]
- Galli, P.A.B.; Bouy, H.; Olivares, J.; Miret-Roig, N.; Sarro, L.M.; Barrado, D.; Berihuete, A.; Bertin, E.; Cuillandre, J.C. Chamaeleon DANCe. Revisiting the stellar populations of Chamaeleon I and Chamaeleon II with Gaia-DR2 data. Astron. Astrophys. 2021, 646, A46. [Google Scholar] [CrossRef]
- Zuckerman, B.; Klein, B.; Kastner, J. The Nearby, Young, χ1 Fornacis Cluster: Membership, Age, and an Extraordinary Ensemble of Dusty Debris Disks. Astrophys. J. 2019, 887, 87. [Google Scholar] [CrossRef] [Green Version]
- Galli, P.A.B.; Bouy, H.; Olivares, J.; Miret-Roig, N.; Sarro, L.M.; Barrado, D.; Berihuete, A. χ1 Fornacis cluster DANCe. Census of stars, structure, and kinematics of the cluster with Gaia-EDR3. Astron. Astrophys. 2021, 654, A122. [Google Scholar] [CrossRef]
- Pilbratt, G.L.; Riedinger, J.R.; Passvogel, T.; Crone, G.; Doyle, D.; Gageur, U.; Heras, A.M.; Jewell, C.; Metcalfe, L.; Ott, S.; et al. Herschel Space Observatory. An ESA facility for far-infrared and submillimetre astronomy. Astron. Astrophys. 2010, 518, L1. [Google Scholar] [CrossRef] [Green Version]
- Green, G.M.; Schlafly, E.; Zucker, C.; Speagle, J.S.; Finkbeiner, D. A 3D Dust Map Based on Gaia, Pan-STARRS 1, and 2MASS. Astrophys. J. 2019, 887, 93. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.Q.; Huang, Y.; Yuan, H.B.; Wang, C.; Fan, D.W.; Xiang, M.S.; Zhang, H.W.; Tian, Z.J.; Liu, X.W. Three-dimensional interstellar dust reddening maps of the Galactic plane. Mon. Not. R. Astron. Soc. 2019, 483, 4277–4289. [Google Scholar] [CrossRef]
- Lallement, R.; Babusiaux, C.; Vergely, J.L.; Katz, D.; Arenou, F.; Valette, B.; Hottier, C.; Capitanio, L. Gaia-2MASS 3D maps of Galactic interstellar dust within 3 kpc. Astron. Astrophys. 2019, 625, A135. [Google Scholar] [CrossRef] [Green Version]
- Hottier, C.; Babusiaux, C.; Arenou, F. FEDReD. II. 3D extinction map with 2MASS and Gaia DR2 data. Astron. Astrophys. 2020, 641, A79. [Google Scholar] [CrossRef]
- Leike, R.H.; Glatzle, M.; Enßlin, T.A. Resolving nearby dust clouds. Astron. Astrophys. 2020, 639, A138. [Google Scholar] [CrossRef]
- Zucker, C.; Goodman, A.; Alves, J.; Bialy, S.; Koch, E.W.; Speagle, J.S.; Foley, M.M.; Finkbeiner, D.; Leike, R.; Enßlin, T.; et al. On the Three-dimensional Structure of Local Molecular Clouds. Astrophys. J. 2021, 919, 35. [Google Scholar] [CrossRef]
- Oh, S.; Kroupa, P. Dynamical ejections of massive stars from young star clusters under diverse initial conditions. Astron. Astrophys. 2016, 590, A107. [Google Scholar] [CrossRef] [Green Version]
- Blaauw, A. On the origin of the O- and B-type stars with high velocities (the “run-away” stars), and some related problems. Bull. Astron. Inst. Neth. 1961, 15, 265. [Google Scholar]
- Poveda, A.; Ruiz, J.; Allen, C. Run-away Stars as the Result of the Gravitational Collapse of Proto-stellar Clusters. Bol. Obs. Tonantzintla Tacubaya 1967, 4, 86–90. [Google Scholar]
- Fujii, M.S.; Portegies Zwart, S. The Origin of OB Runaway Stars. Science 2011, 334, 1380. [Google Scholar] [CrossRef] [Green Version]
- McBride, A.; Kounkel, M. Runaway Young Stars near the Orion Nebula. Astrophys. J. 2019, 884, 6. [Google Scholar] [CrossRef]
- Schoettler, C.; de Bruijne, J.; Vaher, E.; Parker, R.J. Runaway and walkaway stars from the ONC with Gaia DR2. Mon. Not. R. Astron. Soc. 2020, 495, 3104–3123. [Google Scholar] [CrossRef]
- Drew, J.E.; Monguió, M.; Wright, N.J. The O star hinterland of the Galactic starburst, NGC 3603. Mon. Not. R. Astron. Soc. 2019, 486, 1034–1044. [Google Scholar] [CrossRef]
- Drew, J.E.; Monguió, M.; Wright, N.J. Proper motions of OB stars in the far Carina Arm. Mon. Not. R. Astron. Soc. 2021, 508, 4952–4968. [Google Scholar] [CrossRef]
- Zeidler, P.; Sabbi, E.; Nota, A.; McLeod, A.F. The Young Massive Star Cluster Westerlund 2 Observed with MUSE. III. A Cluster in Motion—The Complex Internal Dynamics. Astron. J. 2021, 161, 140. [Google Scholar] [CrossRef]
- Ratzenböck, S.; Meingast, S.; Alves, J.; Möller, T.; Bomze, I. Extended stellar systems in the solar neighborhood. IV. Meingast 1: The most massive stellar stream in the solar neighborhood. Astron. Astrophys. 2020, 639, A64. [Google Scholar] [CrossRef]
