The Complex Behaviour of s-Process Element Abundances at Young Ages
Abstract
1. Historical Background
2. Recent Updates
The Barium Abundance for RZ Piscium
3. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruzual A., G. Star clusters as simple stellar populations. Philos. Trans. R. Soc. Lond. Ser. A 2010, 368, 783–799. [Google Scholar] [CrossRef] [PubMed]
- Friel, E.D. The Old Open Clusters of the Milky Way. Annu. Rev. Astron. Astrophys. 1995, 33, 381–414. [Google Scholar] [CrossRef]
- Friel, E.D. Open Clusters and Their Role in the Galaxy. In Planets, Stars and Stellar Systems. Volume 5: Galactic Structure and Stellar Populations; Oswalt, T.D., Gilmore, G., Eds.; Springer: Dordrecht, The Netherland, 2013; Volume 5, p. 347. [Google Scholar] [CrossRef]
- Magrini, L.; Randich, S.; Kordopatis, G.; Prantzos, N.; Romano, D.; Chieffi, A.; Limongi, M.; François, P.; Pancino, E.; Friel, E.; et al. The Gaia-ESO Survey: Radial distribution of abundances in the Galactic disc from open clusters and young-field stars. Astron. Astrophys. 2017, 603, A2. [Google Scholar] [CrossRef]
- Donor, J.; Frinchaboy, P.M.; Cunha, K.; O’Connell, J.E.; Allende Prieto, C.; Almeida, A.; Anders, F.; Beaton, R.; Bizyaev, D.; Brownstein, J.R.; et al. The Open Cluster Chemical Abundances and Mapping Survey. IV. Abundances for 128 Open Clusters Using SDSS/APOGEE DR16. Astron. J. 2020, 159, 199. [Google Scholar] [CrossRef]
- Spina, L.; Randich, S.; Magrini, L.; Jeffries, R.D.; Friel, E.D.; Sacco, G.G.; Pancino, E.; Bonito, R.; Bravi, L.; Franciosini, E.; et al. The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters. Astron. Astrophys. 2017, 601, A70. [Google Scholar] [CrossRef]
- Casamiquela, L.; Blanco-Cuaresma, S.; Carrera, R.; Balaguer-Núñez, L.; Jordi, C.; Anders, F.; Chiappini, C.; Carbajo-Hijarrubia, J.; Aguado, D.S.; del Pino, A.; et al. OCCASO-III. Iron peak and α elements of 18 open clusters. Comparison with chemical evolution models and field stars. Mon. Not. R. Astron. Soc. 2019, 490, 1821–1842. [Google Scholar] [CrossRef]
- Spina, L.; Ting, Y.S.; De Silva, G.M.; Frankel, N.; Sharma, S.; Cantat-Gaudin, T.; Joyce, M.; Stello, D.; Karakas, A.I.; Asplund, M.B.; et al. The GALAH survey: Tracing the Galactic disk with open clusters. Mon. Not. R. Astron. Soc. 2021, 503, 3279–3296. [Google Scholar] [CrossRef]
- Liu, F.; Yong, D.; Asplund, M.; Ramírez, I.; Meléndez, J. The Hyades open cluster is chemically inhomogeneous. Mon. Not. R. Astron. Soc. 2016, 457, 3934–3948. [Google Scholar] [CrossRef]
- Bovy, J. The Chemical Homogeneity of Open Clusters. Astrophys. J. 2016, 817, 49. [Google Scholar] [CrossRef]
- Souto, D.; Prieto, C.A.; Cunha, K.; Pinsonneault, M.; Smith, V.V.; Garcia-Dias, R.; Bovy, J.; García-Hernández, D.A.; Holtzman, J.; Johnson, J.A.; et al. Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. II. Atomic Diffusion in M67 Stars. Astrophys. J. 2019, 874, 97. [Google Scholar] [CrossRef]
- Spina, L.; Meléndez, J.; Karakas, A.I.; dos Santos, L.; Bedell, M.; Asplund, M.; Ramírez, I.; Yong, D.; Alves-Brito, A.; Bean, J.L.; et al. The temporal evolution of neutron-capture elements in the Galactic discs. Mon. Not. R. Astron. Soc. 2018, 474, 2580–2593. [Google Scholar] [CrossRef]
