# Quantum Scalar-Field Propagator in a Stochastic Gravitational-Plane Wave

## Abstract

**:**

## 1. Introduction

## 2. Quantum Scalar Field in a Stochastic Plane Wave

## 3. Linearized Quantum Gravity

## 4. Dyson Expansion of the Scalar Field Propagator

## 5. Feynman Path Integral Representation

## 6. Estimates on the Propagator

## 7. Summary

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Deser, S. General relativity and the divergence problem in quantum field theory. Rev. Mod. Phys.
**1957**, 29, 417. [Google Scholar] [CrossRef] - Haba, Z. Universal regular short distance behavior from an interaction with a scale-invariant gravity. Phys. Lett.
**2002**, B528, 129. [Google Scholar] [CrossRef] [Green Version] - Ambjorn, J.; Jurkiewicz, J.; Loll, R. The spectral dimension of the universe is scale dependent. Phys. Rev. Lett.
**2005**, 95, 171301. [Google Scholar] [CrossRef] [Green Version] - Horava, P. Spectral dimension of the universe in quantum gravity at a Lifshitz point. Phys. Rev. Lett.
**2009**, 102, 161301. [Google Scholar] [CrossRef] [Green Version] - Reuter, M.; Saueressig, F. Fractal space-times under the microscope: A renormalization group view on Monte Carlo data. J. High Energy Phys.
**2011**, 1112, 012. [Google Scholar] [CrossRef] [Green Version] - Carlip, S. Dimension and dimensional reduction in quantum gravity. Class. Quant. Grav.
**2017**, 34, 193001. [Google Scholar] [CrossRef] [Green Version] - Carlip, S. Spacetime foam: A review. arXiv
**2022**, arXiv:2209.14282. [Google Scholar] - Horava, P. Quantum gravity at a Lifshitz point. Phys. Rev.
**2008**, D79, 084008. [Google Scholar] - Verlinde, H.L.; Verlinde, E.P. Scattering at Planckian energies. Nucl. Phys.
**1992**, B371, 246. [Google Scholar] [CrossRef] [Green Version] - Kabat, D.; Ortiz, M. Eikonal quantum gravity and Planckian scattering. Nucl. Phys.
**1992**, B388, 570. [Google Scholar] [CrossRef] [Green Version] - Abbott, B.P.; et al. [LIGO Scientific and Virgo Collaboration]. Tests of General Relativity with GW150914. Phys. Rev. Lett.
**2016**, 116, 221101, Erratum in Phys. Rev. Lett.**2016**, 121, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Parikh, M.; Wilczek, F.; Zahariade, G. Signatures of the quantization of gravity at gravitational wave detectors. Phys. Rev.
**2021**, D104, 046021. [Google Scholar] [CrossRef] - Kuchar, K. Ground state functional of the linearized gravitational field. J. Math. Phys.
**1970**, 11, 3322. [Google Scholar] [CrossRef] - Hartle, J.B. Ground-state wave function of linearized gravity. Phys. Rev.
**1984**, D29, 2730. [Google Scholar] [CrossRef] - Ema, Y.; Janno, R.; Nakayama, K. High-frequency graviton from inflaton oscillation. J. Cosmol. Astropart. Phys.
**2020**, 9, 015. [Google Scholar] [CrossRef] - D’Inverno, R. Introducing Einstein’s Relativity; Clarendon Press: Oxford, UK, 1996. [Google Scholar]
- Christensen, N. Stochastic gravitational wave backgrounds. Rep. Progr. Phys.
**2019**, 82, 016903. [Google Scholar] [CrossRef] [Green Version] - Ford, H.L. Gravitons and light cone fluctuations. Phys. Rev.
**1995**, D51, 1692. [Google Scholar] [CrossRef] [Green Version] - Ford, H.L.; Svaiter, N.F. Gravitons and light cone fluctuations. II. Correlation functions. Phys. Rev.
**1996**, D54, 2640. [Google Scholar] [CrossRef] [Green Version] - Yu, H.; Ford, H.L. Light-cone fluctuations in flat spacetimes with nontrivial topology. Phys. Rev.
**1999**, D60, 084023. [Google Scholar] [CrossRef] [Green Version] - Weinberg, S. Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations. Phys. Rev.
**1965**, 138, B988. [Google Scholar] [CrossRef] [Green Version] - Ginibre, J. Statistical Mechanics and Quantum Field Theory; de Witt, C., Stora, R., Eds.; Gordon and Breach: New York, NY, USA, 1971. [Google Scholar]
- Simon, B. Functional Integration and Quantum Physics; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Phinney, E.S. A practical theorem on gravitational wave backgrounds. arXiv
**2001**, arXiv:astro-ph/0108028. [Google Scholar] - Lasky, P.D.; Mingarelli, C.M.; Smith, T.L.; Giblin, J.T., Jr.; Thrane, E.; Reardon, D.J.; Caldwell, R.; Bailes, M.; Bhat, N.R.; Burke-Spolaor, S. Gravitational-wave cosmology across 29 decades in frequency. Phys. Rev. X
**2016**, 6, 011035. [Google Scholar] [CrossRef] [Green Version] - Grishchuk, L.P.; Sidorov, Y.V. Squeezed quantum states of relic gravitons and primordial density fluctuations. Phys. Rev.
**1990**, D42, 3413. [Google Scholar] [CrossRef] - Albrecht, A.; Ferreira, P.; Joyce, M.; Prokopec, T. Inflation and squeezed quantum states. Phys. Rev.
**1994**, D50, 4807. [Google Scholar] [CrossRef] [Green Version] - Haba, Z. Semiclassical stochastic representation of the Feynman integral. J. Phys.
**1994**, A27, 6457. [Google Scholar] [CrossRef] - Gelfand, I.M.; Shilov, G.E. Generalized Functions; AMS: New York, NY, USA, 1964; Volume 1. [Google Scholar]
- Bonanno, A.; Denz, T.; Pawlowski, J.M.; Reichert, M. Reconstructing the graviton. SciPost Phys.
**2022**, 12, 1. [Google Scholar] [CrossRef] - Becker, D.; Reuter, M. Propagating gravitons vs.‘dark matter’ in asymptotically safe quantum gravity. J. High Energy Phys.
**2014**, 12, 25. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Haba, Z.
Quantum Scalar-Field Propagator in a Stochastic Gravitational-Plane Wave. *Universe* **2022**, *8*, 648.
https://doi.org/10.3390/universe8120648

**AMA Style**

Haba Z.
Quantum Scalar-Field Propagator in a Stochastic Gravitational-Plane Wave. *Universe*. 2022; 8(12):648.
https://doi.org/10.3390/universe8120648

**Chicago/Turabian Style**

Haba, Zbigniew.
2022. "Quantum Scalar-Field Propagator in a Stochastic Gravitational-Plane Wave" *Universe* 8, no. 12: 648.
https://doi.org/10.3390/universe8120648