- Curtis, J.L.; Agüeros, M.A.; Mamajek, E.E.; Wright, J.T.; Cummings, J.D. TESS Reveals that the Nearby Pisces-Eridanus Stellar Stream is only 120 Myr Old. Astron. J. 2019, 158, 77. [Google Scholar] [CrossRef]
- Kounkel, M.; Covey, K. Untangling the Galaxy I: Local Structure and Star Formation History of the Milky Way. arXiv 2019, arXiv:1907.07709. [Google Scholar] [CrossRef] [Green Version]
- Zari, E.; Hashemi, H.; Brown, A.G.A.; Jardine, K.; de Zeeuw, P.T. 3D mapping of young stars in the solar neighbourhood with Gaia DR2. Astron. Astrophys. 2018, 620, A172. [Google Scholar] [CrossRef] [Green Version]
- Kerr, R.M.P.; Rizzuto, A.C.; Kraus, A.L.; Offner, S.S.R. Stars with Photometrically Young Gaia Luminosities Around the Solar System (SPYGLASS). I. Mapping Young Stellar Structures and Their Star Formation Histories. Astrophys. J. 2021, 917, 23. [Google Scholar] [CrossRef]
- McBride, A.; Lingg, R.; Kounkel, M.; Covey, K.; Hutchinson, B. Untangling the Galaxy. III. Photometric Search for Pre-main-sequence Stars with Deep Learning. Astron. J. 2021, 162, 282. [Google Scholar] [CrossRef]
- Lamers, H.J.G.L.M.; Gieles, M.; Portegies Zwart, S.F. Disruption time scales of star clusters in different galaxies. Astron. Astrophys. 2005, 429, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Lamers, H.J.G.L.M.; Gieles, M. Clusters in the solar neighbourhood: How are they destroyed? Astron. Astrophys. 2006, 455, L17–L20. [Google Scholar] [CrossRef] [Green Version]
- Gieles, M.; Baumgardt, H. Lifetimes of tidally limited star clusters with different radii. Mon. Not. R. Astron. Soc. 2008, 389, L28–L32. [Google Scholar] [CrossRef]
- Gieles, M. The Role of Tidal Forces in Star Cluster Disruption. arXiv 2006, arXiv:astro-ph/astro-ph/0609103. [Google Scholar]
- Reino, S.; de Bruijne, J.; Zari, E.; d’Antona, F.; Ventura, P. A Gaia study of the Hyades open cluster. Mon. Not. R. Astron. Soc. 2018, 477, 3197–3216. [Google Scholar] [CrossRef] [Green Version]
- Lodieu, N.; Smart, R.L.; Pérez-Garrido, A.; Silvotti, R. A 3D view of the Hyades stellar and sub-stellar population. Astron. Astrophys. 2019, 623, A35. [Google Scholar] [CrossRef] [Green Version]
- Röser, S.; Schilbach, E.; Goldman, B. Hyades tidal tails revealed by Gaia DR2. Astron. Astrophys. 2019, 621, L2. [Google Scholar] [CrossRef] [Green Version]
- Meingast, S.; Alves, J. Extended stellar systems in the solar neighborhood. I. The tidal tails of the Hyades. Astron. Astrophys. 2019, 621, L3. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.; Evans, N.W. Kinematic modelling of clusters with Gaia: The death throes of the Hyades. Mon. Not. R. Astron. Soc. 2020, 498, 1920–1938. [Google Scholar] [CrossRef]
- Jerabkova, T.; Boffin, H.M.J.; Beccari, G.; de Marchi, G.; de Bruijne, J.H.J.; Prusti, T. The 800 pc long tidal tails of the Hyades star cluster. Possible discovery of candidate epicyclic overdensities from an open star cluster. Astron. Astrophys. 2021, 647, A137. [Google Scholar] [CrossRef]
- Röser, S.; Schilbach, E. Praesepe (NGC 2632) and its tidal tails. Astron. Astrophys. 2019, 627, A4. [Google Scholar] [CrossRef] [Green Version]
- Yeh, F.C.; Carraro, G.; Montalto, M.; Seleznev, A.F. Ruprecht 147: A Paradigm of Dissolving Star Cluster. Astron. J. 2019, 157, 115. [Google Scholar] [CrossRef] [Green Version]
- Carrera, R.; Pasquato, M.; Vallenari, A.; Balaguer-Núñez, L.; Cantat-Gaudin, T.; Mapelli, M.; Bragaglia, A.; Bossini, D.; Jordi, C.; Galadí-Enríquez, D.; et al. Extended halo of NGC 2682 (M 67) from Gaia DR2. Astron. Astrophys. 2019, 627, A119. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.Y.; Pang, X.; Yuan, Z.; Chen, W.P.; Hong, J.; Goldman, B.; Just, A.; Shukirgaliyev, B.; Lin, C.C. Discovery of Tidal Tails in Disrupting Open Clusters: Coma Berenices and a Neighbor Stellar Group. Astrophys. J. 2019, 877, 12. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Ghosh, A.; Ojha, D.K.; Pandey, R.; Sinha, T.; Pandey, A.K.; Ghosh, S.K.; Panwar, N.; Pandey, S.B. The disintegrating old open cluster Czernik 3. Mon. Not. R. Astron. Soc. 2020, 498, 2309–2322. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, S.Y.; Chen, W.P.; Pang, X.; Liu, J.Z. Diagnosing the Stellar Population and Tidal Structure of the Blanco 1 Star Cluster. Astrophys. J. 2020, 889, 99. [Google Scholar] [CrossRef]