- Poovelil, V.J.; Zasowski, G.; Hasselquist, S.; Seth, A.; Donor, J.; Beaton, R.L.; Cunha, K.; Frinchaboy, P.M.; García-Hernández, D.A.; Hawkins, K.; et al. Open Cluster Chemical Homogeneity throughout the Milky Way. Astrophys. J. 2020, 903, 55. [Google Scholar] [CrossRef]
- Netopil, M.; Oralhan, İ.A.; Çakmak, H.; Michel, R.; Karataş, Y. The Galactic metallicity gradient shown by open clusters in the light of radial migration. Mon. Not. R. Astron. Soc. 2022, 509, 421–439. [Google Scholar] [CrossRef]
- Cowan, J.J.; Sneden, C.; Lawler, J.E.; Aprahamian, A.; Wiescher, M.; Langanke, K.; Martínez-Pinedo, G.; Thielemann, F.K. Origin of the heaviest elements: The rapid neutron-capture process. Rev. Mod. Phys. 2021, 93, 015002. [Google Scholar] [CrossRef]
- Wanajo, S.; Sekiguchi, Y.; Nishimura, N.; Kiuchi, K.; Kyutoku, K.; Shibata, M. Production of All the r-process Nuclides in the Dynamical Ejecta of Neutron Star Mergers. Astrophys. J. Lett. 2014, 789, L39. [Google Scholar] [CrossRef]
- Shibagaki, S.; Kajino, T.; Mathews, G.J.; Chiba, S.; Nishimura, S.; Lorusso, G. Relative Contributions of the Weak, Main, and Fission-recycling r-process. Astrophys. J. 2016, 816, 79. [Google Scholar] [CrossRef]
- Gallino, R.; Arlandini, C.; Busso, M.; Lugaro, M.; Travaglio, C.; Straniero, O.; Chieffi, A.; Limongi, M. Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the S-Process. Astrophys. J. 1998, 497, 388–403. [Google Scholar] [CrossRef]
- Bisterzo, S.; Travaglio, C.; Gallino, R.; Wiescher, M.; Käppeler, F. Galactic Chemical Evolution and Solar s-process Abundances: Dependence on the 13C-pocket Structure. Astrophys. J. 2014, 787, 10. [Google Scholar] [CrossRef]
- Käppeler, F.; Gallino, R.; Bisterzo, S.; Aoki, W. The s process: Nuclear physics, stellar models, and observations. Rev. Mod. Phys. 2011, 83, 157–194. [Google Scholar] [CrossRef]
- Lugaro, M.; Karakas, A.I.; Stancliffe, R.J.; Rijs, C. The s-process in Asymptotic Giant Branch Stars of Low Metallicity and the Composition of Carbon-enhanced Metal-poor Stars. Astrophys. J. 2012, 747, 2. [Google Scholar] [CrossRef]
- Kobayashi, C.; Karakas, A.I.; Lugaro, M. The Origin of Elements from Carbon to Uranium. Astrophys. J. 2020, 900, 179. [Google Scholar] [CrossRef]
- Pignatari, M.; Gallino, R.; Heil, M.; Wiescher, M.; Käppeler, F.; Herwig, F.; Bisterzo, S. The Weak s-Process in Massive Stars and its Dependence on the Neutron Capture Cross Sections. Astrophys. J. 2010, 710, 1557–1577. [Google Scholar] [CrossRef]
- Limongi, M.; Chieffi, A. Presupernova Evolution and Explosive Nucleosynthesis of Rotating Massive Stars in the Metallicity Range-3 ≤ [Fe/H] ≤ 0. Astrophys. J. Suppl. 2018, 237, 13. [Google Scholar] [CrossRef]
- D’Orazi, V.; Magrini, L.; Randich, S.; Galli, D.; Busso, M.; Sestito, P. Enhanced Production of Barium in Low-Mass Stars: Evidence from Open Clusters. Astrophys. J. Lett. 2009, 693, L31–L34. [Google Scholar] [CrossRef]
- Yong, D.; Carney, B.W.; Friel, E.D. Elemental Abundance Ratios in Stars of the Outer Galactic Disk. IV. A New Sample of Open Clusters. Astron. J. 2012, 144, 95. [Google Scholar] [CrossRef]
- Jacobson, H.R.; Friel, E.D. Zirconium, Barium, Lanthanum, and Europium Abundances in Open Clusters. Astron. J. 2013, 145, 107. [Google Scholar] [CrossRef]
- Reddy, A.B.S.; Lambert, D.L. Local associations and the barium puzzle. Mon. Not. R. Astron. Soc. 2015, 454, 1976–1991. [Google Scholar] [CrossRef][Green Version]
