Bianchi I Spacetimes in Chiral–Quintom Theory
Abstract
:1. Introduction
2. Chiral–Quintom Theory
3. Anisotropic Exact Solutions
3.1. Singular Solution
3.2. Exponential Solution
4. Noether Symmetry Analysis
Analytic Solution for
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99. [Google Scholar] [CrossRef]
- Guth, A. Inflationary universe. Phys. Rev. D 1981, 23, 347. [Google Scholar] [CrossRef]
- Linde, A.D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389. [Google Scholar] [CrossRef]
- Guth, A. Inflation and eternal inflation. Phys. Rep. 2000, 333, 555. [Google Scholar] [CrossRef]
- Brandenberger, R. Initial Conditions for Inflation—A Short Review. Int. J. Mod. Phys. D 2017, 26, 1740002. [Google Scholar] [CrossRef]
- Aghanim, N. et al. [Planck Collaboration] Planck 2018 results. VI. Cosmol. Parameters A A 2020, 641, A6. [Google Scholar]
- Ratra, B.; Peebles, P.J.E. Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 1988, 37, 3406. [Google Scholar] [CrossRef]
- Liddle, A.R. Power-law inflation with exponential potentials. Phys. Lett. B 1989, 220, 502. [Google Scholar] [CrossRef]
- Barrow, J.D.; Saich, P. Scalar-field cosmologies. Class. Quantum Grav. 1993, 10, 279. [Google Scholar] [CrossRef]
- Basilakos, S.; Barrow, J.D. Hyperbolic inflation in the light of Planck 2015 data. Phys. Rev. D 2015, 91, 103517. [Google Scholar] [CrossRef]
- Dimakis, N.; Karagiorgos, A.; Zampeli, A.; Paliathanasis, A.; Christodoulakis, T.; Terzis, P.A. General analytic solutions of scalar field cosmology with arbitrary potential. Phys. Rev. D 2016, 93, 123518. [Google Scholar] [CrossRef] [Green Version]
- Paliathanasis, A.; Tsamparlis, M.; Basilakos, S.; Barrow, J.D. Dynamical analysis in scalar field cosmology. Phys. Rev. D 2015, 91, 123535. [Google Scholar] [CrossRef]
- Motavali, H.; Golshani, M. Exact solutions for cosmological models with a scalar field. Int. J. Mod. Phys. A 2002, 17, 375. [Google Scholar] [CrossRef]
- Gong, Y.; Wang, A.; Zhang, Y.-Z. Exact scaling solutions and fixed points for general scalar field. Phys. Lett. B 2006, 636, 286. [Google Scholar] [CrossRef]
- Amendola, L. Phantom energy mediates a long-range repulsive force. Phys. Rev. Lett. 2004, 93, 181102. [Google Scholar] [CrossRef] [PubMed]
- Catalado, M.; Arevalo, F.; Mella, P. Canonical and phantom scalar fields as an interaction of two perfect fluids. Astrophys. Space Sci. 2013, 344, 495. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K.; Saridakis, E.N. Singular cosmological evolution using canonical and phantom scalar fields. J. Cosmol. Astropart. Phys. 2015, 2015, 044. [Google Scholar] [CrossRef]
- Faraoni, V. Coupled oscillators as models of phantom and scalar field cosmologies. Phys. Rev. D 2004, 69, 123520. [Google Scholar] [CrossRef]
- Cai, Y.F.; Saridakis, E.N.; Setare, M.R.; Xia, J.-Q. Quintom cosmology: Theoretical implications and observations. Phys. Rep. 2010, 493, 1. [Google Scholar] [CrossRef]
- Mishra, S.; Chakraborty, S. Dynamical system analysis of quintom dark energy model. Eur. Phys. J. C 2018, 78, 917. [Google Scholar] [CrossRef]
- Chervon, S.V. Chiral non-linear sigma models and cosmological inflation. Gravit. Cosmol. 1995, 1, 91. [Google Scholar]
- Brown, A.R. Hyperbolic Inflation. Phys. Rev. Lett. 2018, 121, 251601. [Google Scholar] [CrossRef] [Green Version]
- Christodoulidis, P.; Roest, D.; Sfakianakis, E.I. Angular inflation in multi-field α-attractors. J. Cosmol. Astropart. Phys. 2019, 11, 002. [Google Scholar] [CrossRef]
- Christodoulidis, P.; Paliathanasis, A. N-field cosmology in hyperbolic field space: Stability and general solutions. J. Cosmol. Astropart. Phys. 2021, 038. [Google Scholar] [CrossRef]