- Ye, X.; Zhao, J.; Zhang, J.; Yang, Y.; Zhao, G. Extended Tidal Tails of IC 4756 Detected by Gaia EDR3. Astron. J. 2021, 162, 171. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Agarwal, M.; Rao, K.K.; Vaidya, K. Tidal tails in the disintegrating open cluster NGC 752. Mon. Not. R. Astron. Soc. 2021, 505, 1607–1613. [Google Scholar] [CrossRef]
- Piatti, A.E.; Malhan, K. First evidence of a collision between two unrelated open clusters in the Milky Way. Mon. Not. R. Astron. Soc. 2022, 511, L1–L7. [Google Scholar] [CrossRef]
- Kharchenko, N.V.; Berczik, P.; Petrov, M.I.; Piskunov, A.E.; Röser, S.; Schilbach, E.; Scholz, R.D. Shape parameters of Galactic open clusters. Astron. Astrophys. 2009, 495, 807–818. [Google Scholar] [CrossRef]
- Meingast, S.; Alves, J.; Rottensteiner, A. Extended stellar systems in the solar neighborhood. V. Discovery of coronae of nearby star clusters. Astron. Astrophys. 2021, 645, A84. [Google Scholar] [CrossRef]
- Heyl, J.; Caiazzo, I.; Richer, H.; Miller, D.R. Reconstructing Nearby Young Clusters with Gaia EDR3. arXiv 2021, arXiv:2110.04296. [Google Scholar]
- Pang, X.; Li, Y.; Yu, Z.; Tang, S.Y.; Dinnbier, F.; Kroupa, P.; Pasquato, M.; Kouwenhoven, M.B.N. 3D Morphology of Open Clusters in the Solar Neighborhood with Gaia EDR 3: Its Relation to Cluster Dynamics. Astrophys. J. 2021, 912, 162. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Y.; Esamdin, A.; Liu, J.; Zeng, X. Deciphering Star Cluster Evolution by Shape Morphology. Astrophys. J. 2021, 912, 5. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, Y.; Esamdin, A. Decoding the morphological evolution of open clusters. Astron. Astrophys. 2021, 656, A49. [Google Scholar] [CrossRef]
- Tarricq, Y.; Soubiran, C.; Casamiquela, L.; Castro-Ginard, A.; Olivares, J.; Miret-Roig, N.; Galli, P.A.B. Structural parameters of 389 local Open Clusters. arXiv 2021, arXiv:2111.05291. [Google Scholar] [CrossRef]
- Healy, B.F.; McCullough, P.R. Stellar Spins in the Open Cluster NGC 2516. Astrophys. J. 2020, 903, 99. [Google Scholar] [CrossRef]
- Healy, B.F.; McCullough, P.R.; Schlaufman, K.C. Stellar Spins in the Pleiades, Praesepe, and M35 Open Clusters. arXiv 2021, arXiv:2109.08692. [Google Scholar] [CrossRef]
- Kamann, S.; Bastian, N.J.; Gieles, M.; Balbinot, E.; Hénault-Brunet, V.; Hénault-Brunet, V. Linking the rotation of a cluster to the spins of its stars: The kinematics of NGC 6791 and NGC 6819 in 3D. Mon. Not. R. Astron. Soc. 2019, 483, 2197–2206. [Google Scholar] [CrossRef]
- Ahumada, J.A.; Lapasset, E. New catalogue of blue stragglers in open clusters. Astron. Astrophys. 2007, 463, 789–797. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, S.; Vaidya, K.; Chen, W.P.; Beccari, G. The blue straggler population of the old open cluster Berkeley 17. Astron. Astrophys. 2019, 624, A26. [Google Scholar] [CrossRef] [Green Version]
- Nine, A.C.; Milliman, K.E.; Mathieu, R.D.; Geller, A.M.; Leiner, E.M.; Platais, I.; Tofflemire, B.M. WIYN Open Cluster Study. LXXXII. Radial-velocity Measurements and Spectroscopic Binary Orbits in the Open Cluster NGC 7789. Astron. J. 2020, 160, 169. [Google Scholar] [CrossRef]
- Rain, M.J.; Carraro, G.; Ahumada, J.A.; Villanova, S.; Boffin, H.; Monaco, L.; Beccari, G. A Study of the Blue Straggler Population of the Old Open Cluster Collinder 261. Astron. J. 2020, 159, 59. [Google Scholar] [CrossRef]
- Rain, M.J.; Carraro, G.; Ahumada, J.A.; Villanova, S.; Boffin, H.; Monaco, L. The Blue Straggler Population of the Open Clusters Trumpler 5, Trumpler 20, and NGC 2477. Astron. J. 2021, 161, 37. [Google Scholar] [CrossRef]
- Vaidya, K.; Rao, K.K.; Agarwal, M.; Bhattacharya, S. Blue straggler populations of seven open clusters with Gaia DR2. Mon. Not. R. Astron. Soc. 2020, 496, 2402–2421. [Google Scholar] [CrossRef]
- Rao, K.K.; Vaidya, K.; Agarwal, M.; Bhattacharya, S. Determination of dynamical ages of open clusters through the A+ parameter—I. Mon. Not. R. Astron. Soc. 2021, 508, 4919–4937. [Google Scholar] [CrossRef]