- Reddy, A.B.S.; Lambert, D.L. Solar Twins and the Barium Puzzle. Astrophys. J. 2017, 845, 151. [Google Scholar] [CrossRef]
- Mishenina, T.; Pignatari, M.; Carraro, G.; Kovtyukh, V.; Monaco, L.; Korotin, S.; Shereta, E.; Yegorova, I.; Herwig, F. New insights on Ba overabundance in open clusters. Evidence for the intermediate neutron-capture process at play? Mon. Not. R. Astron. Soc. 2015, 446, 3651–3668. [Google Scholar] [CrossRef]
- Magrini, L.; Spina, L.; Randich, S.; Friel, E.; Kordopatis, G.; Worley, C.; Pancino, E.; Bragaglia, A.; Donati, P.; Tautvaišienė, G.; et al. The Gaia-ESO Survey: The origin and evolution of s-process elements. Astron. Astrophys. 2018, 617, A106. [Google Scholar] [CrossRef]
- da Silva, R.; Porto de Mello, G.F.; Milone, A.C.; da Silva, L.; Ribeiro, L.S.; Rocha-Pinto, H.J. Accurate and homogeneous abundance patterns in solar-type stars of the solar neighbourhood: A chemo-chronological analysis. Astron. Astrophys. 2012, 542, A84. [Google Scholar] [CrossRef]
- Cowan, J.J.; Rose, W.K. Production of 14C and neutrons in red giants. Astrophys. J. 1977, 212, 149–158. [Google Scholar] [CrossRef]
- Maiorca, E.; Randich, S.; Busso, M.; Magrini, L.; Palmerini, S. s-processing in the Galactic Disk. I. Super-solar Abundances of Y, Zr, La, and Ce in Young Open Clusters. Astrophys. J. 2011, 736, 120. [Google Scholar] [CrossRef]
- D’Orazi, V.; Biazzo, K.; Desidera, S.; Covino, E.; Andrievsky, S.M.; Gratton, R.G. The chemical composition of nearby young associations: S-process element abundances in AB Doradus, Carina-Near and Ursa Major. Mon. Not. R. Astron. Soc. 2012, 423, 2789–2799. [Google Scholar] [CrossRef][Green Version]
- D’Orazi, V.; De Silva, G.M.; Melo, C.F.H. First determination of s-process element abundances in pre-main sequence clusters. Y, Zr, La, and Ce in IC 2391, the Argus association, and IC 2602. Astron. Astrophys. 2017, 598, A86. [Google Scholar] [CrossRef][Green Version]
- Yana Galarza, J.; Meléndez, J.; Lorenzo-Oliveira, D.; Valio, A.; Reggiani, H.; Carlos, M.; Ponte, G.; Spina, L.; Haywood, R.D.; Gandolfi, D. The effect of stellar activity on the spectroscopic stellar parameters of the young solar twin HIP 36515. Mon. Not. R. Astron. Soc. 2019, 490, L86–L90. [Google Scholar] [CrossRef]
- Shen, B.; Pilachowski, C.A.; Punzi, K.M.; Kastner, J.H.; Melis, C.; Zuckerman, B. The Barium Abundance in the Young Star RZ Piscium. Res. Notes Am. Astron. Soc. 2019, 3, 170. [Google Scholar] [CrossRef]
- Baratella, M.; D’Orazi, V.; Sheminova, V.; Spina, L.; Carraro, G.; Gratton, R.; Magrini, L.; Randich, S.; Lugaro, M.; Pignatari, M.; et al. The Gaia-ESO Survey: A new approach to chemically characterising young open clusters. II. Abundances of the neutron-capture elements Cu, Sr, Y, Zr, Ba, La, and Ce. Astron. Astrophys. 2021, 653, A67. [Google Scholar] [CrossRef]
- Baratella, M.; D’Orazi, V.; Carraro, G.; Desidera, S.; Randich, S.; Magrini, L.; Adibekyan, V.; Smiljanic, R.; Spina, L.; Tsantaki, M.; et al. The Gaia-ESO Survey: A new approach to chemically characterising young open clusters. I. Stellar parameters, and iron-peak, α-, and proton-capture elements. Astron. Astrophys. 2020, 634, A34. [Google Scholar] [CrossRef]
- Radick, R.R.; Lockwood, G.W.; Skiff, B.A.; Baliunas, S.L. Patterns of Variation among Sun-like Stars. Astrophys. J. Suppl. 1998, 118, 239. [Google Scholar] [CrossRef]
