# Statistical Hauser-Feshbach Model Description of (n,α) Reaction Cross Sections for the Weak s-Process

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Theory Framework

## 3. Results and Discussion

#### 3.1. $(n,\alpha )$ Reaction Cross Sections for s-Process Nuclei

#### 3.2. Astrophysically Relevant Neutron Energy Window for $(n,\alpha )$ Reactions

#### 3.3. Astrophysically Relevant Neutron Energy Range for $(n,\alpha )$ Reactions

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Burbidge, E.M.; Burbidge, G.R.; Fowler, W.A.; Hoyle, F. Synthesis of the Elements in Stars. Rev. Mod. Phys.
**1957**, 29, 547–650. [Google Scholar] [CrossRef][Green Version] - Cameron, A.G.W. Stellar Evolution, Nuclear Astrophysics, and Nucleogenesis; Chalk River Report; Atomic Energy of Canada Ltd.: Chalk River, ON, Canada, 1957; Volume 41. [Google Scholar]
- Janka, H.T.; Langanke, K.; Marek, A.; Martínez-Pinedo, G.; Müller, B. Theory of core-collapse supernovae. Phys. Rep.
**2007**, 442, 38–74. [Google Scholar] [CrossRef][Green Version] - José, J.; Iliadis, C. Nuclear astrophysics: The unfinished quest for the origin of the elements. Rep. Prog. Phys.
**2011**, 74, 096901. [Google Scholar] [CrossRef] - Bracco, A.; Körner, G.E.; Krusche, B.; Nappi, E.; Maj, A.; Murphy, A.; Nystrand, J.; Widmann, E.; Dobeš, J.; Lewitowicz, M. (Eds.) NuPECC Long Range Plan 2017 Perspectives in Nuclear Physics; Nuclear Physics European Collaboration Committee: Caen, France, 2017; p. 236. Available online: https://www.esf.org/fileadmin/user_upload/esf/Nupecc-LRP2017.pdf (accessed on 28 November 2021).
- Otuka, N.; Dupont, E.; Semkova, V.; Pritychenko, B.; Blokhin, A.; Aikawa, M.; Babykina, S.; Bossant, M.; Chen, G.; Dunaeva, S.; et al. Towards a More Complete and Accurate Experimental Nuclear Reaction Data Library (EXFOR): International Collaboration Between Nuclear Reaction Data Centres (NRDC). Nucl. Data Sheets
**2014**, 120, 272–276. [Google Scholar] [CrossRef][Green Version] - Chadwick, M.B.; Herman, M.; Obložinský, P.; Dunn, M.E.; Danon, Y.; Kahler, A.C.; Smith, D.L.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; et al. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nucl. Data Sheets
**2011**, 112, 2887–2996. [Google Scholar] [CrossRef] - Rauscher, T.; Thielemann, F.K. Astrophysical Reaction Rates From Statistical Model Calculations. At. Data Nucl. Data Tables
**2000**, 75, 1–351. [Google Scholar] [CrossRef][Green Version] - Plompen, A.J.M.; Cabellos, O.; De Saint Jean, C.; Fleming, M.; Algora, A.; Angelone, M.; Archier, P.; Bauge, E.; Bersillon, O.; Blokhin, A.; et al. The joint evaluated fission and fusion nuclear data library, JEFF-3.3. Eur. Phys. J. A
**2020**, 56, 181. [Google Scholar] [CrossRef] - Shibata, K.; Iwamoto, O.; Nakagawa, T.; Iwamoto, N.; Ichihara, A.; Kunieda, S.; Chiba, S.; Furutaka, K.; Otuka, N.; Ohsawa, T.; et al. JENDL-4.0: A New Library for Nuclear Science and Engineering. J. Nucl. Sci. Technol.
**2011**, 48, 1–30. [Google Scholar] [CrossRef] - Andrianova, O.N.; Golovko, Y.Y.; Manturov, G.N. Verification of the ROSFOND/ABBN nuclear data based on the OECD/NEA benchmark on criticality safety of mox-fueled systems. Nucl. Energy Technol.
**2019**, 5, 91–96. [Google Scholar] [CrossRef][Green Version] - Ge, Z.; Zhao, Z.; Xia, H.; Zhuang, Y.; Liu, T.; Zhang, J.; Wu, H. The Updated Vversion of Chinese Evaluated Nuclear Data Library (CENDL-3.1). J. Korean Phys. Soc.