- Ferraro, F.R.; Lanzoni, B.; Dalessandro, E.; Beccari, G.; Pasquato, M.; Miocchi, P.; Rood, R.T.; Sigurdsson, S.; Sills, A.; Vesperini, E.; et al. Dynamical age differences among coeval star clusters as revealed by blue stragglers. Nature 2012, 492, 393–395. [Google Scholar] [CrossRef] [PubMed]
- Leiner, E.M.; Geller, A. A Census of Blue Stragglers in Gaia DR2 Open Clusters as a Test of Population Synthesis and Mass Transfer Physics. Astrophys. J. 2021, 908, 229. [Google Scholar] [CrossRef]
- Bastian, N.; de Mink, S.E. The effect of stellar rotation on colour-magnitude diagrams: On the apparent presence of multiple populations in intermediate age stellar clusters. Mon. Not. R. Astron. Soc. 2009, 398, L11–L15. [Google Scholar] [CrossRef]
- Li, C.; de Grijs, R.; Bastian, N.; Deng, L.; Niederhofer, F.; Zhang, C. The tight subgiant branch of the intermediate-age star cluster NGC 411 implies a single-aged stellar population. Mon. Not. R. Astron. Soc. 2016, 461, 3212–3221. [Google Scholar] [CrossRef] [Green Version]
- Kamann, S.; Bastian, N.; Usher, C.; Cabrera-Ziri, I.; Saracino, S. Exploring the role of binarity in the origin of the bimodal rotational velocity distribution in stellar clusters. Mon. Not. R. Astron. Soc. 2021, 508, 2302–2306. [Google Scholar] [CrossRef]
- Marino, A.F.; Milone, A.P.; Casagrande, L.; Przybilla, N.; Balaguer-Núñez, L.; di Criscienzo, M.; Serenelli, A.; Vilardell, F. Discovery of Extended Main Sequence Turnoffs in Galactic Open Clusters. Astrophys. J. Lett. 2018, 863, L33. [Google Scholar] [CrossRef]
- Cordoni, G.; Milone, A.P.; Marino, A.F.; di Criscienzo, M.; D’Antona, F.; Dotter, A.; Lagioia, E.P.; Tailo, M. Extended Main-sequence Turnoff as a Common Feature of Milky Way Open Clusters. Astrophys. J. 2018, 869, 139. [Google Scholar] [CrossRef] [Green Version]
- Lim, B.; Rauw, G.; Nazé, Y.; Sung, H.; Hwang, N.; Park, B.G. Extended main sequence turn-off originating from a broad range of stellar rotational velocities. Nat. Astron. 2019, 3, 76–81. [Google Scholar] [CrossRef]
- Si, S.; van Dyk, D.A.; von Hippel, T.; Robinson, E.; Jeffery, E.; Stenning, D.C. Bayesian hierarchical modelling of initial-final mass relations acrossstar clusters. Mon. Not. R. Astron. Soc. 2018, 480, 1300–1321. [Google Scholar] [CrossRef]
- Canton, P.A.; Williams, K.A.; Kilic, M.; Bolte, M. The White Dwarfs of the Old, Solar-metallicity Open Star Cluster Messier 67: Properties and Progenitors. Astron. J. 2021, 161, 169. [Google Scholar] [CrossRef]
- Heyl, J.; Caiazzo, I.; Richer, H. Reconstructing the Pleiades with Gaia EDR3. arXiv 2021, arXiv:2110.03837. [Google Scholar]
- Prišegen, M.; Piecka, M.; Faltová, N.; Kajan, M.; Paunzen, E. White dwarf-open cluster associations based on Gaia DR2. Astron. Astrophys. 2021, 645, A13. [Google Scholar] [CrossRef]
- Richer, H.B.; Caiazzo, I.; Du, H.; Grondin, S.; Hegarty, J.; Heyl, J.; Kerr, R.; Miller, D.R.; Thiele, S. Massive White Dwarfs in Young Star Clusters. Astrophys. J. 2021, 912, 165. [Google Scholar] [CrossRef]
- Gentile Fusillo, N.P.; Tremblay, P.E.; Gänsicke, B.T.; Manser, C.J.; Cunningham, T.; Cukanovaite, E.; Hollands, M.; Marsh, T.; Raddi, R.; Jordan, S.; et al. A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS. Mon. Not. R. Astron. Soc. 2019, 482, 4570–4591. [Google Scholar] [CrossRef] [Green Version]
- Michalska, G. Variable stars in young open cluster NGC 2244. Mon. Not. R. Astron. Soc. 2019, 487, 3505–3522. [Google Scholar] [CrossRef]
- Joshi, Y.C.; Maurya, J.; John, A.A.; Panchal, A.; Joshi, S.; Kumar, B. Photometric, kinematic, and variability study in the young open cluster NGC 1960. Mon. Not. R. Astron. Soc. 2020, 492, 3602–3621. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.J.; Bedding, T.R.; White, T.R.; Li, Y.; Hey, D.; Reese, D.; Joyce, M. Five young δ Scuti stars in the Pleiades seen with Kepler/K2. arXiv 2021, arXiv:2111.04203. [Google Scholar] [CrossRef]
