Probing the Low-Mass End of the Black Hole Mass Function via a Study of Faint Local Spiral Galaxies
Abstract
:1. Introduction
2. Methodology & Data
2.1. Sample Selection
2.2. Sample Comparison
3. Analysis
3.1. Galactic Spiral-Arm Pitch Angle Measurement
3.1.1. 2dfft
3.1.2. Use of galfit in Galaxies with Low Arm-Interarm Contrast
- Fully modeling the galaxy in question, including spiral structure, and extract the pitch angle of the spirals from the model. The main advantage in this case is foreground stars and clumps in the galaxy structure go unmodeled and instead the focus is on reproducing radial light profiles and measurable spiral arms. A disadvantage to model fitting of spiral arms with galfit is the time cost per galaxy to fit a reasonable model. Spiral arms produced through galfit modeling behave a bit differently from real arms and may be difficult to match to real galaxy features. When working with large samples of galaxies, basic radial fitting without non-axisymmetric components is the preferred usage, and is the method employed for all galaxies in this sample.
- Incorporatinggalfitmodels into pitch angle measurement to remove the radial light profile of the galaxy from the image before running2dfft. This option offers a more practical route than full modeling. This technique is rapid to implement, and as a consequence is not prohibitively time intensive for measuring large samples of galaxies. Generally, a one- or two-component Sérsic profile [19,20,21] is fit to the target galaxy and removed, where the residual image primarily retains the spiral structure.
3.1.3. Symmetrical Components
3.2. Properties and Measurement of the Faint Sample
3.3. Pearson Distribution Fitting of Pitch Angles
4. Pitch Angle Distribution Function
4.1. Non-Parametric Fitting
4.2. -Dependent Errors and Bandwidth Optimization
Heteroscedasticity
5. Black Hole Mass Function
5.1. Bandwidth Selection
5.2. Accounting for Heteroscedasticity
5.3. Expectation-Maximisation Clustering Analysis
5.4. Combined BHMF for Local Spiral Galaxies, Accounting for Sample Completeness
6. Discussion
6.1. A Bimodal Distribution
The Impact of the Later Hubble Type Spiral Galaxies
6.2. Intermediate-Mass Black Holes
6.3. Spiral Pattern Formation
7. Conclusions
- We confirm the existence of a bimodal distribution in the PADF.
- The PADF (and resulting BHMF) for late-type galaxies is dominated by the intrinsic minority of galaxies, but mostly overlooks the intrinsic majority of galaxies that constitutes the second population in the bimodal distribution.
- This second population of galaxies () is of particular interest for its preponderance of potential IMBHs.
- Finally, the morphological demarcation between the two populations of spiral galaxies could be indicative of competing spiral formation mechanisms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2dfft | Two-dimensional Fast Fourier Transform |
AC | Arm Class |
ADS | Astrophysics Data System |
AGES | Arkansas Galaxy Evolution Survey |
AGN | Active Galactic Nucleus |
AHPCC | Arkansas High Performance Computing Center |
AL | Alii |
APC | Article Processing Charge |
AR | Arkansas |
ASTRON | Astronomical |
BHMF | Black Hole Mass Function |
CA | California |
CALIFA | Calar Alto Legacy Integral Field Area Survey |
CAP | Center Astro, Particle, and Planetary Physics |
CC | Creative Commons |
CCD | Charge-coupled Device |
CF | Confer |
CGS | Carnegie-Irving Galaxy Survey |
COM | Commercial |
COVID-19 | Coronavirus Disease 2019 |
CT | Connecticut |
CV | Cataclysmic Variables |
DOI | Digital Object Identifier |
ED | Edition |
EDS | Editions |
EDU | Educause |
EFIGI | Extraction de Formes Idéalisées de Galaxies en Imagerie |
EG | Exempli Gratia |
EM | Expectation-maximization |
ENG | English |
ESO | European Southern Observatory |
ETC | Et Cetera |
GAMA | Galaxy and Mass Assembly |
HTTPS | Hypertext Transfer Protocol Secure |
IC | Index Catalogue of Nebulae and Clusters of Stars |
IE | Id Est |
IMBH | Intermediate-mass Black Hole |
IPAC | Infrared Processing and Analysis Center |
IR | Infrared |
iraf | Image Reduction and Analysis Facility |
KDE | Kernel Density Estimator |
M | Messier |
MAX | Maximum |
MDPI | Multidisciplinary Digital Publishing Institute |
MIN | Minimum |
MLCV | Maximum Likelihood Cross Validation |
NASA | National Aeronautics and Space Administration |
NB | Nota Bene |
NED | NASA/IPAC Extragalactic Database |
NGC | New General Catalogue of Nebulae and Clusters of Stars |
NYU | New York University |
OH | Ohio |
ORG | Organization |
P | Page |
PP | Pages |
PADF | Pitch Angle Distribution Function |
Probability Density Function | |
PGC | Principal Galaxies Catalogue |
PREP | Preparation |
PUBL | Publications |
RC3 | Third Reference Catalogue of Bright Galaxies |
SG | Spitzer Survey of Stellar Structure in Galaxies |
sparcfire | SPiral ARC FInder and REporter |
SD | Standard Deviation |
SMBH | Supermassive Black Hole |
SOC | Society |
SPIE | Society of Photo-Optical Instrumentation Engineers |
UAE | United Arab Emirates |
UCONN | University of Connecticut |
ULX | Ultraluminous X-ray |
US | United States |
USA | United States of America |
UV | Ultraviolet |
VIC | Victoria |
VOL | Volume |
WWW | World Wide Web |
1 | We do offer a word of caution regarding all black hole mass scaling relations, including the – relation, in regards to estimating low-mass black holes. The most trustworthy scaling relations are built by direct, dynamical measurements of black holes. However, resolution requirements to directly measure black hole masses create an observational bias where only the nearest and biggest black holes have been measured. Sahu et al. [8] compiled the largest-to-date sample of galaxies with directly-measured black holes, which adds up to only 145 galaxies. Furthermore, if we consider only late-type galaxies, the lowest directly-measured black hole mass is found in NGC 4395, with measurements of via gas dynamical modeling [30] and via gas kinematics [31]. Thus, any black hole mass estimate produced by the – relation, or any other black hole mass scaling relation for late-type galaxies, below the black hole mass of NGC 4395 is by definition an extrapolation. Until such a time as more low-mass black holes are directly measured, mass predictions below ≈ are uncertain, and below are speculation. |
2 | As pointed out in Davis et al. [32], the total stellar mass of a galaxy () produces an – relation with a level of scatter that is on par with the spheroid (bulge) stellar mass relation, –. Moreover, is considerably easier to measure than because it is only considered with measuring the total light of a galaxy rather than carefully decomposing the light profile a galaxy to yield accurate bulge masses. As such, the – relation is a great choice for late-type galaxies because it works even for bulgeless galaxies and is useful at higher redshifts where resolving the components of a galaxy becomes increasingly difficult. However, in their §2.3, Davis et al. [32] remark that the – relation is only as accurate as the mass-to-light ratios used to convert the total light of a galaxy into an equivalent stellar mass. Plagued with a myriad of complexities (e.g., [33,34]), the accurate estimation of mass-to-light ratios (and their heterogenous adoption, akin to the “little h” of cosmology) is perhaps one of the most pernicious problems in extragalactic astronomy. |
