Superconformal Line Defects in 3D
Abstract
1. Introduction
2. The ABJM Theory
3. Kinematical Defects in the ABJM Theory
3.1. The Topological Line of ABJM
3.2. The 1D Topological Correlators
4. Dynamical Defects: BPS Wilson Loops
4.1. The General Classification
4.2. The “Latitude” Wilson Loops
4.3. The Matrix Model for BPS Wilson Loops
- (1)
- (2)
- A first non-trivial check concerns the partition function (48). Since its value should be independent of the localizing supercharge that we use to infer the matrix model, (48) should provide the ordinary -independent partition function of the ABJM model. Indeed, this was successfully checked in [4] where it was shown that expression (48) can be rearranged in such a way that the dependence disappears completely and it ends up coinciding with the ABJM partition function (3). Since such manipulations no longer work when we insert the WL exponentials (47), we correctly expect a non-trivial -dependence in the Wilson loop vevs.
- (3)
- Important checks come from comparing the matrix model results at weak and strong couplings with alternative calculations. At weak coupling, its expansion perfectly matches the perturbative result (42). This confirms the intuition that localization should compute Wilson loops at framing .
- (4)
- Expressions (47) were computed at large N in the strong coupling limit, using the Fermi gas approach [4]. Applying a genus expansion in powers of the string coupling , and introducing the new variable through the identity
4.4. The Bremsstrahlung Function
4.5. One-Dimensional SCFT on the Wilson Line
5. Conclusions and Perspectives
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | We use conventions of [4], where and similarly for fermions. |
2 | For a nice introduction to localization, see, for instance, [15]. Briefly, this technique consists of deforming the original functional integral, which evaluates the partition function by shifting , where Q is an odd symmetry generator, satisfying , with being a bosonic symmetry, V a positive semi-definite fermionic functional and t a positive number. As long as , it is easy to see that the functional integral does not depend on t. Therefore, it can be computed at , where it localizes on the zero locus of . In a non-abelian gauge theory these are matrices, so that the original functional integration is traded for a finite dimensional matrix integral. In this limit the saddle point approximation becomes exact and the integrand is simply given by the exponential of the classical action evaluated at the saddle points times the one-loop determinant resulting from the integration on the quadratic fluctuations of the fields around their saddle values. The whole procedure requires compactifying the theory on the sphere in order to avoid IR divergences, but if we are dealing with a SCFT, this is not an issue. |
3 | We use notations and conventions in [26]. In particular, the two superalgebras and their irreducible representations are spelled there, in Appendices B and C. |
4 | Since the construction is the same for and , we will use the generic symbol to indicate one of the two supercharges. |
5 | We use the notation to label a short irreducible representation, whose superconformal primary is annihilated by and fractions of Q and supercharges in (4), respectively. |
6 | |
7 | These operators can be constructed from the lowest component of some flavor symmetry multiplet, therefore the a index runs from 1 to the dimension of the flavor symmetry algebra. |
8 | For a comprehensive review on Wilson loops in three-dimensional Chern–Simons-matter theories, we refer the reader to [43]. |