- Breuval, L.; Kervella, P.; Anderson, R.I.; Riess, A.G.; Arenou, F.; Trahin, B.; Mérand, A.; Gallenne, A.; Gieren, W.; Storm, J.; et al. The Milky Way Cepheid Leavitt law based on Gaia DR2 parallaxes of companion stars and host open cluster populations. Astron. Astrophys. 2020, 643, A115. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, X. Galactic open cluster Cepheids—A census based on Gaia EDR3. Mon. Not. R. Astron. Soc. 2021, 504, 4768–4784. [Google Scholar] [CrossRef]
- Medina, G.E.; Lemasle, B.; Grebel, E.K. A revisited study of Cepheids in open clusters in the Gaia era. Mon. Not. R. Astron. Soc. 2021, 505, 1342–1366. [Google Scholar] [CrossRef]
- Verde, L.; Treu, T.; Riess, A.G. Tensions between the early and late Universe. Nature Astronomy 2019, 3, 891–895. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension—A review of solutions. Class. Quantum Gravity 2021, 38, 153001. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Breuval, L.; Brink, T.G.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team. arXiv 2021, arXiv:2112.04510. [Google Scholar]
- Cropper, M.; Katz, D.; Sartoretti, P.; Prusti, T.; de Bruijne, J.H.J.; Chassat, F.; Charvet, P.; Boyadjian, J.; Perryman, M.; Sarri, G.; et al. Gaia Data Release 2. Gaia Radial Velocity Spectrometer. Astron. Astrophys. 2018, 616, A5. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, G.; Randich, S.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J.; Feltzing, S.; Ferguson, A.; Jeffries, R.; Micela, G.; et al. The Gaia-ESO Public Spectroscopic Survey. Messenger 2012, 147, 25–31. [Google Scholar]
- Randich, S.; Gilmore, G.; Gaia-ESO Consortium. The Gaia-ESO Large Public Spectroscopic Survey. Messenger 2013, 154, 47–49. [Google Scholar]
- Deng, L.C.; Newberg, H.J.; Liu, C.; Carlin, J.L.; Beers, T.C.; Chen, L.; Chen, Y.Q.; Christlieb, N.; Grillmair, C.J.; Guhathakurta, P.; et al. LAMOST Experiment for Galactic Understanding and Exploration (LEGUE)—The survey’s science plan. Res. Astron. Astrophys. 2012, 12, 735–754. [Google Scholar] [CrossRef]
- Cui, X.Q.; Zhao, Y.H.; Chu, Y.Q.; Li, G.P.; Li, Q.; Zhang, L.P.; Su, H.J.; Yao, Z.Q.; Wang, Y.N.; Xing, X.Z.; et al. The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). Res. Astron. Astrophys. 2012, 12, 1197–1242. [Google Scholar] [CrossRef]
- De Silva, G.M.; Freeman, K.C.; Bland-Hawthorn, J.; Martell, S.; de Boer, E.W.; Asplund, M.; Keller, S.; Sharma, S.; Zucker, D.B.; Zwitter, T.; et al. The GALAH survey: Scientific motivation. Mon. Not. R. Astron. Soc. 2015, 449, 2604–2617. [Google Scholar] [CrossRef] [Green Version]
- Dalton, G.; Trager, S.C.; Abrams, D.C.; Carter, D.; Bonifacio, P.; Aguerri, J.A.L.; MacIntosh, M.; Evans, C.; Lewis, I.; Navarro, R.; et al. WEAVE: The next generation wide-field spectroscopy facility for the William Herschel Telescope. In Ground-based and Airborne Instrumentation for Astronomy IV; McLean, I.S., Ramsay, S.K., Takami, H., Eds.; SPIE: Bellingham, WA, USA, 2012; Volume 8446. [Google Scholar]
- De Jong, R.S.; Bellido-Tirado, O.; Chiappini, C.; Depagne, É.; Haynes, R.; Johl, D.; Schnurr, O.; Schwope, A.; Walcher, J.; Dionies, F.; et al. 4MOST: 4-metre multi-object spectroscopic telescope. In Proceedings of the Ground-based and Airborne Instrumentation for Astronomy IV, Amsterdam, The Netherlands, 1–6 July 2012. [Google Scholar]
- Donor, J.; Frinchaboy, P.M.; Cunha, K.; O’Connell, J.E.; Allende Prieto, C.; Almeida, A.; Anders, F.; Beaton, R.; Bizyaev, D.; Brownstein, J.R.; et al. The Open Cluster Chemical Abundances and Mapping Survey. IV. Abundances for 128 Open Clusters Using SDSS/APOGEE DR16. Astron. J. 2020, 159, 199. [Google Scholar] [CrossRef] [Green Version]
- Anders, F.; Chiappini, C.; Minchev, I.; Miglio, A.; Montalbán, J.; Mosser, B.; Rodrigues, T.S.; Santiago, B.X.; Baudin, F.; Beers, T.C.; et al. Red giants observed by CoRoT and APOGEE: The evolution of the Milky Way’s radial metallicity gradient. Astron. Astrophys. 2017, 600, A70. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Zhao, G. Open clusters as tracers on radial migration of the galactic disc. Mon. Not. R. Astron. Soc. 2020, 495, 2673–2681. [Google Scholar] [CrossRef]