3 | |
4 | We note that the CGS [54] sample includes the Large Magellanic Cloud (ESO 056-G115), but not the irregular Small Magellanic Cloud (NGC 292). |
5 | https://ned.ipac.caltech.edu/ (accessed on 12 May 2014) |
6 | This is equivalent to a luminosity of , assuming the absolute magnitude of the Sun in the Johnson B-band is 5.44 mag in the vegamag system [55]. |
7 | Furthermore, Kennicutt [66] showed that is correlated with the rotational velocity of a spiral galaxy. |
8 | To learn how the rotational velocity of a late-type galaxy correlates with the central black hole mass, see Davis et al. [67]. |
9 | There is not a way to classify a galaxy as, for example, “three arms, plus or minus one arm.” However, other software such as SpiralArmCount [35,73] is capable of measuring the relative contributions from each choice of the number of arms. Moreover, the 2dfft software [71,72] used in our current manuscript is capable of computing the pitch angle for the superposition of any number of arms. As such, it can report the pitch angle for the superposition of & 3, as well as , 3, & 4, etc. |
10 | The software does compute , however, this is the trivial solution because , (where is the Fourier frequency with the maximum amplitude) and thus for . The software is also capable of computing , but these higher modes become redundant because they reflect the same trends seen in the modes when m is divisible by 1, 2, 3, 4, 5, or 6. |
11 | Since random inclination is the main limiting factor that prevents pitch angle measurement in spiral galaxies, this successful fraction of galaxies measured here is akin to measuring all galaxies with inclination angles less than ≲ (i.e., ), which is similar to the success rates in previous works (e.g., [53,71]). |
12 | However, Davis et al. [53] did manage to measure the pitch angles of three SBm type galaxies in their sample of 140 spiral galaxies. |
13 | Combining Equation (3) from Shields et al. [35] and Equation (3) from Davis et al. [29], even a modest spiral that remains intact for radians and begins at an inner galactic radius of 1 kpc would extend out to an outer radius of ≈10 kpc and cover a total arc length of ≈26 kpc as it wraps around the galaxy. |
14 | It is worth reviewing how the traditional Hubble-Jeans sequence [57,58,59,60,61,62,63] was built primarily on the geometry of spiral winding [94,95]. However, modern spiral galaxy morphological classifications have become almost entirely based on central bulge size [96,97,98]. Yet, numerous studies have concluded that only a weak correlation exists between bulge-to-disk light ratio and Hubble type [99,100,101,102]. Nonetheless, does decrease monotonically with increasing bulge-to-total light ratio (e.g., [103], Figure 5). |
15 | For comparison, the full CGS [54] sample (southern hemisphere galaxies with mag) plus the Milky Way has 41/606 (6.77%) galaxies with . |
16 | |
17 | Additionally, Graham et al. [118] presented a serendipitous discovery of a potential shredded offset nuclear star cluster with an IMBH, identified by an X-ray source and optical/infrared counterpart. |
18 | See (Davis and Graham [119], Figure 1), for a graphical representation of a logarithmic spiral with . |
19 | This clear example with NGC 205 draws attention to dwarf early-type galaxies as good candidates to host IMBHs. Furthermore, dwarf early-type galaxies occasionally possess faint disk substructure, including bars and spiral arms, and thus, can yield pitch angle measurements [121,122,123]. However, their typically elusive spiral structure often requires significant image processing to extract any extant embedded disk component. Specifically, 41/476 (≈) dwarf early-type galaxies in the sample of Lisker et al. [122] have “possible, probable, or unambiguous disk features.” Although, as Smith et al. [124] point out, volute structure in dwarf early-type galaxies could be generated by tidal triggering as the product of the cluster harassment of passive dwarf galaxies. |
20 | For consistency, all pitch angle measurements in our study were made from optical B-band images. |
21 | In contrast to the cases of unperturbed disks, the simulations by Kumar et al. [150] demonstrate that fly-by interactions excite strong spirals in the outer regions of a host galaxy’s disk, but the spirals tighten after pericenter passage of a perturbing galaxy and fade away after a few Gyr. |
22 | |
23 |
References
- Richstone, D.; Ajhar, E.A.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; Gebhardt, K.; Green, R.; Ho, L.C.; et al. Supermassive black holes and the evolution of galaxies. Nature 1998, 395, A14. [Google Scholar]
- Schödel, R.; Ott, T.; Genzel, R.; Hofmann, R.; Lehnert, M.; Eckart, A.; Mouawad, N.; Alexander, T.; Reid, M.J.; Lenzen, R.; et al. A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way. Nature 2002, 419, 694–696. [Google Scholar] [CrossRef] [PubMed]
- Graham, A.W.; Scott, N.; Schombert, J.M. Super-Massive Black Hole Mass Scaling Relations. Publ. Korean Astron. Soc. 2015, 30, 335–339. [Google Scholar] [CrossRef] [Green Version]
- Dalla Bontà, E.; Ferrarese, L.; Corsini, E.M.; Miralda-Escudé, J.; Coccato, L.; Sarzi, M.; Pizzella, A.; Beifiori, A. The High-Mass End of the Black Hole Mass Function: Mass Estimates in Brightest Cluster Galaxies. Astrophys. J. 2009, 690, 537–559. [Google Scholar] [CrossRef] [Green Version]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. Lett. 2000, 539, L9–L12. [Google Scholar] [CrossRef] [Green Version]
- Gebhardt, K.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; Green, R.; Grillmair, C.; Ho, L.C.; Kormendy, J.; et al. A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion. Astrophys. J. Lett. 2000, 539, L13–L16. [Google Scholar] [CrossRef] [Green Version]
- de Nicola, S.; Marconi, A.; Longo, G. The fundamental relation between supermassive black holes and their host galaxies. Mon. Not. R. Astron. Soc. 2019, 490, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Sahu, N.; Graham, A.W.; Davis, B.L. Revealing Hidden Substructures in the M BH-σ Diagram, and Refining the Bend in the L-σ Relation. Astrophys. J. 2019, 887, 10. [Google Scholar] [CrossRef] [Green Version]
- Salucci, P.; Szuszkiewicz, E.; Monaco, P.; Danese, L. Mass function of dormant black holes and the evolution of active galactic nuclei. Mon. Not. R. Astron. Soc. 1999, 307, 637–644. [Google Scholar] [CrossRef] [Green Version]
