Quantum Scalar-Field Propagator in a Stochastic Gravitational-Plane Wave
Abstract
:1. Introduction
2. Quantum Scalar Field in a Stochastic Plane Wave
3. Linearized Quantum Gravity
4. Dyson Expansion of the Scalar Field Propagator
5. Feynman Path Integral Representation
6. Estimates on the Propagator
7. Summary
Funding
Data Availability Statement
Conflicts of Interest
References
- Deser, S. General relativity and the divergence problem in quantum field theory. Rev. Mod. Phys. 1957, 29, 417. [Google Scholar] [CrossRef]
- Haba, Z. Universal regular short distance behavior from an interaction with a scale-invariant gravity. Phys. Lett. 2002, B528, 129. [Google Scholar] [CrossRef] [Green Version]
- Ambjorn, J.; Jurkiewicz, J.; Loll, R. The spectral dimension of the universe is scale dependent. Phys. Rev. Lett. 2005, 95, 171301. [Google Scholar] [CrossRef] [Green Version]
- Horava, P. Spectral dimension of the universe in quantum gravity at a Lifshitz point. Phys. Rev. Lett. 2009, 102, 161301. [Google Scholar] [CrossRef] [Green Version]
- Reuter, M.; Saueressig, F. Fractal space-times under the microscope: A renormalization group view on Monte Carlo data. J. High Energy Phys. 2011, 1112, 012. [Google Scholar] [CrossRef] [Green Version]
- Carlip, S. Dimension and dimensional reduction in quantum gravity. Class. Quant. Grav. 2017, 34, 193001. [Google Scholar] [CrossRef] [Green Version]
- Carlip, S. Spacetime foam: A review. arXiv 2022, arXiv:2209.14282. [Google Scholar]
- Horava, P. Quantum gravity at a Lifshitz point. Phys. Rev. 2008, D79, 084008. [Google Scholar]
- Verlinde, H.L.; Verlinde, E.P. Scattering at Planckian energies. Nucl. Phys. 1992, B371, 246. [Google Scholar] [CrossRef] [Green Version]
- Kabat, D.; Ortiz, M. Eikonal quantum gravity and Planckian scattering. Nucl. Phys. 1992, B388, 570. [Google Scholar] [CrossRef] [Green Version]
- Abbott, B.P.; et al. [LIGO Scientific and Virgo Collaboration]. Tests of General Relativity with GW150914. Phys. Rev. Lett. 2016, 116, 221101, Erratum in Phys. Rev. Lett. 2016, 121, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parikh, M.; Wilczek, F.; Zahariade, G. Signatures of the quantization of gravity at gravitational wave detectors. Phys. Rev. 2021, D104, 046021. [Google Scholar] [CrossRef]
- Kuchar, K. Ground state functional of the linearized gravitational field. J. Math. Phys. 1970, 11, 3322. [Google Scholar] [CrossRef]
- Hartle, J.B. Ground-state wave function of linearized gravity. Phys. Rev. 1984, D29, 2730. [Google Scholar] [CrossRef]
- Ema, Y.; Janno, R.; Nakayama, K. High-frequency graviton from inflaton oscillation. J. Cosmol. Astropart. Phys. 2020, 9, 015. [Google Scholar] [CrossRef]
- D’Inverno, R. Introducing Einstein’s Relativity; Clarendon Press: Oxford, UK, 1996. [Google Scholar]
- Christensen, N. Stochastic gravitational wave backgrounds. Rep. Progr. Phys. 2019, 82, 016903. [Google Scholar] [CrossRef] [Green Version]
- Ford, H.L. Gravitons and light cone fluctuations. Phys. Rev. 1995, D51, 1692. [Google Scholar] [CrossRef] [Green Version]
- Ford, H.L.; Svaiter, N.F. Gravitons and light cone fluctuations. II. Correlation functions. Phys. Rev. 1996, D54, 2640. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Ford, H.L. Light-cone fluctuations in flat spacetimes with nontrivial topology. Phys. Rev. 1999, D60, 084023. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. Photons and gravitons in perturbation theory: Derivation of Maxwell’s and Einstein’s equations. Phys. Rev. 1965, 138, B988. [Google Scholar] [CrossRef] [Green Version]
- Ginibre, J. Statistical Mechanics and Quantum Field Theory; de Witt, C., Stora, R., Eds.; Gordon and Breach: New York, NY, USA, 1971. [Google Scholar]
- Simon, B. Functional Integration and Quantum Physics; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Phinney, E.S. A practical theorem on gravitational wave backgrounds. arXiv 2001, arXiv:astro-ph/0108028. [Google Scholar]
- Lasky, P.D.; Mingarelli, C.M.; Smith, T.L.; Giblin, J.T., Jr.; Thrane, E.; Reardon, D.J.; Caldwell, R.; Bailes, M.; Bhat, N.R.; Burke-Spolaor, S. Gravitational-wave cosmology across 29 decades in frequency. Phys. Rev. X 2016, 6, 011035. [Google Scholar] [CrossRef] [Green Version]
- Grishchuk, L.P.; Sidorov, Y.V. Squeezed quantum states of relic gravitons and primordial density fluctuations. Phys. Rev. 1990, D42, 3413. [Google Scholar] [CrossRef]
- Albrecht, A.; Ferreira, P.; Joyce, M.; Prokopec, T. Inflation and squeezed quantum states. Phys. Rev. 1994, D50, 4807. [Google Scholar] [CrossRef] [Green Version]
- Haba, Z. Semiclassical stochastic representation of the Feynman integral. J. Phys. 1994, A27, 6457. [Google Scholar] [CrossRef]
- Gelfand, I.M.; Shilov, G.E. Generalized Functions; AMS: New York, NY, USA, 1964; Volume 1. [Google Scholar]
- Bonanno, A.; Denz, T.; Pawlowski, J.M.; Reichert, M. Reconstructing the graviton. SciPost Phys. 2022, 12, 1. [Google Scholar] [CrossRef]
- Becker, D.; Reuter, M. Propagating gravitons vs.‘dark matter’ in asymptotically safe quantum gravity. J. High Energy Phys. 2014, 12, 25. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haba, Z. Quantum Scalar-Field Propagator in a Stochastic Gravitational-Plane Wave. Universe 2022, 8, 648. https://doi.org/10.3390/universe8120648
Haba Z. Quantum Scalar-Field Propagator in a Stochastic Gravitational-Plane Wave. Universe. 2022; 8(12):648. https://doi.org/10.3390/universe8120648
Chicago/Turabian StyleHaba, Zbigniew. 2022. "Quantum Scalar-Field Propagator in a Stochastic Gravitational-Plane Wave" Universe 8, no. 12: 648. https://doi.org/10.3390/universe8120648
APA StyleHaba, Z. (2022). Quantum Scalar-Field Propagator in a Stochastic Gravitational-Plane Wave. Universe, 8(12), 648. https://doi.org/10.3390/universe8120648