- Netopil, M.; Oralhan, İ.A.; Çakmak, H.; Michel, R.; Karataş, Y. The Galactic metallicity gradient shown by open clusters in the light of radial migration. Mon. Not. R. Astron. Soc. 2022, 509, 421–439. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Zhao, G. Radial Migration from the Metallicity Gradient of Open Clusters and Outliers. Astrophys. J. 2021, 919, 52. [Google Scholar] [CrossRef]
- Jackson, R.J.; Jeffries, R.D.; Wright, N.J.; Randich, S.; Sacco, G.; Pancino, E.; Cantat-Gaudin, T.; Gilmore, G.; Vallenari, A.; Bensby, T.; et al. The Gaia-ESO Survey: Membership probabilities for stars in 32 open clusters from 3D kinematics. Mon. Not. R. Astron. Soc. 2020, 496, 4701–4716. [Google Scholar] [CrossRef]
- Jackson, R.J.; Jeffries, R.D.; Wright, N.J.; Randich, S.; Sacco, G.; Bragaglia, A.; Hourihane, A.; Tognelli, E.; Degl’Innocenti, S.; Prada Moroni, P.G.; et al. The Gaia-ESO Survey: Membership probabilities for stars in 63 open and 7 globular clusters from 3D kinematics. Mon. Not. R. Astron. Soc. 2022, 509, 1664–1680. [Google Scholar] [CrossRef]
- Carrera, R.; Casamiquela, L.; Carbajo-Hijarrubia, J.; Balaguer-Núñez, L.; Jordi, C.; Romero-Gómez, M.; Blanco-Cuaresma, S.; Cantat-Gaudin, T.; Lillo-Box, J.; Masana, E.; et al. OCCASO IV. Radial Velocities and Open Cluster Kinematics. arXiv 2021, arXiv:2110.02110. [Google Scholar]
- Casamiquela, L.; Soubiran, C.; Jofré, P.; Chiappini, C.; Lagarde, N.; Tarricq, Y.; Carrera, R.; Jordi, C.; Balaguer-Núñez, L.; Carbajo-Hijarrubia, J.; et al. Abundance-age relations with red clump stars in open clusters. Astron. Astrophys. 2021, 652, A25. [Google Scholar] [CrossRef]
- Frasca, A.; Alonso-Santiago, J.; Catanzaro, G.; Bragaglia, A.; Carretta, E.; Casali, G.; D’Orazi, V.; Magrini, L.; Andreuzzi, G.; Oliva, E.; et al. Stellar population astrophysics (SPA) with the TNG. Characterization of the young open cluster ASCC 123. Astron. Astrophys. 2019, 632, A16. [Google Scholar] [CrossRef]
- D’Orazi, V.; Oliva, E.; Bragaglia, A.; Frasca, A.; Sanna, N.; Biazzo, K.; Casali, G.; Desidera, S.; Lucatello, S.; Magrini, L.; et al. Stellar population astrophysics (SPA) with the TNG. Revisiting the metallicity of Praesepe (M 44). Astron. Astrophys. 2020, 633, A38. [Google Scholar] [CrossRef] [Green Version]
- Casali, G.; Magrini, L.; Frasca, A.; Bragaglia, A.; Catanzaro, G.; D’Orazi, V.; Sordo, R.; Carretta, E.; Origlia, L.; Andreuzzi, G.; et al. Stellar Population Astrophysics (SPA) with TNG. The old open clusters Collinder 350, Gulliver 51, NGC 7044, and Ruprecht 171. Astron. Astrophys. 2020, 643, A12. [Google Scholar] [CrossRef]
- Alonso-Santiago, J.; Frasca, A.; Catanzaro, G.; Bragaglia, A.; Andreuzzi, G.; Carrera, R.; Carretta, E.; Casali, G.; D’Orazi, V.; Fu, X.; et al. Stellar Population Astrophysics (SPA) with the TNG: Stock 2, a little-studied open cluster with an eMSTO. arXiv 2021, arXiv:2109.13959. [Google Scholar] [CrossRef]
- Zhang, R.; Lucatello, S.; Bragaglia, A.; Carrera, R.; Spina, L.; Alonso-Santiago, J.; Andreuzzi, G.; Casali, G.; Carretta, E.; Frasca, A.; et al. Stellar Population Astrophysics (SPA) with TNG. Atmospheric parameters of members of 16 unstudied open clusters. Astron. Astrophys. 2021, 654, A77. [Google Scholar] [CrossRef]
- Auvergne, M.; Bodin, P.; Boisnard, L.; Buey, J.T.; Chaintreuil, S.; Epstein, G.; Jouret, M.; Lam-Trong, T.; Levacher, P.; Magnan, A.; et al. The CoRoT satellite in flight: Description and performance. Astron. Astrophys. 2009, 506, 411–424. [Google Scholar] [CrossRef]
- Borucki, W.J.; Koch, D.; Basri, G.; Batalha, N.; Brown, T.; Caldwell, D.; Caldwell, J.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore, E.; et al. Kepler Planet-Detection Mission: Introduction and First Results. Science 2010, 327, 977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, S.B.; Sobeck, C.; Haas, M.; Still, M.; Barclay, T.; Mullally, F.; Troeltzsch, J.; Aigrain, S.; Bryson, S.T.; Caldwell, D.; et al. The K2 Mission: Characterization and Early Results. Publ. Astron. Soc. Pac. 2014, 126, 398. [Google Scholar] [CrossRef] [Green Version]
- Ricker, G.R.; Winn, J.N.; Vanderspek, R.; Latham, D.W.; Bakos, G.Á.; Bean, J.L.; Berta-Thompson, Z.K.; Brown, T.M.; Buchhave, L.; Butler, N.R.; et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telescopes Instrum. Syst. 2015, 1, 014003. [Google Scholar] [CrossRef] [Green Version]