- Richstone, D.O. Supermassive Black Holes. Rev. Mod. Astron. 2002, 15, 57. [Google Scholar]
- Shankar, F.; Salucci, P.; Granato, G.L.; De Zotti, G.; Danese, L. Supermassive black hole demography: The match between the local and accreted mass functions. Mon. Not. R. Astron. Soc. 2004, 354, 1020–1030. [Google Scholar] [CrossRef] [Green Version]
- Tundo, E.; Bernardi, M.; Hyde, J.B.; Sheth, R.K.; Pizzella, A. On the Inconsistency between the Black Hole Mass Function Inferred from M•-σ and M•-L Correlations. Astrophys. J. 2007, 663, 53–60. [Google Scholar] [CrossRef]
- Shankar, F. The demography of supermassive black holes: Growing monsters at the heart of galaxies. New Astron. Rev. 2009, 53, 57–77. [Google Scholar] [CrossRef] [Green Version]
- Marconi, A.; Risaliti, G.; Gilli, R.; Hunt, L.K.; Maiolino, R.; Salvati, M. Local supermassive black holes, relics of active galactic nuclei and the X-ray background. Mon. Not. R. Astron. Soc. 2004, 351, 169–185. [Google Scholar] [CrossRef] [Green Version]
- Vika, M.; Driver, S.P.; Graham, A.W.; Liske, J. The Millennium Galaxy Catalogue: The Mbh-Lspheroid derived supermassive black hole mass function. Mon. Not. R. Astron. Soc. 2009, 400, 1451–1460. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, P. The mass assembly history of black holes in the Universe. arXiv 2011, arXiv:1105.4902. [Google Scholar]
- Franceschini, A.; Vercellone, S.; Fabian, A.C. Supermassive Black Holes in Early-Type Galaxies: Relationship with Radio Emission and Constraints on the Black Hole Mass Function. Mon. Not. R. Astron. Soc. 1998, 297, 817–824. [Google Scholar] [CrossRef] [Green Version]
- Graham, A.W.; Driver, S.P.; Allen, P.D.; Liske, J. The Millennium Galaxy Catalogue: The local supermassive black hole mass function in early- and late-type galaxies. Mon. Not. R. Astron. Soc. 2007, 378, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Sérsic, J.L. Influence of the atmospheric and instrumental dispersion on the brightness distribution in a galaxy. Bol. Asoc. Argent. Astron. Plata Argent. 1963, 6, 41–43. [Google Scholar]
- Sérsic, J.L. Atlas de Galaxias Australes; Observatorio Astronomico: Cordoba, Spain, 1968. [Google Scholar]
- Graham, A.W.; Driver, S.P. A Concise Reference to (Projected) Sérsic R1/n Quantities, Including Concentration, Profile Slopes, Petrosian Indices, and Kron Magnitudes. Publ. Astron. Soc. Aust. 2005, 22, 118–127. [Google Scholar] [CrossRef] [Green Version]
- Graham, A.W.; Driver, S.P. A Log-Quadratic Relation for Predicting Supermassive Black Hole Masses from the Host Bulge Sérsic Index. Astrophys. J. 2007, 655, 77–87. [Google Scholar] [CrossRef]
- Savorgnan, G.; Graham, A.W.; Marconi, A.; Sani, E.; Hunt, L.K.; Vika, M.; Driver, S.P. The supermassive black hole mass-Sérsic index relations for bulges and elliptical galaxies. Mon. Not. R. Astron. Soc. 2013, 434, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Savorgnan, G.A.D. Supermassive Black Holes and their Host Spheroids III. The Mbh-nsph Correlation. Astrophys. J. 2016, 821, 88. [Google Scholar] [CrossRef]
- Sahu, N.; Graham, A.W.; Davis, B.L. Defining the (Black Hole)-Spheroid Connection with the Discovery of Morphology-dependent Substructure in the MBH-nsph and MBH-Re,sph Diagrams: New Tests for Advanced Theories and Realistic Simulations. Astrophys. J. 2020, 903, 97. [Google Scholar] [CrossRef]
- Stone, C.J.; Arora, N.; Courteau, S.; Cuillandre, J.C. AutoProf-I. An automated non-parametric light profile pipeline for modern galaxy surveys. Mon. Not. R. Astron. Soc. 2021, 508, 1870–1887. [Google Scholar] [CrossRef]
- Seigar, M.S.; Kennefick, D.; Kennefick, J.; Lacy, C.H.S. Discovery of a Relationship between Spiral Arm Morphology and Supermassive Black Hole Mass in Disk Galaxies. Astrophys. J. Lett. 2008, 678, L93. [Google Scholar] [CrossRef]
- Berrier, J.C.; Davis, B.L.; Kennefick, D.; Kennefick, J.D.; Seigar, M.S.; Barrows, R.S.; Hartley, M.; Shields, D.; Bentz, M.C.; Lacy, C.H.S. Further Evidence for a Supermassive Black Hole Mass-Pitch Angle Relation. Astrophys. J. 2013, 769, 132. [Google Scholar] [CrossRef] [Green Version]
- Davis, B.L.; Graham, A.W.; Seigar, M.S. Updating the (supermassive black hole mass)-(spiral arm pitch angle) relation: A strong correlation for galaxies with pseudobulges. Mon. Not. R. Astron. Soc. 2017, 471, 2187–2203. [Google Scholar] [CrossRef] [Green Version]
- den Brok, M.; Seth, A.C.; Barth, A.J.; Carson, D.J.; Neumayer, N.; Cappellari, M.; Debattista, V.P.; Ho, L.C.; Hood, C.E.; McDermid, R.M. Measuring the Mass of the Central Black Hole in the Bulgeless Galaxy NGC 4395 from Gas Dynamical Modeling. Astrophys. J. 2015, 809, 101. [Google Scholar] [CrossRef]
- Brum, C.; Diniz, M.R.; Riffel, R.A.; Rodríguez-Ardila, A.; Ho, L.C.; Riffel, R.; Mason, R.; Martins, L.; Petric, A.; Sánchez-Janssen, R. A close look at the dwarf AGN of NGC 4395: Optical and near-IR integral field spectroscopy. Mon. Not. R. Astron. Soc. 2019, 486, 691–707. [Google Scholar] [CrossRef] [Green Version]
- Davis, B.L.; Graham, A.W.; Cameron, E. Black Hole Mass Scaling Relations for Spiral Galaxies. II. M BH-M *,tot and M BH-M *,disk. Astrophys. J. 2018, 869, 113. [Google Scholar] [CrossRef] [Green Version]
- Graham, A.W.; Sahu, N. Appreciating mergers for understanding the non-linear Mbh-M*, spheroid and Mbh-M*, galaxy relations, updated herein, and the implications for the (reduced) role of AGN feedback. arXiv 2022, arXiv:2209.14526. [Google Scholar] [CrossRef]
- Sahu, N.; Graham, A.W.; Hon, D.S.H. Quashing a suspected selection bias in galaxy samples having dynamically-measured supermassive black holes. Mon. Not. R. Astron. Soc. 2022, 518, 1352–1360. [Google Scholar] [CrossRef]
- Shields, D.; Boe, B.; Pfountz, C.; Davis, B.L.; Hartley, M.; Miller, R.; Slade, Z.; Abdeen, M.S.; Kennefick, D.; Kennefick, J. Spirality: A Novel Way to Measure Spiral Arm Pitch Angle. Galaxies 2022, 10, 100. [Google Scholar] [CrossRef]
- Giavalisco, M.; Ferguson, H.C.; Koekemoer, A.M.; Dickinson, M.; Alexander, D.M.; Bauer, F.E.; Bergeron, J.; Biagetti, C.; Brandt, W.N.; Casertano, S.; et al. The Great Observatories Origins Deep Survey: Initial Results from Optical and Near-Infrared Imaging. Astrophys. J. Lett. 2004, 600, L93–L98. [Google Scholar] [CrossRef]
- Yuan, T.; Richard, J.; Gupta, A.; Federrath, C.; Sharma, S.; Groves, B.A.; Kewley, L.J.; Cen, R.; Birnboim, Y.; Fisher, D.B. The Most Ancient Spiral Galaxy: A 2.6-Gyr-old Disk with a Tranquil Velocity Field. Astrophys. J. 2017, 850, 61. [Google Scholar] [CrossRef] [Green Version]
- Tsukui, T.; Iguchi, S. Spiral morphology in an intensely star-forming disk galaxy more than 12 billion years ago. Science 2021, 372, 1201–1205. [Google Scholar] [CrossRef] [PubMed]
- Elmegreen, D.M.; Elmegreen, B.G. The Onset of Spiral Structure in the Universe. Astrophys. J. 2014, 781, 11. [Google Scholar] [CrossRef] [Green Version]
- Davis, B.L.; Graham, A.W.; Cameron, E. Black Hole Mass Scaling Relations for Spiral Galaxies. I. M BH-M *,sph. Astrophys. J. 2019, 873, 85. [Google Scholar] [CrossRef] [Green Version]