- Laming, J.M. The FIP and Inverse FIP Effects in Solar and Stellar Coronae. Living Rev. Sol. Phys. 2015, 12, 2. [Google Scholar] [CrossRef]
- Herwig, F.; Pignatari, M.; Woodward, P.R.; Porter, D.H.; Rockefeller, G.; Fryer, C.L.; Bennett, M.; Hirschi, R. Convective-reactive Proton-12C Combustion in Sakurai’s Object (V4334 Sagittarii) and Implications for the Evolution and Yields from the First Generations of Stars. Astrophys. J. 2011, 727, 89. [Google Scholar] [CrossRef]
- Lugaro, M.; Campbell, S.W.; Van Winckel, H.; De Smedt, K.; Karakas, A.I.; Käppeler, F. Post-AGB stars in the Magellanic Clouds and neutron-capture processes in AGB stars. Astron. Astrophys. 2015, 583, A77. [Google Scholar] [CrossRef]
- Roederer, I.U.; Karakas, A.I.; Pignatari, M.; Herwig, F. The Diverse Origins of Neutron-capture Elements in the Metal-poor Star HD 94028: Possible Detection of Products of I-Process Nucleosynthesis. Astrophys. J. 2016, 821, 37. [Google Scholar] [CrossRef]
- Jones, S.; Ritter, C.; Herwig, F.; Fryer, C.; Pignatari, M.; Bertolli, M.G.; Paxton, B. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis. Mon. Not. R. Astron. Soc. 2016, 455, 3848–3863. [Google Scholar] [CrossRef]
- Denissenkov, P.A.; Herwig, F.; Woodward, P.; Andrassy, R.; Pignatari, M.; Jones, S. The i-process yields of rapidly accreting white dwarfs from multicycle He-shell flash stellar evolution models with mixing parametrizations from 3D hydrodynamics simulations. Mon. Not. R. Astron. Soc. 2019, 488, 4258–4270. [Google Scholar] [CrossRef]
- Choplin, A.; Siess, L.; Goriely, S. The intermediate neutron capture process. I. Development of the i-process in low-metallicity low-mass AGB stars. Astron. Astrophys. 2021, 648, A119. [Google Scholar] [CrossRef]
- Vural, J.; Kreplin, A.; Kishimoto, M.; Weigelt, G.; Hofmann, K.H.; Kraus, S.; Schertl, D.; Dugué, M.; Duvert, G.; Lagarde, S.; et al. The inner circumstellar disk of the UX Orionis star V1026 Scorpii. Astron. Astrophys. 2014, 564, A118. [Google Scholar] [CrossRef][Green Version]
- Potravnov, I.S.; Grinin, V.P.; Ilyin, I.V.; Shakhovskoy, D.N. An in-depth analysis of the RZ Piscium atmosphere. Astron. Astrophys. 2014, 563, A139. [Google Scholar] [CrossRef][Green Version]
- Grinin, V.P.; Potravnov, I.S.; Musaev, F.A. The evolutionary status of the UX Orionis star RZ Piscium. Astron. Astrophys. 2010, 524, A8. [Google Scholar] [CrossRef]
- Williams, J.P.; Cieza, L.A. Protoplanetary Disks and Their Evolution. Annu. Rev. Astron. Astrophys. 2011, 49, 67–117. [Google Scholar] [CrossRef]
- Potravnov, I.S.; Grinin, V.P.; Serebriakova, N.A. Flares of accretion activity of the 20 Myr old UXOR RZ Psc. Astron. Astrophys. 2019, 630, A64. [Google Scholar] [CrossRef]
- Brown, A.G.A. et al. [Gaia Collaboration] Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 2018, 616, A1. [Google Scholar] [CrossRef]
- Punzi, K.M.; Kastner, J.H.; Melis, C.; Zuckerman, B.; Pilachowski, C.; Gingerich, L.; Knapp, T. Is the Young Star RZ Piscium Consuming Its Own (Planetary) Offspring? Astron. J. 2018, 155, 33. [Google Scholar] [CrossRef]
- Baratella, M.; D’Orazi, V.; Biazzo, K.; Desidera, S.; Gratton, R.; Benatti, S.; Bignamini, A.; Carleo, I.; Cecconi, M.; Claudi, R.; et al. The GAPS Programme at TNG. XXV. Stellar atmospheric parameters and chemical composition through GIARPS optical and near-infrared spectra. Astron. Astrophys. 2020, 640, A123. [Google Scholar] [CrossRef]