- Rauer, H.; Catala, C.; Aerts, C.; Appourchaux, T.; Benz, W.; Brandeker, A.; Christensen-Dalsgaard, J.; Deleuil, M.; Gizon, L.; Goupil, M.J.; et al. The PLATO 2.0 mission. Exp. Astron. 2014, 38, 249–330. [Google Scholar] [CrossRef] [Green Version]
- Barnes, S.A. On the Rotational Evolution of Solar- and Late-Type Stars, Its Magnetic Origins, and the Possibility of Stellar Gyrochronology. Astrophys. J. 2003, 586, 464–479. [Google Scholar] [CrossRef] [Green Version]
- Douglas, S.T.; Agüeros, M.A.; Covey, K.R.; Bowsher, E.C.; Bochanski, J.J.; Cargile, P.A.; Kraus, A.; Law, N.M.; Lemonias, J.J.; Arce, H.G.; et al. The Factory and the Beehive. II. Activity and Rotation in Praesepe and the Hyades. Astrophys. J. 2014, 795, 161. [Google Scholar] [CrossRef] [Green Version]
- Douglas, S.T.; Agüeros, M.A.; Covey, K.R.; Cargile, P.A.; Barclay, T.; Cody, A.; Howell, S.B.; Kopytova, T. K2 Rotation Periods for Low-mass Hyads and the Implications for Gyrochronology. Astrophys. J. 2016, 822, 47. [Google Scholar] [CrossRef] [Green Version]
- Meibom, S.; Barnes, S.A.; Platais, I.; Gilliland, R.L.; Latham, D.W.; Mathieu, R.D. A spin-down clock for cool stars from observations of a 2.5-billion-year-old cluster. Nature 2015, 517, 589–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouma, L.G.; Hartman, J.D.; Bhatti, W.; Winn, J.N.; Bakos, G.Á. Cluster Difference Imaging Photometric Survey. I. Light Curves of Stars in Open Clusters from TESS Sectors 6 and 7. Astrophys. J. Suppl. Ser. 2019, 245, 13. [Google Scholar] [CrossRef] [Green Version]
- Douglas, S.T.; Curtis, J.L.; Agüeros, M.A.; Cargile, P.A.; Brewer, J.M.; Meibom, S.; Jansen, T. K2 Rotation Periods for Low-mass Hyads and a Quantitative Comparison of the Distribution of Slow Rotators in the Hyades and Praesepe. Astrophys. J. 2019, 879, 100. [Google Scholar] [CrossRef]
- Curtis, J.L.; Agüeros, M.A.; Douglas, S.T.; Meibom, S. A Temporary Epoch of Stalled Spin-down for Low-mass Stars: Insights from NGC 6811 with Gaia and Kepler. Astrophys. J. 2019, 879, 49. [Google Scholar] [CrossRef]
- Gruner, D.; Barnes, S.A. Rotation periods for cool stars in the open cluster Ruprecht 147 (NGC 6774): Implications for gyrochronology. arXiv 2020, arXiv:2010.02298. [Google Scholar] [CrossRef]
- Curtis, J.L.; Agüeros, M.A.; Matt, S.P.; Covey, K.R.; Douglas, S.T.; Angus, R.; Saar, S.H.; Cody, A.M.; Vanderburg, A.; Law, N.M.; et al. When Do Stalled Stars Resume Spinning Down? Advancing Gyrochronology with Ruprecht 147. arXiv 2020, arXiv:2010.02272. [Google Scholar] [CrossRef]
- Fritzewski, D.J.; Barnes, S.A.; James, D.J.; Strassmeier, K.G. The rotation period distribution of the rich Pleiades-age southern open cluster NGC 2516. Existence of a representative zero-age main sequence distribution. Astron. Astrophys. 2020, 641, A51. [Google Scholar] [CrossRef]
- Bouma, L.G.; Curtis, J.L.; Hartman, J.D.; Winn, J.N.; Bakos, G.Á. Rotation and Lithium Confirmation of a 500 pc Halo for the Open Cluster NGC 2516. Astron. J. 2021, 162, 197. [Google Scholar] [CrossRef]
- Godoy-Rivera, D.; Pinsonneault, M.H.; Rebull, L.M. Stellar Rotation in the Gaia Era: Revised Open Clusters’ Sequences. Astrophys. J. Suppl. Ser. 2021, 257, 46. [Google Scholar] [CrossRef]
- Pera, M.S.; Perren, G.I.; Moitinho, A.; Navone, H.D.; Vazquez, R.A. pyUPMASK: An improved unsupervised clustering algorithm. Astron. Astrophys. 2021, 650, A109. [Google Scholar] [CrossRef]
- Peña Ramírez, K.; González-Fernández, C.; Chené, A.N.; Ramírez Alegría, S. The VVV open cluster project. Near-infrared sequences of NGC 6067, NGC 6259, NGC 4815, Pismis 18, Trumpler 23, and Trumpler 20. Mon. Not. R. Astron. Soc. 2021, 503, 1864–1876. [Google Scholar] [CrossRef]
- Balaguer-Núñez, L.; López del Fresno, M.; Solano, E.; Galadí-Enríquez, D.; Jordi, C.; Jimenez-Esteban, F.; Masana, E.; Carbajo-Hijarrubia, J.; Paunzen, E. Clusterix 2.0: A virtual observatory tool to estimate cluster membership probability. Mon. Not. R. Astron. Soc. 2020, 492, 5811–5843. [Google Scholar] [CrossRef]
- Yuan, Z.; Chang, J.; Banerjee, P.; Han, J.; Kang, X.; Smith, M.C. StarGO: A New Method to Identify the Galactic Origins of Halo Stars. Astrophys. J. 2018, 863, 26. [Google Scholar] [CrossRef]