- Lindblad, B. On the possibility of a quasi-stationary spiral structure in galaxies. Stock. Obs. Ann. 1963, 5, 5. [Google Scholar]
- Lin, C.C.; Shu, F.H. On the Spiral Structure of Disk Galaxies. Astrophys. J. 1964, 140, 646. [Google Scholar] [CrossRef]
- Lindblad, B. On the Dynamics of Stellar Systems (George Darwin Lecture). Mon. Not. R. Astron. Soc. 1948, 108, 214. [Google Scholar] [CrossRef] [Green Version]
- Lindblad, P.O. The development of spiral structure in a galaxy approached by numerical computations. Stock. Obs. Ann. 1960, 4, 4. [Google Scholar]
- Lin, C.C.; Shu, F.H. On the Spiral Structure of Disk Galaxies, II. Outline of a Theory of Density Waves. Proc. Natl. Acad. Sci. USA 1966, 55, 229–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuzzi, J.N.; Lissauer, J.J.; Shu, F.H. Density waves in Saturn’s rings. Nature 1981, 292, 703–707. [Google Scholar] [CrossRef]
- Sahu, N.; Graham, A.W.; Davis, B.L. Black Hole Mass Scaling Relations for Early-type Galaxies. I. M BH-M *,sph and M BH-M *,gal. Astrophys. J. 2019, 876, 155. [Google Scholar] [CrossRef]
- Pérez, L.M.; Carpenter, J.M.; Andrews, S.M.; Ricci, L.; Isella, A.; Linz, H.; Sargent, A.I.; Wilner, D.J.; Henning, T.; Deller, A.T.; et al. Spiral density waves in a young protoplanetary disk. Science 2016, 353, 1519–1521. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Goodman, J. The linear theory of tidally excited spiral density waves: Application to CV and circumplanetary discs. Mon. Not. R. Astron. Soc. 2018, 480, 4327–4337. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.; Nelson, R.P.; Hartmann, L. The Spiral Wave Instability Induced by a Giant Planet. I. Particle Stirring in the Inner Regions of Protoplanetary Disks. Astrophys. J. 2016, 833, 126. [Google Scholar] [CrossRef]
- Yu, S.Y.; Ho, L.C.; Zhu, Z. A Tight Relation between Spiral Arm Pitch Angle and Protoplanetary Disk Mass. Astrophys. J. 2019, 877, 100. [Google Scholar] [CrossRef] [Green Version]
- Davis, B.L.; Kennefick, D.; Kennefick, J.; Westfall, K.B.; Shields, D.W.; Flatman, R.; Hartley, M.T.; Berrier, J.C.; Martinsson, T.P.K.; Swaters, R.A. A Fundamental Plane of Spiral Structure in Disk Galaxies. Astrophys. J. Lett. 2015, 802, L13. [Google Scholar] [CrossRef] [Green Version]
- Davis, B.L.; Berrier, J.C.; Johns, L.; Shields, D.W.; Hartley, M.T.; Kennefick, D.; Kennefick, J.; Seigar, M.S.; Lacy, C.H.S. The Black Hole Mass Function Derived from Local Spiral Galaxies. Astrophys. J. 2014, 789, 124. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.C.; Li, Z.Y.; Barth, A.J.; Seigar, M.S.; Peng, C.Y. The Carnegie-Irvine Galaxy Survey. I. Overview and Atlas of Optical Images. Astrophys. J. Suppl. Ser. 2011, 197, 21. [Google Scholar] [CrossRef]
- Willmer, C.N.A. The Absolute Magnitude of the Sun in Several Filters. Astrophys. J. Suppl. 2018, 236, 47. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; et al. [Planck Collaboration]. Planck intermediate results. XVI. Profile likelihoods for cosmological parameters. Astron. Astrophys. 2014, 566, A54. [Google Scholar] [CrossRef] [Green Version]
- Jeans, J.H. Problems of Cosmogony and Stellar Dynamics; Cambridge University Press: Cambridge, UK, 1919. [Google Scholar]
- Jeans, J.H. Astronomy and Cosmogony; Cambridge The University Press: Cambridge, UK, 1928. [Google Scholar]
- Lundmark, K. The Motions and the Distances of Spiral Nebulæ. Mon. Not. R. Astron. Soc. 1925, 85, 865. [Google Scholar] [CrossRef]
- Hubble, E.P. Extragalactic nebulae. Astrophys. J. 1926, 64, 321–369. [Google Scholar] [CrossRef]
- Hubble, E. No. 324. Extra-galactic nebulae. In Contributions from the Mount Wilson Observatory; Carnegie Institution of Washington: Washington, DC, USA, 1926; Volume 324, pp. 1–49. [Google Scholar]
- Hubble, E.P. The classification of spiral nebulae. Observatory 1927, 50, 276–281. [Google Scholar]
- Hubble, E.P. Realm of the Nebulae; Yale University Press: New Haven, CT, USA, 1936. [Google Scholar]
- Mutlu-Pakdil, B.; Seigar, M.S.; Davis, B.L. The Local Black Hole Mass Function Derived from the MBH-P and the MBH-n Relations. Astrophys. J. 2016, 830, 117. [Google Scholar] [CrossRef] [Green Version]
- Tully, R.B.; Fisher, J.R. A new method of determining distances to galaxies. Astron. Astrophys. 1977, 54, 661–673. [Google Scholar]
- Kennicutt, R.C., Jr. The shapes of spiral arms along the Hubble sequence. Astron. J. 1981, 86, 1847–1858. [Google Scholar] [CrossRef]
- Davis, B.L.; Graham, A.W.; Combes, F. A Consistent Set of Empirical Scaling Relations for Spiral Galaxies: The (v max, M oM)-(σ0, M BH, ϕ) Relations. Astrophys. J. 2019, 877, 64. [Google Scholar] [CrossRef] [Green Version]
- Puerari, I.; Dottori, H.A. Fourier analysis of structure in spiral galaxies. Astron. Astrophys. Suppl. 1992, 93, 469–493. [Google Scholar]
- Saraiva Schroeder, M.F.; Pastoriza, M.G.; Kepler, S.O.; Puerari, I. The distribution of light in the spiral galaxy NGC 7412. Astron. Astrophys. Suppl. 1994, 108, 41–54. [Google Scholar]
- Puerari, I.; Block, D.L.; Elmegreen, B.G.; Frogel, J.A.; Eskridge, P.B. The detection of spiral arm modulation in the stellar disk of an optically flocculent and an optically grand design galaxy. Astron. Astrophys. 2000, 359, 932–940. [Google Scholar]
- Davis, B.L.; Berrier, J.C.; Shields, D.W.; Kennefick, J.; Kennefick, D.; Seigar, M.S.; Lacy, C.H.S.; Puerari, I. Measurement of Galactic Logarithmic Spiral Arm Pitch Angle Using Two-dimensional Fast Fourier Transform Decomposition. Astrophys. J. Suppl. 2012, 199, 33. [Google Scholar] [CrossRef] [Green Version]
- Davis, B.L.; Berrier, J.C.; Shields, D.W.; Kennefick, J.; Kennefick, D.; Seigar, M.S.; Lacy, C.H.S.; Puerari, I. 2dfft: Measuring Galactic Spiral Arm Pitch Angle; Astrophysics Source Code Library: Houghton, MI, USA, 2016. [Google Scholar]
- Shields, D.W.; Boe, B.; Pfountz, C.; Davis, B.L.; Hartley, M.; Pour Imani, H.; Slade, Z.; Kennefick, D.; Kennefick, J. Spirality: Spiral Arm Pitch Angle Measurement; Record ASCL:1512.015; Astrophysics Source Code Library: Houghton, MI, USA, 2015. [Google Scholar]
- Tody, D. The IRAF Data Reduction and Analysis System. In Proceedings of the Instrumentation in Astronomy VI, Tucson, AZ, USA, 4–8 March 1986; Crawford, D.L., Ed.; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Volume 627, p. 733. [Google Scholar] [CrossRef]
- Tody, D. IRAF in the Nineties. In Proceedings of the Astronomical Data Analysis Software and Systems II, Boston, MA, USA, 2–4 November 1992; Hanisch, R.J., Brissenden, R.J.V., Barnes, J., Eds.; Astronomical Society of the Pacific Conference Series. Astronomical Society of the Pacific: San Francisco, CA, USA, 1993; Volume 52, p. 173. [Google Scholar]
- National Optical Astronomy Observatories. IRAF: Image Reduction and Analysis Facility. 1999. Available online: http://ascl.net/9911.002 (accessed on 12 May 2014).