**2011**, 59, 1052–1056. [Google Scholar] [CrossRef] - Bao, Z.; Käppeler, F. Neutron capture cross sections for s-process studies. At. Data Nucl. Data Tables
**1987**, 36, 411–451. [Google Scholar] [CrossRef] - Käppeler, F.; Gallino, R.; Bisterzo, S.; Aoki, W. The s process: Nuclear physics, stellar models, and observations. Rev. Mod. Phys.
**2011**, 83, 157–193. [Google Scholar] [CrossRef][Green Version] - Banerjee, P.; Heger, A.; Qian, Y.Z. New s-process Mechanism in Rapidly Rotating Massive Population II Stars. Astrophys. J.
**2019**, 887, 187. [Google Scholar] [CrossRef] - Mathews, G.J.; Cowan, J.J. New insights into the astrophysical r-process. Nature
**1990**, 345, 491–494. [Google Scholar] [CrossRef] - Cowan, J.J.; Thielemann, F.K.; Truran, J.W. The R-process and nucleochronology. Phys. Rep.
**1991**, 208, 267–394. [Google Scholar] [CrossRef] - Wanajo, S.; Tamamura, M.; Itoh, N.; Nomoto, K.; Ishimaru, Y.; Beers, T.C.; Nozawa, S. Ther-Process in Supernova Explosions from the Collapse of O-Ne-Mg Cores. Astrophys. J.
**2003**, 593, 968–979. [Google Scholar] [CrossRef][Green Version] - Thielemann, F.K.; Arcones, A.; Käppeli, R.; Liebendörfer, M.; Rauscher, T.; Winteler, C.; Fröhlich, C.; Dillmann, I.; Fischer, T.; Martinez-Pinedo, G.; et al. What are the astrophysical sites for the r-process and the production of heavy elements? Prog. Part. Nucl. Phys.
**2011**, 66, 346–353. [Google Scholar] [CrossRef] - Freiburghaus, C.; Rosswog, S.; Thielemann, F.K. r-Process in Neutron Star Mergers. Astrophys. J.
**1999**, 525, L121–L124. [Google Scholar] [CrossRef] - Goriely, S.; Bauswein, A.; Janka, H.T. r-process nucleosynthesis in dynamically ejected matter of neutron star mergers. Astrophys. J. Lett.
**2011**, 738, L32. [Google Scholar] [CrossRef][Green Version] - Pian, E.; D’Avanzo, P.; Benetti, S.; Branchesi, M.; Brocato, E.; Campana, S.; Cappellaro, E.; Covino, S.; D’Elia, V.; Fynbo, J.P.U.; et al. Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature
**2017**, 551, 67–70. [Google Scholar] [CrossRef] - Kajino, T.; Aoki, W.; Balantekin, A.; Diehl, R.; Famiano, M.; Mathews, G. Current status of r-process nucleosynthesis. Prog. Part. Nucl. Phys.
**2019**, 107, 109–166. [Google Scholar] [CrossRef][Green Version] - Litvinova, E.; Loens, H.; Langanke, K.; MartÃnez-Pinedo, G.; Rauscher, T.; Ring, P.; Thielemann, F.K.; Tselyaev, V. Low-lying dipole response in the relativistic quasiparticle time blocking approximation and its influence on neutron capture cross sections. Nucl. Phys. A
**2009**, 823, 26–37. [Google Scholar] [CrossRef][Green Version] - Pignatari, M.; Gallino, R.; Heil, M.; Wiescher, M.; Käppeler, F.; Herwig, F.; Bisterzo, S. The weak s-process in massive stars and its dependence on the neutron capture cross sections. Astrophys. J.
**2010**, 710, 1557–1577. [Google Scholar] [CrossRef] - Vermote, S.; Wagemans, C.; De Smet, L.; Lampoudis, C.; Van Gils, J. Experimental determination of the
^{41}Ca(n,α)^{38}Ar reaction cross section up to 80 keV, and calculation of the Maxwellian averaged cross section at stellar temperatures. Phys. Rev. C**2012**, 85, 015803. [Google Scholar] [CrossRef] - Woosley, S.; Fowler, W.A.; Holmes, J.; Zimmerman, B. Semiempirical thermonuclear reaction-rate data for intermediate-mass nuclei. At. Data Nucl. Data Tables