- Yuan, Z.; Malhan, K.; Sestito, F.; Ibata, R.A.; Martin, N.F.; Chang, J.; Li, T.S.; Caffau, E.; Bonifacio, P.; Bellazzini, M.; et al. The Complexity of the Cetus Stream Unveiled from the Fusion of STREAMFINDER and StarGO. arXiv 2021, arXiv:2112.05775. [Google Scholar]
- Agarwal, M.; Rao, K.K.; Vaidya, K.; Bhattacharya, S. ML-MOC: Machine Learning (kNN and GMM) based Membership determination for Open Clusters. Mon. Not. R. Astron. Soc. 2021, 502, 2582–2599. [Google Scholar] [CrossRef]
- Bovy, J.; Hogg, D.W.; Roweis, S.T. Extreme deconvolution: Inferring complete distribution functions from noisy, heterogeneous and incomplete observations. Ann. Appl. Stat. 2011, 5, 1657–1677. [Google Scholar] [CrossRef]
- Gagné, J.; Mamajek, E.E.; Malo, L.; Riedel, A.; Rodriguez, D.; Lafrenière, D.; Faherty, J.K.; Roy-Loubier, O.; Pueyo, L.; Robin, A.C.; et al. BANYAN. XI. The BANYAN Σ Multivariate Bayesian Algorithm to Identify Members of Young Associations with 150 pc. Astrophys. J. 2018, 856, 23. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, H.; Dias, W.S.; Moitinho, A.; Cantat-Gaudin, T.; Lépine, J.R.D.; Carraro, G.; Paunzen, E. Fundamental parameters for 45 open clusters with Gaia DR2, an improved extinction correction and a metallicity gradient prior. Mon. Not. R. Astron. Soc. 2020, 499, 1874–1889. [Google Scholar] [CrossRef]
- Olivares, J.; Sarro, L.M.; Bouy, H.; Miret-Roig, N.; Casamiquela, L.; Galli, P.A.B.; Berihuete, A.; Tarricq, Y. Kalkayotl: A cluster distance inference code. arXiv 2020, arXiv:2010.00272. [Google Scholar] [CrossRef]
- Gaia DR2 Astrometry. Available online: https://www.iau.org/static/science/scientific_bodies/divisions/a/2018/Lindegren.pdf (accessed on 15 December 2021).
- Astropy Collaboration. Astropy: A community Python package for astronomy. Astron. Astrophys. 2013, 558, A33. [Google Scholar] [CrossRef]
- Ginsburg, A.; Sipőcz, B.M.; Brasseur, C.E.; Cowperthwaite, P.S.; Craig, M.W.; Deil, C.; Guillochon, J.; Guzman, G.; Liedtke, S.; Lian Lim, P.; et al. Astroquery: An Astronomical Web-querying Package in Python. Astron. J. 2019, 157, 98. [Google Scholar] [CrossRef] [Green Version]
- Chambers, K.C.; Magnier, E.A.; Metcalfe, N.; Flewelling, H.A.; Huber, M.E.; Waters, C.Z.; Denneau, L.; Draper, P.W.; Farrow, D.; Finkbeiner, D.P.; et al. The Pan-STARRS1 Surveys. arXiv 2016, arXiv:1612.05560. [Google Scholar]
- Ivezić, Ž.; Kahn, S.M.; Tyson, J.A.; Abel, B.; Acosta, E.; Allsman, R.; Alonso, D.; AlSayyad, Y.; Anderson, S.F.; Andrew, J.; et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophys. J. 2019, 873, 111. [Google Scholar] [CrossRef]
- Hobbs, D.; Høg, E.; Mora, A.; Crowley, C.; McMillan, P.; Ranalli, P.; Heiter, U.; Jordi, C.; Hambly, N.; Church, R.; et al. GaiaNIR: Combining optical and Near-Infra-Red (NIR) capabilities with Time-Delay-Integration (TDI) sensors for a future Gaia-like mission. arXiv 2016, arXiv:1609.07325. [Google Scholar]
- Hobbs, D.; Brown, A.; Høg, E.; Jordi, C.; Kawata, D.; Tanga, P.; Klioner, S.; Sozzetti, A.; Wyrzykowski, Ł.; Walton, N.; et al. Voyage 2050 White Paper: All-Sky Visible and Near Infrared Space Astrometry. arXiv 2019, arXiv:1907.12535. [Google Scholar]
- Hobbs, D.; Brown, A.; Høg, E.; Jordi, C.; Kawata, D.; Tanga, P.; Klioner, S.; Sozzetti, A.; Wyrzykowski, Ł.; Walton, N.; et al. All-sky visible and near infrared space astrometry. Exp. Astron. 2021, 51, 783–843. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantat-Gaudin, T. Milky Way Star Clusters and Gaia: A Review of the Ongoing Revolution. Universe 2022, 8, 111. https://doi.org/10.3390/universe8020111
Cantat-Gaudin T. Milky Way Star Clusters and Gaia: A Review of the Ongoing Revolution. Universe. 2022; 8(2):111. https://doi.org/10.3390/universe8020111
Chicago/Turabian StyleCantat-Gaudin, Tristan. 2022. "Milky Way Star Clusters and Gaia: A Review of the Ongoing Revolution" Universe 8, no. 2: 111. https://doi.org/10.3390/universe8020111
APA StyleCantat-Gaudin, T. (2022). Milky Way Star Clusters and Gaia: A Review of the Ongoing Revolution. Universe, 8(2), 111. https://doi.org/10.3390/universe8020111