- Jedrzejewski, R.I. CCD surface photometry of elliptical galaxies—I. Observations, reduction and results. Mon. Not. R. Astron. Soc. 1987, 226, 747–768. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.Y.; Ho, L.C.; Impey, C.D.; Rix, H.W. Detailed Decomposition of Galaxy Images. II. Beyond Axisymmetric Models. Astron. J. 2010, 139, 2097–2129. [Google Scholar] [CrossRef]
- Hon, D.S.H.; Graham, A.W.; Davis, B.L.; Marconi, A. Disc cloaking: Establishing a lower limit to the number density of local compact massive spheroids/bulges and the potential fate of some high-z red nuggets. Mon. Not. R. Astron. Soc. 2022, 514, 3410–3451. [Google Scholar] [CrossRef]
- Sonnenfeld, A. The effect of spiral arms on the Sérsic photometry of galaxies. Astron. Astrophys. 2022, 659, A141. [Google Scholar] [CrossRef]
- Elmegreen, B.G.; Elmegreen, D.M.; Montenegro, L. Optical tracers of spiral wave resonances in galaxies. II—Hidden three-arm spirals in a sample of 18 galaxies. Astrophys. J. Suppl. 1992, 79, 37–48. [Google Scholar] [CrossRef]
- Stetson, P.B. DAOPHOT: A Computer Program for Crowded-Field Stellar Photometry. Publ. Astron. Soc. Pac. 1987, 99, 191. [Google Scholar] [CrossRef]
- Becker, M. PearsonDS: Pearson Distribution System; R Package Version 0.92; R Foundation for Statistical Computing: Vienna, Austria, 2010. [Google Scholar]
- Elmegreen, D.M.; Elmegreen, B.G. Arm Classifications for Spiral Galaxies. Astrophys. J. 1987, 314, 3. [Google Scholar] [CrossRef]
- Yu, S.Y.; Ho, L.C.; Barth, A.J.; Li, Z.Y. The Carnegie-Irvine Galaxy Survey. VI. Quantifying Spiral Structure. Astrophys. J. 2018, 862, 13. [Google Scholar] [CrossRef]
- Bellhouse, C.; McGee, S.L.; Smith, R.; Poggianti, B.M.; Jaffé, Y.L.; Kraljic, K.; Franchetto, A.; Fritz, J.; Vulcani, B.; Tonnesen, S.; et al. GASP XXIX—Unwinding the arms of spiral galaxies via ram-pressure stripping. Mon. Not. R. Astron. Soc. 2021, 500, 1285–1312. [Google Scholar] [CrossRef]
- Cullen, A.; Frey, H.; Frey, C. Probabilistic Techniques in Exposure Assessment: A Handbook for Dealing with Variability and Uncertainty in Models and Inputs; Language of Science, Springer: New York, NY, USA, 1999. [Google Scholar]
- Delignette-Muller, M.L.; Dutang, C. fitdistrplus: An R Package for Fitting Distributions. J. Stat. Softw. 2015, 64, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Guidoum, A. kedd: Kernel Estimator and Bandwidth Selection for Density and Its Derivatives; R Package Version 1.0.3; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Huber, P.J. Robust Statistics; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum Likelihood from Incomplete Data via the EM Algorithm. J. R. Stat. Society. Ser. B (Methodol.) 1977, 39, 1–38. [Google Scholar]
- Wu, C.F.J. On the Convergence Properties of the EM Algorithm. Ann. Stat. 1983, 11, 95–103. [Google Scholar] [CrossRef]
- van den Bergh, S. Galaxy Morphology and Classification; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1998. [Google Scholar]
- de Lapparent, V.; Baillard, A.; Bertin, E. The EFIGI catalogue of 4458 nearby galaxies with morphology. II. Statistical properties along the Hubble sequence. Astron. Astrophys. 2011, 532, A75. [Google Scholar] [CrossRef] [Green Version]
- Masters, K.L.; Lintott, C.J.; Hart, R.E.; Kruk, S.J.; Smethurst, R.J.; Casteels, K.V.; Keel, W.C.; Simmons, B.D.; Stanescu, D.O.; Tate, J.; et al. Galaxy Zoo: Unwinding the winding problem-observations of spiral bulge prominence and arm pitch angles suggest local spiral galaxies are winding. Mon. Not. R. Astron. Soc. 2019, 487, 1808–1820. [Google Scholar] [CrossRef] [Green Version]
- Graham, A.W.; Worley, C.C. Inclination- and dust-corrected galaxy parameters: Bulge-to-disc ratios and size-luminosity relations. Mon. Not. R. Astron. Soc. 2008, 388, 1708–1728. [Google Scholar] [CrossRef]
- Willett, K.W.; Lintott, C.J.; Bamford, S.P.; Masters, K.L.; Simmons, B.D.; Casteels, K.R.V.; Edmondson, E.M.; Fortson, L.F.; Kaviraj, S.; Keel, W.C.; et al. Galaxy Zoo 2: Detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 2013, 435, 2835–2860. [Google Scholar] [CrossRef]
- Courteau, S. Deep r-Band Photometry for Northern Spiral Galaxies. Astrophys. J. Suppl. 1996, 103, 363. [Google Scholar] [CrossRef]
- de Jong, R.S. Near-infrared and optical broadband surface photometry of 86 face-on disk dominated galaxies. II. A two-dimensional method to determine bulge and disk parameters. Astron. Astrophys. Suppl. 1996, 118, 557–573. [Google Scholar] [CrossRef] [Green Version]
- Seigar, M.S.; James, P.A. The structure of spiral galaxies—I. Near-infrared properties of bulges, discs and bars. Mon. Not. R. Astron. Soc. 1998, 299, 672–684. [Google Scholar] [CrossRef] [Green Version]
- Grosbøl, P.; Patsis, P.A.; Pompei, E. Spiral galaxies observed in the near-infrared K band. I. Data analysis and structural parameters. Astron. Astrophys. 2004, 423, 849–859. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.Y.; Ho, L.C. On the Connection between Spiral Arm Pitch Angle and Galaxy Properties. Astrophys. J. 2019, 871, 194. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.Y.; Ho, L.C. The Statistical Properties of Spiral Arms in Nearby Disk Galaxies. Astrophys. J. 2020, 900, 150. [Google Scholar] [CrossRef]
- Gallo, E.; Sesana, A. Exploring the Local Black Hole Mass Function below 106 Solar Masses. Astrophys. J. Lett. 2019, 883, L18. [Google Scholar] [CrossRef] [Green Version]
- Habouzit, M.; Li, Y.; Somerville, R.S.; Genel, S.; Pillepich, A.; Volonteri, M.; Davé, R.; Rosas-Guevara, Y.; McAlpine, S.; Peirani, S.; et al. Supermassive black holes in cosmological simulations I: MBH - M★ relation and black hole mass function. Mon. Not. R. Astron. Soc. 2021, 503, 1940–1975. [Google Scholar] [CrossRef]
- Graham, A.W. A galaxy classification grid that better recognizes early-type galaxy morphology. Mon. Not. R. Astron. Soc. 2019, 487, 4995–5009. [Google Scholar] [CrossRef]
- Lacerda, E.A.D.; Sánchez, S.F.; Cid Fernandes, R.; López-Cobá, C.; Espinosa-Ponce, C.; Galbany, L. Galaxies hosting an active galactic nucleus: A view from the CALIFA survey. Mon. Not. R. Astron. Soc. 2020, 492, 3073–3090. [Google Scholar] [CrossRef]