**1978**, 22, 371–441. [Google Scholar] [CrossRef] - Schatz, H.; Kaeppeler, F.; Koehler, P.E.; Wiescher, M.; Trautvetter, H.P. 17O(n, alpha )14C: Closure of a Primordial CNO Bi-Cycle? Astrophys. J.
**1993**, 413, 750. [Google Scholar] [CrossRef] - Bertulani, C.; Kajino, T. Frontiers in nuclear astrophysics. Prog. Part. Nucl. Phys.
**2016**, 89, 56–100. [Google Scholar] [CrossRef][Green Version] - Pritychenko, B.; Mughaghab, S.; Sonzogni, A. Calculations of Maxwellian-averaged cross sections and astrophysical reaction rates using the ENDF/B-VII.0, JEFF-3.1, JENDL-3.3, and ENDF/B-VI.8 evaluated nuclear reaction data libraries. At. Data Nucl. Data Tables
**2010**, 96, 645–748. [Google Scholar] [CrossRef][Green Version] - Dan, M.; Singh, G.; Chatterjee, R.; Shubhchintak. Neutron capture rates of
^{18}C. Phys. Rev. C**2019**, 99, 035801. [Google Scholar] [CrossRef] - Konobeyev, A.; Lunev, V.; Shubin, Y. Semi-empirical systematics for (n,α) reaction cross sections at the energy of 14.5 MeV. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms
**1996**, 108, 233–242. [Google Scholar] [CrossRef] - Forrest, R.A. Systematics of Neutron-Induced Threshold Reactions with Charged Products at about 145 MeV; Technical Report AERE-R–12419; UKAEA Atomic Energy Research Establishment: Abingdon, UK, 1986.
- Fessler, A.; Wattecamps, E.; Smith, D.L.; Qaim, S.M. Excitation functions of (n,2n), (n,p), (n,np+pn+d), and (n,α) reactions on isotopes of chromium. Phys. Rev. C
**1998**, 58, 996–1004. [Google Scholar] [CrossRef] - Smet, L.D.; Wagemans, C.; Goeminne, G.; Heyse, J.; Gils, J.V. Experimental determination of the
^{36}Cl(n,p)^{36}S and^{36}Cl(n,α)^{33}P reaction cross sections and the consequences on the origin of^{36}S. Phys. Rev. C**2007**, 75, 034617. [Google Scholar] [CrossRef] - Gledenov, Y.M.; Koehler, P.E.; Andrzejewski, J.; Guber, K.H.; Rauscher, T.
^{147}Sm(n,α) cross section measurements from 3 eV to 500 keV: Implications for explosive nucleosynthesis reaction rates. Phys. Rev. C**2000**, 62, 042801. [Google Scholar] [CrossRef] - Goeminne, G.; Wagemans, C.; Wagemans, J.; Serot, O.; Loiselet, M.; Gaelens, M. Investigation of the
^{37}Ar(n,p)^{37}Cl and^{37}Ar(n,α)^{34}S reactions in the neutron energy range from 10 meV to 100 keV. Nucl. Phys. A**2000**, 678, 11–23. [Google Scholar] [CrossRef] - Weiß, C.; Guerrero, C.; Griesmayer, E.; Andrzejewski, J.; Badurek, G.; Chiaveri, E.; Dressler, R.; Ganesan, S.; Jericha, E.; Käppeler, F.; et al. The (n,α) Reaction in the s-process Branching Point
^{59}Ni. Nucl. Data Sheets**2014**, 120, 208–210. [Google Scholar] [CrossRef] - Fotiades, N.; Devlin, M.; Haight, R.C.; Nelson, R.O.; Kunieda, S.; Kawano, T. α and 2p2n emission in fast neutron-induced reactions on
^{60}Ni. Phys. Rev. C**2015**, 91, 064614. [Google Scholar] [CrossRef][Green Version] - Barbagallo, M.; Musumarra, A.; Cosentino, L.; Maugeri, E.; Heinitz, S.; Mengoni, A.; Dressler, R.; Schumann, D.; Käppeler, F.; Colonna, N.; et al.
^{7}Be(n,α)^{4}He Reaction and the Cosmological Lithium Problem: Measurement of the Cross Section in a Wide Energy Range at n_{T}OF at CERN. Phys. Rev. Lett.**2016**, 117, 152701. [Google Scholar] [CrossRef] [PubMed][Green Version] - Gledenov, Y.M.; Sedysheva, M.V.; Khuukhenkhuu, G.; Bai, H.; Jiang, H.; Lu, Y.; Cui, Z.; Chen, J.; Zhang, G. Measurement of the cross sections of the