9 | The great circle corresponds to . |
10 | The fermionic couplings correctly reduce to the ones on the great circle on as given in [52]. |
11 | |
12 | |
13 | Here the plus components of the fermions are defined as , and . |
References
- Andrei, N.; Bissi, A.; Buican, M.; Cardy, J.; Dorey, P.; Drukker, N.; Erdmenger, J.; Friedan, D.; Fursaev, D.; Konechny, A.; et al. Boundary and Defect CFT: Open Problems and Applications. J. Phys. A 2020, 53, 453002. [Google Scholar] [CrossRef]
- Aharony, O.; Bergman, O.; Jafferis, D.L.; Maldacena, J. N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals. J. High Energy Phys. 2008, 10, 091. [Google Scholar] [CrossRef]
- Aharony, O.; Bergman, O.; Jafferis, D.L. Fractional M2-branes. J. High Energy Phys. 2008, 11, 043. [Google Scholar] [CrossRef]
- Bianchi, M.S.; Griguolo, L.; Mauri, A.; Penati, S.; Seminara, D. A matrix model for the latitude Wilson loop in ABJM theory. J. High Energy Phys. 2018, 8, 060. [Google Scholar] [CrossRef]
- Benna, M.; Klebanov, I.; Klose, T.; Smedback, M. Superconformal Chern-Simons Theories and AdS(4)/CFT(3) Correspondence. J. High Energy Phys. 2008, 9, 072. [Google Scholar] [CrossRef]
- Kitao, T.; Ohta, K.; Ohta, N. Three-dimensional gauge dynamics from brane configurations with (p,q)-fivebrane. Nucl. Phys. B 1999, 539, 79–106. [Google Scholar] [CrossRef]
- Gaiotto, D.; Yin, X. Notes on superconformal Chern-Simons-Matter theories. J. High Energy Phys. 2007, 8, 056. [Google Scholar] [CrossRef]
- Gaiotto, D.; Witten, E. Janus Configurations, Chern-Simons Couplings, and the theta-Angle in N = 4 Super Yang-Mills Theory. J. High Energy Phys. 2010, 6, 097. [Google Scholar] [CrossRef]
- Hosomichi, K.; Lee, K.M.; Lee, S.; Lee, S.; Park, J. N = 4 Superconformal Chern-Simons Theories with Hyper and Twisted Hyper Multiplets. J. High Energy Phys. 2008, 7, 091. [Google Scholar] [CrossRef]
- Imamura, Y.; Kimura, K. N = 4 Chern-Simons theories with auxiliary vector multiplets. J. High Energy Phys. 2008, 10, 040. [Google Scholar] [CrossRef]
- Lietti, M.; Mauri, A.; Penati, S.; Zhang, J.J. String theory duals of Wilson loops from Higgsing. J. High Energy Phys. 2017, 8, 030. [Google Scholar] [CrossRef]
- Hosomichi, K.; Lee, K.M.; Lee, S.; Lee, S.; Park, J. N = 5,6 Superconformal Chern-Simons Theories and M2-branes on Orbifolds. J. High Energy Phys. 2008, 9, 002. [Google Scholar] [CrossRef]
- Witten, E. Topological Quantum Field Theory. Commun. Math. Phys. 1988, 117, 353. [Google Scholar] [CrossRef]
- Witten, E. Mirror Manifolds and Topological Field Theory. arXiv 1991, arXiv:hep-th/9112056v1, 121–160. [Google Scholar]
- Pestun, V.; Zabzine, M. Introduction to localization in quantum field theory. J. Phys. 2017, A50, 443001. [Google Scholar] [CrossRef]
- Kapustin, A.; Willett, B.; Yaakov, I. Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter. J. High Energy Phys. 2010, 3, 089. [Google Scholar] [CrossRef]
- Marino, M.; Putrov, P. Exact Results in ABJM Theory from Topological Strings. J. High Energy Phys. 2010, 6, 011. [Google Scholar] [CrossRef]
- Drukker, N.; Marino, M.; Putrov, P. From weak to strong coupling in ABJM theory. Commun. Math. Phys. 2011, 306, 511–563. [Google Scholar] [CrossRef]
- Kapustin, A.; Willett, B.; Yaakov, I. Nonperturbative Tests of Three-Dimensional Dualities. J. High Energy Phys. 2010, 10, 013. [Google Scholar] [CrossRef]
- Hama, N.; Hosomichi, K.; Lee, S. Notes on SUSY Gauge Theories on Three-Sphere. J. High Energy Phys. 2011, 3, 127. [Google Scholar] [CrossRef]
- Jafferis, D.L. The Exact Superconformal R-Symmetry Extremizes Z. J. High Energy Phys. 2012, 5, 159. [Google Scholar] [CrossRef]