- de Vaucouleurs, G.; de Vaucouleurs, A.; Harold, G., Jr.; Buta, R.J.; Paturel, G.; Fouque, P. Third Reference Catalogue of Bright Galaxies; Springer: New York, NY, USA, 1991. [Google Scholar]
- Baillard, A.; Bertin, E.; de Lapparent, V.; Fouqué, P.; Arnouts, S.; Mellier, Y.; Pelló, R.; Leborgne, J.F.; Prugniel, P.; Makarov, D.; et al. The EFIGI catalogue of 4458 nearby galaxies with detailed morphology. Astron. Astrophys. 2011, 532, A74. [Google Scholar] [CrossRef] [Green Version]
- Driver, S.P.; Bellstedt, S.; Robotham, A.S.G.; Baldry, I.K.; Davies, L.J.; Liske, J.; Obreschkow, D.; Taylor, E.N.; Wright, A.H.; Alpaslan, M.; et al. Galaxy And Mass Assembly (GAMA): Data Release 4 and the z < 0.1 total and z < 0.08 morphological galaxy stellar mass functions. Mon. Not. R. Astron. Soc. 2022, 513, 439–467. [Google Scholar] [CrossRef]
- Amaro-Seoane, P.; Andrews, J.; Arca Sedda, M.; Askar, A.; Balasov, R.; Bartos, I.; Bavera, S.S.; Bellovary, J.; Berry, C.P.L.; Berti, E.; et al. Astrophysics with the Laser Interferometer Space Antenna. Liv. Rev. Relat. 2022. accepted. [Google Scholar]
- Klein, A.; Barausse, E.; Sesana, A.; Petiteau, A.; Berti, E.; Babak, S.; Gair, J.; Aoudia, S.; Hinder, I.; Ohme, F.; et al. Science with the space-based interferometer eLISA: Supermassive black hole binaries. Phys. Rev. D 2016, 93, 024003. [Google Scholar] [CrossRef] [Green Version]
- Koliopanos, F.; Ciambur, B.C.; Graham, A.W.; Webb, N.A.; Coriat, M.; Mutlu-Pakdil, B.; Davis, B.L.; Godet, O.; Barret, D.; Seigar, M.S. Searching for intermediate-mass black holes in galaxies with low-luminosity AGN: A multiple-method approach. Astron. Astrophys. 2017, 601, A20. [Google Scholar] [CrossRef] [Green Version]
- Soria, R.; Kolehmainen, M.; Graham, A.W.; Swartz, D.A.; Yukita, M.; Motch, C.; Jarrett, T.H.; Miller-Jones, J.C.A.; Plotkin, R.M.; Maccarone, T.J.; et al. A Chandra Virgo cluster survey of spiral galaxies. I. Introduction to the survey and a new ULX sample. Mon. Not. R. Astron. Soc. 2022, 512, 3284–3311. [Google Scholar] [CrossRef]
- Graham, A.W.; Soria, R.; Davis, B.L. Expected intermediate-mass black holes in the Virgo cluster - II. Late-type galaxies. Mon. Not. R. Astron. Soc. 2019, 484, 814–831. [Google Scholar] [CrossRef]
- Graham, A.W.; Soria, R.; Davis, B.L.; Kolehmainen, M.; Maccarone, T.; Miller-Jones, J.; Motch, C.; Swartz, D.A. Central X-Ray Point Sources Found to Be Abundant in Low-mass, Late-type Galaxies Predicted to Contain an Intermediate-mass Black Hole. Astrophys. J. 2021, 923, 246. [Google Scholar] [CrossRef]
- Graham, A.W.; Soria, R.; Ciambur, B.C.; Davis, B.L.; Swartz, D.A. Potential Black Hole Seeding of the Spiral Galaxy NGC 4424 via an Infalling Star Cluster. Astrophys. J. 2021, 923, 146. [Google Scholar] [CrossRef]
- Davis, B.L.; Graham, A.W. Refining the mass estimate for the intermediate-mass black hole candidate in NGC 3319. Publ. Astron. Soc. Aust. 2021, 38, e030. [Google Scholar] [CrossRef]
- Davis, B.L.; Graham, A.W.; Soria, R.; Karachentsev, L.D.; Karachentsev, V.E.; Elena, D. 22 Intermediate-mass Black Hole Candidates Identified from a Probabilistic Study of Sd Galaxies. Astrophys. J. 2022, in prep. [Google Scholar]
- Jerjen, H.; Kalnajs, A.; Binggeli, B. IC3328: A “dwarf elliptical galaxy” with spiral structure. Astron. Astrophys. 2000, 358, 845–849. [Google Scholar]
- Lisker, T.; Grebel, E.K.; Binggeli, B. Virgo Cluster Early-Type Dwarf Galaxies with the Sloan Digital Sky Survey. I. On the Possible Disk Nature of Bright Early-Type Dwarfs. Astron. J. 2006, 132, 497–513. [Google Scholar] [CrossRef]
- Michea, J.; Pasquali, A.; Smith, R.; Kraljic, K.; Grebel, E.K.; Calderón-Castillo, P.; Lisker, T. Brought to Light. I. Quantification of Disk Substructure in Dwarf Early-type Galaxies. Astron. J. 2021, 161, 268. [Google Scholar] [CrossRef]
- Smith, R.; Michea, J.; Pasquali, A.; Calderón-Castillo, P.; Kraljic, K.; Paudel, S.; Lisker, T.; Shin, J.; Ko, J.; Peletier, R.F.; et al. Brought to Light. II. Revealing the Origins of Cloaked Spiral Features in Cluster Passive Dwarf Galaxies. Astrophys. J. 2021, 912, 149. [Google Scholar] [CrossRef]
- Nguyen, D.D.; Seth, A.C.; Neumayer, N.; Iguchi, S.; Cappellari, M.; Strader, J.; Chomiuk, L.; Tremou, E.; Pacucci, F.; Nakanishi, K.; et al. Improved Dynamical Constraints on the Masses of the Central Black Holes in Nearby Low-mass Early-type Galactic Nuclei and the First Black Hole Determination for NGC 205. Astrophys. J. 2019, 872, 104. [Google Scholar] [CrossRef]
- Toomre, A.; Toomre, J. Galactic Bridges and Tails. Astrophys. J. 1972, 178, 623–666. [Google Scholar] [CrossRef]
- Tully, R.B. The Kinematics and Dynamics of M51. III. The Spiral Structure. Astrophys. J. Suppl. 1974, 27, 449. [Google Scholar] [CrossRef]
- Elmegreen, B.G.; Elmegreen, D.M. Flocculent and grand design spiral galaxies in groups—Time scales for the persistence of grand design spiral structures. Astrophys. J. 1983, 267, 31–34. [Google Scholar] [CrossRef]
- Oh, S.H.; Kim, W.T.; Lee, H.M.; Kim, J. Physical Properties of Tidal Features in Interacting Disk Galaxies. Astrophys. J. 2008, 683, 94–113. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, C.L.; Theis, C.; Pringle, J.E.; Bate, M.R. Simulations of the grand design galaxy M51: A case study for analysing tidally induced spiral structure. Mon. Not. R. Astron. Soc. 2010, 403, 625–645. [Google Scholar] [CrossRef] [Green Version]
- Shu, F.H. Six Decades of Spiral Density Wave Theory. Annu. Rev. Astron. Astrophys. 2016, 54, 667–724. [Google Scholar] [CrossRef]
- Goldreich, P.; Lynden-Bell, D., II. Spiral arms as sheared gravitational instabilities. Mon. Not. R. Astron. Soc. 1965, 130, 125. [Google Scholar] [CrossRef]
- Julian, W.H.; Toomre, A. Non-Axisymmetric Responses of Differentially Rotating Disks of Stars. Astrophys. J. 1966, 146, 810. [Google Scholar] [CrossRef]
- Goldreich, P.; Tremaine, S. The excitation and evolution of density waves. Astrophys. J. 1978, 222, 850–858. [Google Scholar] [CrossRef]
- Toomre, A. What amplifies the spirals. In Structure and Evolution of Normal Galaxies; Fall, S.M., Lynden-Bell, D., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1981; pp. 111–136. [Google Scholar]