- Dimakis, N.; Paliathanasis, A. Crossing the phantom divide line as an effect of quantum transitions. Class. Quantum Grav. 2021, 38, 075016. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Leon, G. Dynamics of a two scalar field cosmological model with phantom terms. Class. Quantum Grav. 2021, 38, 075013. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Leon, G. Global dynamics of the hyperbolic Chiral-Phantom model. Eur. Phys. J. Plus 2022, 137, 165. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Leon, G. Hyperbolic inflationary model with nonzero curvature. arXiv 2022, arXiv:2203.01598. [Google Scholar] [CrossRef]
- Tot, J.; Yildirim, B.; Coley, A.; Leon, G. The dynamics of scalar-field Quintom cosmological models. arXiv 2022, arXiv:2204.06538. [Google Scholar] [CrossRef]
- Campanelli, L.; Cea, P.; Tedesco, L. Ellipsoidal Universe Can Solve the Cosmic Microwave Background Quadrupole Problem. Phys. Rev. Lett. 2006, 97, 131302. [Google Scholar] [CrossRef]
- Aluri, P.K.; Cea, P.; Chingangbam, P.; Chu, M.-C.; Clowes, R.G.; Hutsemékers, D.; Kochappan, J.P.; Krasiński, A.; Lopez, A.M.; Liu, L.; et al. Is the Observable Universe Consistent with the Cosmological Principle? arXiv 2022, arXiv:2207.05765. [Google Scholar]
- Sato, K. Inflation and Cosmic No-Hair Conjecture. J. Astrophys. Astron. 1995, 16, 37. [Google Scholar]
- Pontzen, A.; Challinor, A. Bianchi model CMB polarization and its implications for CMB anomalies. Mon. Not. Roy. Astro. Soc. 2007, 380, 1387. [Google Scholar] [CrossRef]
- Pradhan, A.; Amirhashchi, H.; Saha, B. Bianchi Type-I Anisotropic Dark Energy Models with Constant Deceleration Parameter. Int. J. Theor. Phys. 2011, 50, 2923. [Google Scholar] [CrossRef] [Green Version]
- Koivisto, T.; Mota, D.F. Anisotropic dark energy: Dynamics of the background and perturbations. J. Cosmol. Astropart. Phys. 2008, 2008, 018. [Google Scholar] [CrossRef]
- Wald, R.M. Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant. Phys. Rev. D 1983, 28, 2118. [Google Scholar] [CrossRef]
- Barrow, J.D. Cosmic no-hair theorems and inflation. Phys. Lett. B 1987, 187, 12. [Google Scholar] [CrossRef]
- Paliathanasis, A. New Anisotropic Exact Solution in Multifield Cosmology. Universe 2021, 7, 323. [Google Scholar] [CrossRef]
- Giacomini, A.; Leach, P.G.L.; Leon, G.; Paliathanasis, A. Anisotropic spacetimes in chiral scalar field cosmology. Eur. Phys. J. Plus 2021, 136, 1018. [Google Scholar] [CrossRef]
- Chen, C.-B.; Soda, J. Anisotropic Hyperbolic Inflation. J. Cosmol. Astropart. Phys. 2021, 2021, 026. [Google Scholar] [CrossRef]
- Shanti, K.; Rao, V.U.M. Bianchi type III cosmological model in the presence of zero-mass scalar fields. Astrophys. Space Sci. 1990, 173, 157. [Google Scholar] [CrossRef]
- Leon, G.; Gonzalez, E.; Lepe, S.; Michea, C.; Milano, A.D. Averaging Generalized Scalar Field Cosmologies I: Locally Rotationally Symmetric Bianchi III and open Friedmann-Lemaître-Robertson-Walker models. Eur. Phys. J. C 2021, 81, 414. [Google Scholar] [CrossRef]
- Christodoulakis, T.; Grammenos, T.; Helias, C.; Kevrekidis, P.G.; Spanou, A. Decoupling of the general scalar field mode and the solution space for Bianchi type I and V cosmologies coupled to perfect fluid sources. J. Math. Phys. 2006, 47, 042505. [Google Scholar] [CrossRef]
- Kasner, E. Geometrical theorems on Einstein’s cosmological equations. Am. J. Math. 1921, 43, 217. [Google Scholar] [CrossRef]
- Adhav, K.; Nimkar, A.; Holey, R. String Cosmology in Brans–Dicke Theory for Kasner Type Metric. Int. J. Theor. Phys. 2007, 46, 2396. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Farhoudi, M.; Sepangi, H.R. An anisotropic cosmological model in a modified Brans–Dicke theory. Class. Quantum Grav. 2011, 28, 155004. [Google Scholar] [CrossRef]