^{25}Mg(n,α)^{22}Ne reaction in the 4–6 MeV region. Phys. Rev. C**2018**, 98, 034605. [Google Scholar] [CrossRef] - Praena, J.; Sabaté-Gilarte, M.; Porras, I.; Quesada, J.M.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Barbagallo, M.; Bečvář, F.; et al. Measurement and resonance analysis of the
^{33}S(n,α)^{30}Si cross section at the CERN n_{T}OF facility in the energy region from 10 to 300 keV. Phys. Rev. C**2018**, 97, 064603. [Google Scholar] [CrossRef][Green Version] - Bai, H.; Jiang, H.; Lu, Y.; Cui, Z.; Chen, J.; Zhang, G.; Gledenov, Y.M.; Sedysheva, M.V.; Khuukhenkhuu, G.; Ruan, X.; et al.
^{56,54}Fe(n,α)^{53,51}Cr cross sections in the MeV region. Phys. Rev. C**2019**, 99, 024619. [Google Scholar] [CrossRef] - Helgesson, P.; Sjöstrand, H.; Rochman, D. Uncertainty-driven nuclear data evaluation including thermal (n,α) applied to
^{59}Ni. Nucl. Data Sheets**2017**, 145, 1–24. [Google Scholar] [CrossRef][Green Version] - Weiß, C.; Griesmayer, E.; Guerrero, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Badurek, G.; Barbagallo, M.; Bécares, V.; Bečvář, F.; et al. A new CVD diamond mosaic-detector for (n,α) cross-section measurements at the n_TOF experiment at CERN. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip.
**2013**, 732, 190–194. [Google Scholar] [CrossRef][Green Version] - Gyürky, G.; Fülöp, Z.; Käppeler, F.; Kiss, G.G.; Wallner, A. The activation method for cross section measurements in nuclear astrophysics. Eur. Phys. J. A
**2019**, 55, 41. [Google Scholar] [CrossRef] - Al-Khasawneh, K.; Borris, E.; Bruückner, B.; Eberhardt, K.; Erbacher, P.; Fiebiger, S.; Gernhäauser, R.; Göobel, K.; Heftrich, T.; Kisselbach, T.; et al. NICE—Neutron Induced Charged particle Emission. J. Phys. Conf. Ser.
**2020**, 1668, 012021. [Google Scholar] [CrossRef] - Hauser, W.; Feshbach, H. The Inelastic Scattering of Neutrons. Phys. Rev.
**1952**, 87, 366–373. [Google Scholar] [CrossRef] - Moldauer, P.A. Why the Hauser-Feshbach formula works. Phys. Rev. C
**1975**, 11, 426–436. [Google Scholar] [CrossRef] - Koning, A.; Hilaire, S.; Duijvestijn, M. TALYS1.0. In Proceedings of the International Conference on Nuclear Data for Science and Technology, Nice, France, 22–27 April 2007; EDP Sciences: Les Ulis, France, 2008; pp. 211–214. [Google Scholar]
- Koning, A.; Hilaire, S.; Goriely, S. TALYS-1.8 A Nuclear Reaction Program. User Manual; Nuclear Research and Consultancy Group (NRG): Petten, The Netherlands, 2015. [Google Scholar]
- Goriely, S.; Chamel, N.; Pearson, J.M. Skyrme-Hartree-Fock-Bogoliubov Nuclear Mass Formulas: Crossing the 0.6 MeV Accuracy Threshold with Microscopically Deduced Pairing. Phys. Rev. Lett.
**2009**, 102, 152503. [Google Scholar] [CrossRef][Green Version] - Audi, G.; Wapstra, A.; Thibault, C. The Ame2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl. Phys. A
**2003**, 729, 337–676. [Google Scholar] [CrossRef] - Wapstra, A.; Audi, G.; Thibault, C. The Ame2003 atomic mass evaluation: (I). Evaluation of input data, adjustment procedures. Nucl. Phys. A
**2003**, 729, 129–336. [Google Scholar] [CrossRef][Green Version] - Newton, J.R.; Iliadis, C.; Champagne, A.E.; Coc, A.; Parpottas, Y.; Ugalde, C. Gamow peak in thermonuclear reactions at high temperatures. Phys. Rev. C
**2007**, 75, 045801. [Google Scholar] [CrossRef] - Glorius, J.; Langer, C.; Slavkovská, Z.; Bott, L.; Brandau, C.; Brückner, B.; Blaum, K.; Chen, X.; Dababneh, S.; Davinson, T.; et al. Approaching the Gamow Window with Stored Ions: Direct Measurement of
^{124}Xe(p,γ) in the ESR Storage Ring. Phys. Rev. Lett.**2019**, 122, 092701. [Google Scholar] [CrossRef] [PubMed][Green Version] - Ciani, G.F.; Csedreki, L.; Rapagnani, D.; Aliotta, M.; Balibrea-Correa, J.; Barile, F.; Bemmerer, D.; Best, A.; Boeltzig, A.; Broggini, C.; et al. Direct Measurement of the