- Sellwood, J.A.; Sparke, L.S. Pattern speeds in barred spiral galaxies. Mon. Not. R. Astron. Soc. 1988, 231, 25P–31. [Google Scholar] [CrossRef] [Green Version]
- Dobbs, C.; Baba, J. Dawes Review 4: Spiral Structures in Disc Galaxies. Publ. Astron. Soc. Aust. 2014, 31, e035. [Google Scholar] [CrossRef] [Green Version]
- Hart, R.E.; Bamford, S.P.; Keel, W.C.; Kruk, S.J.; Masters, K.L.; Simmons, B.D.; Smethurst, R.J. Galaxy Zoo: Constraining the origin of spiral arms. Mon. Not. R. Astron. Soc. 2018, 478, 932–949. [Google Scholar] [CrossRef]
- Pour-Imani, H.; Kennefick, D.; Kennefick, J.; Davis, B.L.; Shields, D.W.; Shameer Abdeen, M. Strong Evidence for the Density-wave Theory of Spiral Structure in Disk Galaxies. Astrophys. J. Lett. 2016, 827, L2. [Google Scholar] [CrossRef]
- Yu, S.Y.; Ho, L.C. Dependence of the Spiral Arms Pitch Angle on Wavelength as a Test of the Density Wave Theory. Astrophys. J. 2018, 869, 29. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.; Kennefick, D.; Kennefick, J.; Shameer Abdeen, M.; Monson, E.; Eufrasio, R.T.; Shields, D.W.; Davis, B.L. Investigating the Origins of Spiral Structure in Disk Galaxies through a Multiwavelength Study. Astrophys. J. 2019, 874, 177. [Google Scholar] [CrossRef] [Green Version]
- Abdeen, S.; Kennefick, D.; Kennefick, J.; Miller, R.; Shields, D.W.; Monson, E.B.; Davis, B.L. Determining the co-rotation radii of spiral galaxies using spiral arm pitch angle measurements at multiple wavelengths. Mon. Not. R. Astron. Soc. 2020, 496, 1610–1619. [Google Scholar] [CrossRef]
- Abdeen, S.; Davis, B.L.; Eufrasio, R.; Kennefick, D.; Kennefick, J.; Miller, R.; Shields, D.; Monson, E.B.; Bassett, C.; O’Mara, H. Evidence in favour of density wave theory through age gradients observed in star formation history maps and spatially-resolved stellar clusters. Mon. Not. R. Astron. Soc. 2022, 512, 366–377. [Google Scholar] [CrossRef]
- Smith, B.J.; Giroux, M.L.; Struck, C. The Effect of Environment on Galaxy Spiral Arms, Bars, Concentration, and Quenching. Astron. J. 2022, 164, 146. [Google Scholar] [CrossRef]
- Schmidt, M. The Rate of Star Formation. Astrophys. J. 1959, 129, 243. [Google Scholar] [CrossRef]
- Kennicutt, R.C., Jr. The Star Formation Law in Galactic Disks. Astrophys. J. 1989, 344, 685. [Google Scholar] [CrossRef]
- Kennicutt, R.C., Jr. The Global Schmidt Law in Star-forming Galaxies. Astrophys. J. 1998, 498, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Sellwood, J.A.; Carlberg, R.G. Transient Spirals as Superposed Instabilities. Astrophys. J. 2014, 785, 137. [Google Scholar] [CrossRef] [Green Version]
- Sellwood, J.A.; Carlberg, R.G. Spiral instabilities: Mechanism for recurrence. Mon. Not. R. Astron. Soc. 2019, 489, 116–131. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Ghosh, S.; Kataria, S.K.; Das, M.; Debattista, V.P. Excitation of vertical breathing motion in disc galaxies by tidally-induced spirals in fly-by interactions. Mon. Not. R. Astron. Soc. 2022, 516, 1114–1126. [Google Scholar] [CrossRef]
- Sellwood, J.A. The lifetimes of spiral patterns in disc galaxies. Mon. Not. R. Astron. Soc. 2011, 410, 1637–1646. [Google Scholar] [CrossRef] [Green Version]
- Berlanga Medina, J.; Berrier, J.C.; Hartley, M.; Kennefick, D.; Davis, B.L.; Seigar, M.; Kennefick, J.D.; Lacy, C.H.; AGES. The Effects of Dark Matter Halo Concentration of the Morphology of Simulated Galaxies. In Proceedings of the American Astronomical Society Meeting Abstracts #221, Long Beach, CA, USA, 6–10 January 2013; American Astronomical Society Meeting Abstracts. Volume 221, p. 146.24. [Google Scholar]
- Berlanga Medina, J.; Berrier, J.; Hartley, M.; Kennefick, D.; Davis, B.L.; Shields, D.; Seigar, M.; Kennefick, J.D.; Arkansas Galaxy Evolution Survey (AGES); Arkansas High Performance Computing Center (AHPCC). Mass Distribution & Morphology of Simulated Spiral Galaxies. In Proceedings of the American Astronomical Society Meeting Abstracts #223, Washington, DC, USA, 5–9 January 2014; American Astronomical Society Meeting Abstracts. Volume 223, p. 453.20. [Google Scholar]
- Berlanga Medina, J.; Berrier, J.C.; Kennefick, D.; Arkansas Galaxy Evolution Survey. Halo Mass Concentration and the Morphology of Simulated Spiral Galaxies. In Proceedings of the American Astronomical Society Meeting Abstracts #225, Seattle, WA, USA, 4–8 January 2015; American Astronomical Society Meeting Abstracts. Volume 225, p. 250.11. [Google Scholar]
- Berlanga Medina, J.E. Dark Matter Halo Concentration and the Evolution of Spiral Structure in N-Body, Barred Spiral Galaxies. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2015. [Google Scholar]
- Sellwood, J.A.; Carlberg, R.G. Spiral instabilities provoked by accretion and star formation. Astrophys. J. 1984, 282, 61–74. [Google Scholar] [CrossRef]
- Athanassoula, E.; Bosma, A.; Papaioannou, S. Halo parameters of spiral galaxies. Astron. Astrophys. 1987, 179, 23–40. [Google Scholar]
- Berrier, J.C.; Sellwood, J.A. Smoothing Rotation Curves and Mass Profiles. Astrophys. J. 2015, 799, 213. [Google Scholar] [CrossRef]
- Hart, R.E.; Bamford, S.P.; Casteels, K.R.V.; Kruk, S.J.; Lintott, C.J.; Masters, K.L. Galaxy Zoo: Star formation versus spiral arm number. Mon. Not. R. Astron. Soc. 2017, 468, 1850–1863. [Google Scholar] [CrossRef]
- Porter-Temple, R.; Holwerda, B.W.; Hopkins, A.M.; Porter, L.E.; Henry, C.; Geron, T.; Simmons, B.; Masters, K.; Kruk, S. Galaxy And Mass Assembly: Galaxy Zoo spiral arms and star formation rates. Mon. Not. R. Astron. Soc. 2022, 515, 3875–3882. [Google Scholar] [CrossRef]
- Hart, R.E.; Bamford, S.P.; Hayes, W.B.; Cardamone, C.N.; Keel, W.C.; Kruk, S.J.; Lintott, C.J.; Masters, K.L.; Simmons, B.D.; Smethurst, R.J. Galaxy Zoo and SPARCFIRE: Constraints on spiral arm formation mechanisms from spiral arm number and pitch angles. Mon. Not. R. Astron. Soc. 2017, 472, 2263–2279. [Google Scholar] [CrossRef] [Green Version]
- Seigar, M.S.; James, P.A. The structure of spiral galaxies—II. Near-infrared properties of spiral arms. Mon. Not. R. Astron. Soc. 1998, 299, 685–698. [Google Scholar] [CrossRef] [Green Version]
- Díaz-García, S.; Salo, H.; Knapen, J.H.; Herrera-Endoqui, M. The shapes of spiral arms in the S4G survey and their connection with stellar bars. Astron. Astrophys. 2019, 631, A94. [Google Scholar] [CrossRef] [Green Version]