- Camanho, X.O.; Dadhich, N.; Molina, A. Pure Lovelock Kasner metrics. Class. Quantum Grav. 2015, 32, 175016. [Google Scholar] [CrossRef]
- Demaret, J.; Henneaux, M.; Spindel, P. Pure Lovelock Kasner metrics. Phys. Lett. B 1985, 164, 27. [Google Scholar] [CrossRef]
- de Leon, J.P. 4D spacetimes embedded in 5D light-like Kasner universes. Class. Quantum Grav. 2006, 26, 185013. [Google Scholar] [CrossRef]
- Lott, J. Kasner-like regions near crushing singularities. Class. Quantum Grav. 2021, 38, 055005. [Google Scholar] [CrossRef]
- Paliathanasis, A.; Barrow, J.D.; Leach, P.G.L. Cosmological Solutions of f(T) Gravity. Phys. Rev. D 2016, 94, 023525. [Google Scholar] [CrossRef]
- Binetruy, P.; Sasaki, M.; Uzawa, K. Dynamical D4-D8 and D3-D7 branes in supergravity. Phys. Rev. D 2009, 80, 026001. [Google Scholar] [CrossRef]
- Barrow, J.D.; Hervik, S. On the evolution of universes in quadratic theories of gravity. Phys. Rev. D 2006, 74, 124017. [Google Scholar] [CrossRef]
- Cavaglia, M.; de Ritis, G.; Gasperini, M. Relic Gravitons on Kasner-like Brane. Phys. Lett. B 2005, 610, 9. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, S.M.M. Kasner Solution in Brans-Dicke Theory and its Corresponding Reduced Cosmology. In Progress in Mathematical Relativity, Gravitation and Cosmology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 60, p. 371. [Google Scholar]
- Rasouli, S.M.M.; Moniz, P.V. Extended anisotropic models in noncompact Kaluza-Klein theory. Class. Quantum Grav. 2019, 36, 075010. [Google Scholar] [CrossRef]
- di Marco, F.; Finelli, F.; Brandenberger, R. Adiabatic and isocurvature perturbations for multifield generalized Einstein models. Phys. Rev. D 2003, 67, 063512. [Google Scholar] [CrossRef]
- Bluman, G.W.; Kumei, S. Symmetries of Differential Equations; Springer: New York, NY, USA, 1989. [Google Scholar]
- Stephani, H. Differential Equations: Their Solutions Using Symmetry; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1993. [Google Scholar]
- Tsamparlis, M.; Paliathanasis, A. Symmetries of Differential Equations in Cosmology. Symmetry 2018, 10, 233. [Google Scholar] [CrossRef]
- Bhaumik, R.; Dutta, S.; Chakraborty, S. Noether symmetry analysis in chameleon field cosmology. Int. J. Mod. Phys. A 2022, 37, 2250018. [Google Scholar] [CrossRef]
- Kucukakca, Y.; Akbarieh, A.R. Noether symmetries of Einstein-aether scalar field cosmology. Eur. Phys. J. C 2020, 80, 1019. [Google Scholar] [CrossRef]
- Dialektopoulos, K.F.; Said, J.L.; Oikonomopoulou, Z. Classification of teleparallel Horndeski cosmology via Noether symmetries. Eur. Phys. J. C 2022, 82, 259. [Google Scholar] [CrossRef]
- Paliathanasis, A. Analytic Solution and Noether Symmetries for the Hyperbolic Inflationary Model in the Jordan Frame. Universe 2022, 8, 325. [Google Scholar] [CrossRef]
- Basilakos, S.; Tsamparlis, M.; Paliathanasis, A. Using the Noether symmetry approach to probe the nature of dark energy. Phys. Rev. D 2011, 83, 103512. [Google Scholar] [CrossRef]
- Christodoulakis, T.; Dimakis, N.; Terzis, P.A. Lie point and variational symmetries in minisuperspace Einstein gravity. J. Phys. A Math. Theor. 2014, 47, 095202. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paliathanasis, A. Bianchi I Spacetimes in Chiral–Quintom Theory. Universe 2022, 8, 503. https://doi.org/10.3390/universe8100503
Paliathanasis A. Bianchi I Spacetimes in Chiral–Quintom Theory. Universe. 2022; 8(10):503. https://doi.org/10.3390/universe8100503
Chicago/Turabian StylePaliathanasis, Andronikos. 2022. "Bianchi I Spacetimes in Chiral–Quintom Theory" Universe 8, no. 10: 503. https://doi.org/10.3390/universe8100503
APA StylePaliathanasis, A. (2022). Bianchi I Spacetimes in Chiral–Quintom Theory. Universe, 8(10), 503. https://doi.org/10.3390/universe8100503