^{13}C(α,n)^{16}O Cross Section into the s-Process Gamow Peak. Phys. Rev. Lett.**2021**, 127, 152701. [Google Scholar] [CrossRef] - Rauscher, T. Relevant energy ranges for astrophysical reaction rates. Phys. Rev. C
**2010**, 81, 045807. [Google Scholar] [CrossRef][Green Version] - Fallis, J.; Akers, C.; Laird, A.; Simon, A.; Spyrou, A.; Christian, G.; Connolly, D.; Hager, U.; Hutcheon, D.; Lennarz, A.; et al. First measurement in the Gamow window of a reaction for the gamma-process in inverse kinematics: 76Se(alpha,gamma)80Kr. Phys. Lett. B
**2020**, 807, 135575. [Google Scholar] [CrossRef] - Stoitsov, M.; Moré, J.; Nazarewicz, W.; Pei, J.C.; Sarich, J.; Schunck, N.; Staszczak, A.; Wild, S. Towards the universal nuclear energy density functional. J. Phys. Conf. Ser.
**2009**, 180, 012082. [Google Scholar] [CrossRef] - Paar, N.; Papakonstantinou, P.; Ponomarev, V.; Wambach, J. Low-energy dipole excitations towards the proton drip-line: Doubly magic 48Ni. Phys. Lett. B
**2005**, 624, 195–202. [Google Scholar] [CrossRef][Green Version] - Paar, N. The quest for novel modes of excitation in exotic nuclei. J. Phys. G Nucl. Part. Phys.
**2010**, 37, 064014. [Google Scholar] [CrossRef] - Khan, E.; Paar, N.; Vretenar, D. Low-energy monopole strength in exotic nickel isotopes. Phys. Rev. C
**2011**, 84, 051301. [Google Scholar] [CrossRef][Green Version] - Samana, A.R.; Krmpotić, F.; Paar, N.; Bertulani, C.A. Neutrino and antineutrino charge-exchange reactions on
^{12}C. Phys. Rev. C**2011**, 83, 024303. [Google Scholar] [CrossRef][Green Version] - Fantina, A.F.; Khan, E.; Colò, G.; Paar, N.; Vretenar, D. Stellar electron-capture rates on nuclei based on a microscopic Skyrme functional. Phys. Rev. C
**2012**, 86, 035805. [Google Scholar] [CrossRef][Green Version] - Paar, N.; Moustakidis, C.C.; Marketin, T.; Vretenar, D.; Lalazissis, G.A. Neutron star structure and collective excitations of finite nuclei. Phys. Rev. C
**2014**, 90, 011304. [Google Scholar] [CrossRef][Green Version] - Nikšić, T.; Paar, N.; Vretenar, D.; Ring, P. DIRHB—A relativistic self-consistent mean-field framework for atomic nuclei. Comput. Phys. Commun.
**2014**, 185, 1808–1821. [Google Scholar] [CrossRef][Green Version] - Paar, N.; Vretenar, D.; Khan, E.; Colò, G. Exotic modes of excitation in atomic nuclei far from stability. Rep. Prog. Phys.
**2007**, 70, 691–793. [Google Scholar] [CrossRef][Green Version] - Gao, Y.; Dobaczewski, J.; Kortelainen, M.; Toivanen, J.; Tarpanov, D. Propagation of uncertainties in the Skyrme energy-density-functional model. Phys. Rev. C
**2013**, 87, 034324. [Google Scholar] [CrossRef][Green Version] - Roca-Maza, X.; Colò, G.; Sagawa, H. New Skyrme energy density functional for a better description of the Gamow–Teller resonance. Phys. Scr.