- Treuthardt, P.; Seigar, M.S.; Sierra, A.D.; Al-Baidhany, I.; Salo, H.; Kennefick, D.; Kennefick, J.; Lacy, C.H.S. On the link between central black holes, bar dynamics and dark matter haloes in spiral galaxies. Mon. Not. R. Astron. Soc. 2012, 423, 3118–3133. [Google Scholar] [CrossRef] [Green Version]
- Roberts, W.W., Jr.; Roberts, M.S.; Shu, F.H. Density wave theory and the classification of spiral galaxies. Astrophys. J. 1975, 196, 381–405. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Joye, W.A.; Mandel, E. New Features of SAOImage DS9. In Proceedings of the Astronomical Data Analysis Software and Systems XII, Baltimore, MD, USA, 13–16 October 2002; Payne, H.E., Jedrzejewski, R.I., Hook, R.N., Eds.; Astronomical Society of the Pacific Conference Series. Astronomical Society of the Pacific: San Francisco, CA, USA, 2003; Volume 295, p. 489. [Google Scholar]
Galaxy | Hubble Type | |||||||
---|---|---|---|---|---|---|---|---|
[mag] | [Mpc] | [mag] | [mag] | [deg] | ||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
ESO 056-G115 | SBm | 1.92 | 0.050 | 0.272 | 8.87 | — | — | |
ESO 137-G018 | Sc | 12.40 | 5.867 | 0.882 | 9.06 | — | — | |
ESO 219-G021 | SABc | 12.83 | 14.220 | 0.707 | 9.59 | |||
ESO 265-G007 | SBc | 12.54 | 13.400 | 0.498 | 9.57 | |||
ESO 270-G017 | SBm | 12.13 | 5.676 | 0.401 | 8.95 | — | — | |
ESO 271-G010 | Sc | 12.90 | 18.889 | 0.355 | 9.66 | |||
ESO 274-G001 | Scd | 11.73 | 4.874 | 0.930 | 9.19 | — | — | |
ESO 358-G063 | Sc | 12.57 | 19.673 | 0.023 | 9.70 | — | — | |
ESO 362-G011 | Sbc | 12.77 | 20.217 | 0.174 | 9.70 | — | — | |
ESO 373-G008 | Sc | 12.71 | 11.100 | 0.484 | 9.33 | — | — | |
ESO 383-G087 | Sd | 11.70 | 2.675 | 0.257 | 8.41 | |||
ESO 384-G002 | SBd | 12.88 | 17.450 | 0.232 | 9.55 | |||
ESO 479-G004 | SBd | 12.79 | 19.400 | 0.066 | 9.62 | |||
IC 1954 | Sb | 12.10 | 15.287 | 0.059 | 9.68 | |||
IC 1993 | SABb | 12.52 | 14.700 | 0.036 | 9.47 | |||
IC 2000 | SBc | 12.82 | 20.080 | 0.036 | 9.62 | |||
IC 2056 | Sbc | 12.80 | 20.500 | 0.067 | 9.66 | |||
IC 2627 | SABb | 12.68 | 18.480 | 0.436 | 9.77 | |||
IC 4710 | Sm | 12.50 | 8.900 | 0.322 | 9.16 | — | — | |
IC 5052 | SBcd | 11.79 | 8.095 | 0.184 | 9.31 | — | — | |
IC 5201 | Sc | 11.95 | 14.400 | 0.043 | 9.68 | |||
IC 5273 | SBc | 12.74 | 16.557 | 0.045 | 9.49 | |||
IC 5332 | SABc | 11.23 | 8.400 | 0.060 | 9.51 | |||
NGC 24 | Sc | 12.14 | 6.889 | 0.071 | 8.98 | |||
NGC 45 | SABd | 11.39 | 9.313 | 0.075 | 9.54 | |||
NGC 55 | SBm | 9.59 | 1.942 | 0.048 | 8.89 | — | — | |
NGC 247 | SABc | 9.72 | 3.587 | 0.066 | 9.38 | |||
NGC 300 | Scd | 8.81 | 1.972 | 0.046 | 9.22 | |||
NGC 625 | SBm | 11.57 | 3.807 | 0.060 | 8.69 | — | — | |
NGC 701 | SBc | 12.84 | 22.711 | 0.091 | 9.74 | |||
NGC 779 | SABb | 12.27 | 17.678 | 0.097 | 9.76 | |||
NGC 1022 | SBa | 12.32 | 18.500 | 0.093 | 9.77 | |||
NGC 1042 | SABc | 12.11 | 9.431 | 0.104 | 9.28 | |||
NGC 1179 | Sc | 12.83 | 18.171 | 0.087 | 9.55 | |||
NGC 1249 | SBc | 12.78 | 15.854 | 0.060 | 9.44 | |||
NGC 1292 | Sc | 12.79 | 21.475 | 0.062 | 9.70 | |||
NGC 1313 | SBcd | 9.66 | 3.951 | 0.396 | 9.62 | |||
NGC 1337 | SBc | 12.53 | 16.075 | 0.245 | 9.63 | |||
NGC 1436 | Sb | 12.86 | 18.360 | 0.039 | 9.53 | |||
NGC 1487 | Scd | 12.33 | 8.900 | 0.043 | 9.12 | |||
NGC 1493 | SBc | 11.72 | 11.300 | 0.037 | 9.56 | |||
NGC 1494 | Scd | 12.10 | 15.217 | 0.022 | 9.66 | |||
NGC 1507 | SBd | 12.86 | 11.171 | 0.595 | 9.32 | — | — | |
NGC 1518 | SBd | 12.26 | 9.596 | 0.174 | 9.26 | |||
NGC 1637 | Sc | 11.63 | 10.703 | 0.146 | 9.60 | |||
NGC 1688 | SBcd | 12.20 | 15.450 | 0.125 | 9.68 | |||
NGC 1744 | SBc | 11.71 | 10.853 | 0.148 | 9.58 | |||
NGC 1796 | SBc | 12.88 | 10.600 | 0.088 | 9.07 | |||
NGC 1892 | Sc | 12.83 | 16.900 | 0.272 | 9.56 | — | — | |
NGC 2082 | SBb | 12.73 | 17.978 | 0.210 | 9.63 | |||
NGC 2090 | Sbc | 11.66 | 12.758 | 0.144 | 9.73 | |||
NGC 2188 | SBm | 12.04 | 7.900 | 0.118 | 9.16 | — | — | |
NGC 2427 | SABd | 12.30 | 11.782 | 0.778 | 9.66 | |||
NGC 3109 | SBm | 10.35 | 1.324 | 0.242 | 8.34 | — | — | |
NGC 3513 | SBc | 12.04 | 13.153 | 0.230 | 9.64 | |||
NGC 4592 | Sd | 12.90 | 11.630 | 0.082 | 9.14 | |||
NGC 4632 | Sc | 12.63 | 18.518 | 0.087 | 9.65 | |||
NGC 4700 | SBc | 12.44 | 15.62 | 0.170 | 9.61 | — | — | |
NGC 4951 | SABc | 12.58 | 16.600 | 0.171 | 9.61 | |||
NGC 5068 | Sc | 10.64 | 6.075 | 0.369 | 9.59 | |||
NGC 5134 | SABb | 12.46 | 10.889 | 0.328 | 9.35 | |||
NGC 5264 | SBm | 12.55 | 4.467 | 0.187 | 8.49 | — | — | |
NGC 5556 | Scd | 12.81 | 18.750 | 0.254 | 9.65 | |||
NGC 7090 | Sc | 11.31 | 8.399 | 0.083 | 9.49 | — | — | |
NGC 7361 | Sc | 12.82 | 17.200 | 0.060 | 9.50 | |||
NGC 7412 | SBb | 11.92 | 12.485 | 0.042 | 9.57 | |||
NGC 7421 | Sbc | 12.78 | 22.600 | 0.054 | 9.75 | |||
NGC 7424 | Sc | 11.54 | 11.500 | 0.039 | 9.65 | |||
NGC 7456 | Sc | 12.43 | 16.185 | 0.039 | 9.59 | |||
NGC 7496 | Sb | 12.90 | 15.020 | 0.036 | 9.34 | |||
NGC 7513 | SBb | 12.64 | 19.85 | 0.148 | 9.73 | — | — | |
NGC 7713 | Scd | 11.87 | 10.272 | 0.060 | 9.43 | |||
NGC 7793 | Scd | 9.77 | 4.171 | 0.071 | 9.49 | |||
PGC 3853 | SABc | 12.62 | 12.600 | 0.480 | 9.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusco, M.S.; Davis, B.L.; Kennefick, J.; Kennefick, D.; Seigar, M.S. Probing the Low-Mass End of the Black Hole Mass Function via a Study of Faint Local Spiral Galaxies. Universe 2022, 8, 649. https://doi.org/10.3390/universe8120649
Fusco MS, Davis BL, Kennefick J, Kennefick D, Seigar MS. Probing the Low-Mass End of the Black Hole Mass Function via a Study of Faint Local Spiral Galaxies. Universe. 2022; 8(12):649. https://doi.org/10.3390/universe8120649
Chicago/Turabian StyleFusco, Michael S., Benjamin L. Davis, Julia Kennefick, Daniel Kennefick, and Marc S. Seigar. 2022. "Probing the Low-Mass End of the Black Hole Mass Function via a Study of Faint Local Spiral Galaxies" Universe 8, no. 12: 649. https://doi.org/10.3390/universe8120649
APA StyleFusco, M. S., Davis, B. L., Kennefick, J., Kennefick, D., & Seigar, M. S. (2022). Probing the Low-Mass End of the Black Hole Mass Function via a Study of Faint Local Spiral Galaxies. Universe, 8(12), 649. https://doi.org/10.3390/universe8120649