- Casagrande, L.; Ramírez, I.; Meléndez, J.; Bessell, M.; Asplund, M. An absolutely calibrated Teff scale from the infrared flux method. Dwarfs and subgiants. Astron. Astrophys. 2010, 512, A54. [Google Scholar] [CrossRef]
- Mucciarelli, A.; Bellazzini, M.; Massari, D. Exploiting the Gaia EDR3 photometry to derive stellar temperatures. Astron. Astrophys. 2021, 653, A90. [Google Scholar] [CrossRef]
- Dutra-Ferreira, L.; Pasquini, L.; Smiljanic, R.; Porto de Mello, G.F.; Steffen, M. Consistent metallicity scale for cool dwarfs and giants. A benchmark test using the Hyades. Astron. Astrophys. 2016, 585, A75. [Google Scholar] [CrossRef]
- Schuler, S.C.; King, J.R.; Terndrup, D.M.; Pinsonneault, M.H.; Murray, N.; Hobbs, L.M. Oxygen from the λ7774 High-Excitation Triplet in Open Cluster Dwarfs: Hyades. Astrophys. J. 2006, 636, 432–444. [Google Scholar] [CrossRef][Green Version]
- Schuler, S.C.; Plunkett, A.L.; King, J.R.; Pinsonneault, M.H. Fe I and Fe II Abundances of Solar-Type Dwarfs in the Pleiades Open Cluster. Publ. Astron. Soc. Pac. 2010, 122, 766. [Google Scholar] [CrossRef]
- D’Orazi, V.; Randich, S. Chemical composition of the young open clusters IC 2602 and IC 2391. Astron. Astrophys. 2009, 501, 553–562. [Google Scholar] [CrossRef]
- Kaminskiĭ, B.M.; Kovalchuk, G.U.; Pugach, A.F. Spectral Features of RZ Psc, a Cool Star with Algol-like Brightness Minima. Astron. Rep. 2000, 44, 611–623. [Google Scholar] [CrossRef]
- Minchev, I.; Chiappini, C.; Martig, M. Chemodynamical evolution of the Milky Way disk. I. The solar vicinity. Astron. Astrophys. 2013, 558, A9. [Google Scholar] [CrossRef]
- Sneden, C.A. Carbon and Nitrogen Abundances in Metal-Poor Stars. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 1973. [Google Scholar]
- D’Orazi, V.; Desidera, S.; Gratton, R.G.; Lanza, A.F.; Messina, S.; Andrievsky, S.M.; Korotin, S.; Benatti, S.; Bonnefoy, M.; Covino, E.; et al. A critical reassessment of the fundamental properties of GJ 504: Chemical composition and age. Astron. Astrophys. 2017, 598, A19. [Google Scholar] [CrossRef]
- Nissen, P.E. High-precision abundances of elements in solar twin stars. Trends with stellar age and elemental condensation temperature. Astron. Astrophys. 2015, 579, A52. [Google Scholar] [CrossRef]
Star | (K) | (dex) | (km/s) | [Fe/H] | [Ti/H] | [Ba/Fe] |
---|---|---|---|---|---|---|
RZ Pic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Orazi, V.; Baratella, M.; Lugaro, M.; Magrini, L.; Pignatari, M. The Complex Behaviour of s-Process Element Abundances at Young Ages. Universe 2022, 8, 110. https://doi.org/10.3390/universe8020110
D’Orazi V, Baratella M, Lugaro M, Magrini L, Pignatari M. The Complex Behaviour of s-Process Element Abundances at Young Ages. Universe. 2022; 8(2):110. https://doi.org/10.3390/universe8020110
Chicago/Turabian StyleD’Orazi, Valentina, Martina Baratella, Maria Lugaro, Laura Magrini, and Marco Pignatari. 2022. "The Complex Behaviour of s-Process Element Abundances at Young Ages" Universe 8, no. 2: 110. https://doi.org/10.3390/universe8020110
APA StyleD’Orazi, V., Baratella, M., Lugaro, M., Magrini, L., & Pignatari, M. (2022). The Complex Behaviour of s-Process Element Abundances at Young Ages. Universe, 8(2), 110. https://doi.org/10.3390/universe8020110