**2013**, T154, 014011. [Google Scholar] [CrossRef] - Washiyama, K.; Bennaceur, K.; Avez, B.; Bender, M.; Heenen, P.H.; Hellemans, V. New parametrization of Skyrme’s interaction for regularized multireference energy density functional calculations. Phys. Rev. C
**2012**, 86, 054309. [Google Scholar] [CrossRef][Green Version] - Yüksel, E.; Marketin, T.; Paar, N. Optimizing the relativistic energy density functional with nuclear ground state and collective excitation properties. Phys. Rev. C
**2019**, 99, 034318. [Google Scholar] [CrossRef][Green Version] - Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev.
**1965**, 140, A1133–A1138. [Google Scholar] [CrossRef][Green Version] - Kohn, W. Nobel Lecture: Electronic structure of matter—wave functions and density functionals. Rev. Mod. Phys.
**1999**, 71, 1253–1266. [Google Scholar] [CrossRef][Green Version] - Goriely, S.; Hilaire, S.; Koning, A.J. Improved predictions of nuclear reaction rates with the TALYS reaction code for astrophysical applications. A&A
**2008**, 487, 767–774. [Google Scholar] [CrossRef] - Avrigeanu, V.; Avrigeanu, M.; Mănăilescu, C. Further explorations of the α-particle optical model potential at low energies for the mass range A ≈ 45–209. Phys. Rev. C
**2014**, 90, 044612. [Google Scholar] [CrossRef][Green Version] - Koning, A.; Hilaire, S.; Goriely, S. New Edition-24 December 2019. Available online: https://tendl.web.psi.ch/tendl_2019/talys.html (accessed on 28 November 2021).
- Moldauer, P. Statistics and the average cross section. Nucl. Phys. A
**1980**, 344, 185–195. [Google Scholar] [CrossRef] - Krane, K. Introductory Nuclear Physics, 2nd ed.; John Willey and Sons: New York, NY, USA, 1988. [Google Scholar]
- Koehler, P.E.; Graff, S.M.
^{17}O(n,α)^{14}C cross section from 25 meV to approximately 1 MeV. Phys. Rev. C**1991**, 44, 2788–2793. [Google Scholar] [CrossRef] [PubMed] - Koehler, P.; Harvey, J.; Hill, N. Two detectors for (n,p) and (n,α) measurements at white neutron sources. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip.
**1995**, 361, 270–276. [Google Scholar] [CrossRef] - Wagemans, C.; Weigmann, H.; Barthelemy, R. Measurement and resonance analysis of the
^{33}S(n,α) cross section. Nucl. Phys. A**1987**, 469, 497–506. [Google Scholar] [CrossRef] - Koning, A.; Rochman, D.; Sublet, J.C.; Dzysiuk, N.; Fleming, M.; van der Marck, S. TENDL: Complete Nuclear Data Library for Innovative Nuclear Science and Technology. Nucl. Data Sheets
**2019**, 155, 1–55. [Google Scholar] [CrossRef] - Brown, D.; Chadwick, M.; Capote, R.; Kahler, A.; Trkov, A.; Herman, M.; Sonzogni, A.; Danon, Y.; Carlson, A.; Dunn, M.; et al. ENDF/B-VIII.0: The 8th Major Release of the Nuclear Reaction Data Library with CIELO-project Cross Sections, New Standards and Thermal Scattering Data. Nucl. Data Sheets
**2018**, 148, 1–142. [Google Scholar] [CrossRef] - Blokhin, A.I.; Gai, E.V.; Ignatyuk, A.V.; Koba, I.I.; Manokhin, V.N.; Pronyaev, V.N. New version of neutron evaluated data library BROND-3.1. Yad. Reak. Konst.
**2016**, 2, 62. [Google Scholar] - Oginni, B.M.; Iliadis, C.; Champagne, A.E. Theoretical evaluation of the reaction rates for
^{26}Al(n,p)^{26}Mg and^{26}Al(n,α)^{23}Na. Phys. Rev. C**2011**, 83, 025802. [Google Scholar] [CrossRef][Green Version] - Herman, M.; Capote, R.; Carlson, B.; Oblozinsky, P.; Sin, M.; Trkov, A.; Wienke, H.; Zerkin, V. EMPIRE: Nuclear Reaction Model Code System for Data Evaluation. Nucl. Data Sheets
**2007**, 108, 2655–2715. [Google Scholar] [CrossRef]

**Figure 1.**The $(n,\alpha )$ reaction cross section as a function of the incoming neutron energies for target nuclei as listed in the figure.

**Figure 2.**Comparison between the calculated and experimental $(n,\alpha )$ reaction cross sections for ${}^{17}$O, ${}^{26}$Al, ${}^{33}$S, ${}^{37}$Ar, and ${}^{41}$Ca. Model calculations include experimental nuclear masses and level densities from the Fermi gas model (TALYS-a) and nuclear masses and level densities from the Skyrme functional (TALYS-b). For comparison, results from the NON-SMOKER [8] TENDL-2019 [83], ENDF-B-VIII [84], JEFF-3.3 [9] and BROND-3.1 [85] data sets are also shown. The experimental data are taken from refs. [26,35,37,81,82].

**Figure 3.**The $(n,\alpha )$ reaction cross sections averaged over the Maxwell-Boltzmann distribution for the set of nuclei shown as a function of temperature.

**Figure 4.**The Maxwellian averaged cross sections (MACS) for $(n,\alpha )$ reaction for ${}^{22}$Na, ${}^{26}$Al, and ${}^{33}$S, ${}^{37}$Ar, and ${}^{39}$Ar as functions of temperature. The present results (TALYS-b) are compared to those from NON-SMOKER [8], ENDF-B-VII.1 [7], JEFF-3.1 [30], JENDL-4.0 [10], and ROSFOND-2008 [11].

**Figure 6.**The $(n,\alpha )$ reaction cross sections as a function of neutron energy $\sigma \left(E\right)$, and Maxwell-Boltzmann distribution ${f}_{D}\left(E\right)$ (in arbitrary units) for the range of temperatures $kT=$ 30–210 keV, shown for ${}^{41}$Ca, ${}^{59}$Ni, ${}^{65}$Zn, and ${}^{71}$Ge.

**Figure 7.**Relevant $(n,\alpha )$ reaction energy windows for the range of temperatures $kT=$ 30–210 keV described with the function ${f}_{I}\left(E\right)$ (in arbitrary units, see text) and the respective reaction cross sections for ${}^{17}$O,${}^{18}$F, ${}^{22}$Na, and ${}^{26}$Al target nuclei.

**Figure 8.**The same as Figure 7, but for ${}^{33}$S, ${}^{37}$Ar, ${}^{39}$Ar, and ${}^{40}$K target nuclei.

**Figure 9.**The same as Figure 7, but for ${}^{41}$Ca, ${}^{59}$Ni, ${}^{65}$Zn, and ${}^{71}$Ge target nuclei.

Nucleus | Q(MeV) |
---|---|

${}^{17}$O | 1.817 * |

${}^{18}$F | 6.418 * |

${}^{22}$Na | 1.952 * |

${}^{26}$Al | 2.462 |

${}^{33}$S | 3.870 |

${}^{37}$Ar | 3.264 |

${}^{39}$Ar | 3.060 |

${}^{40}$K | 2.973 |

${}^{41}$Ca | 6.101 |

${}^{59}$Ni | 5.711 |

${}^{65}$Zn | 6.223 |

${}^{71}$Ge | 5.704 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Küçüksucu, S.; Yiğit, M.; Paar, N. Statistical Hauser-Feshbach Model Description of (*n*,*α*) Reaction Cross Sections for the Weak s-Process. *Universe* **2022**, *8*, 25.
https://doi.org/10.3390/universe8010025

**AMA Style**

Küçüksucu S, Yiğit M, Paar N. Statistical Hauser-Feshbach Model Description of (*n*,*α*) Reaction Cross Sections for the Weak s-Process. *Universe*. 2022; 8(1):25.
https://doi.org/10.3390/universe8010025

**Chicago/Turabian Style**

Küçüksucu, Sema, Mustafa Yiğit, and Nils Paar. 2022. "Statistical Hauser-Feshbach Model Description of (*n*,*α*) Reaction Cross Sections for the Weak s-Process" *Universe* 8, no. 1: 25.
https://doi.org/10.3390/universe8010025