- Nosaka, T.; Shimizu, K.; Terashima, S. Large N behavior of mass deformed ABJM theory. J. High Energy Phys. 2016, 3, 063. [Google Scholar] [CrossRef]
- Nosaka, T.; Shimizu, K.; Terashima, S. Mass Deformed ABJM Theory on Three Sphere in Large N limit. J. High Energy Phys. 2017, 3, 121. [Google Scholar] [CrossRef]
- Hama, N.; Hosomichi, K.; Lee, S. SUSY Gauge Theories on Squashed Three-Spheres. J. High Energy Phys. 2011, 5, 014. [Google Scholar] [CrossRef]
- Imamura, Y.; Yokoyama, D. N = 2 supersymmetric theories on squashed three-sphere. Phys. Rev. D 2012, 85, 025015. [Google Scholar] [CrossRef]
- Gorini, N.; Griguolo, L.; Guerrini, L.; Penati, S.; Seminara, D.; Soresina, P. The topological line of ABJ(M) theory. J. High Energy Phys. 2021, 6, 091. [Google Scholar] [CrossRef]
- Agmon, N.B.; Wang, Y. Classifying Superconformal Defects in Diverse Dimensions Part I: Superconformal Lines. arXiv 2020, arXiv:hep-th/2009.06650. [Google Scholar]
- Bianchi, L.; Griguolo, L.; Preti, M.; Seminara, D. Wilson lines as superconformal defects in ABJM theory: A formula for the emitted radiation. J. High Energy Phys. 2017, 10, 050. [Google Scholar] [CrossRef]
- Beem, C.; Lemos, M.; Liendo, P.; Peelaers, W.; Rastelli, L.; van Rees, B.C. Infinite Chiral Symmetry in Four Dimensions. Commun. Math. Phys. 2015, 336, 1359–1433. [Google Scholar] [CrossRef]
- Drukker, N.; Plefka, J. Superprotected n-point correlation functions of local operators in N = 4 super Yang-Mills. J. High Energy Phys. 2009, 4, 052. [Google Scholar] [CrossRef]
- Chester, S.M.; Lee, J.; Pufu, S.S.; Yacoby, R. Exact Correlators of BPS Operators from the 3d Superconformal Bootstrap. J. High Energy Phys. 2015, 3, 130. [Google Scholar] [CrossRef]
- Gorini, N.; Griguolo, L.; Guerrini, L.; Penati, S.; Seminara, D.; Soresina, P. 2021. in preparation.
- Dedushenko, M.; Pufu, S.S.; Yacoby, R. A one-dimensional theory for Higgs branch operators. J. High Energy Phys. 2018, 3, 138. [Google Scholar] [CrossRef]
- Dedushenko, M.; Fan, Y.; Pufu, S.S.; Yacoby, R. Coulomb Branch Operators and Mirror Symmetry in Three Dimensions. J. High Energy Phys. 2018, 4, 037. [Google Scholar] [CrossRef]
- Panerai, R.; Pittelli, A.; Polydorou, K. Topological Correlators and Surface Defects from Equivariant Cohomology. J. High Energy Phys. 2020, 9, 185. [Google Scholar] [CrossRef]
- Nosaka, T. Instanton effects in ABJM theory with general R-charge assignments. J. High Energy Phys. 2016, 3, 059. [Google Scholar] [CrossRef]
- Agmon, N.B.; Chester, S.M.; Pufu, S.S. Solving M-theory with the Conformal Bootstrap. J. High Energy Phys. 2018, 6, 159. [Google Scholar] [CrossRef]
- Binder, D.J.; Chester, S.M.; Pufu, S.S. AdS4/CFT3 from weak to strong string coupling. J. High Energy Phys. 2020, 1, 034. [Google Scholar] [CrossRef]
- Closset, C.; Dumitrescu, T.T.; Festuccia, G.; Komargodski, Z.; Seiberg, N. Contact Terms, Unitarity, and F-Maximization in Three-Dimensional Superconformal Theories. J. High Energy Phys. 2012, 10, 053. [Google Scholar] [CrossRef]
- Agmon, N.B.; Chester, S.M.; Pufu, S.S. The M-theory Archipelago. J. High Energy Phys. 2020, 2, 010. [Google Scholar] [CrossRef]
- Chang, C.M.; Fluder, M.; Lin, Y.H.; Shao, S.H.; Wang, Y. 3d N = 4 Bootstrap and Mirror Symmetry. arXiv 2019, arXiv:hep-th/1910.03600. [Google Scholar]
- Chester, S.M.; Pufu, S.S.; Yin, X. The M-Theory S-Matrix From ABJM: Beyond 11D Supergravity. J. High Energy Phys. 2018, 8, 115. [Google Scholar] [CrossRef]
- Drukker, N.; Trancanelli, D.; Bianchi, L.; Bianchi, M.S.; Correa, D.H.; Forini, V.; Griguolo, L.; Leoni, M.; Levkovich-Maslyuk, F.; Nagaoka, G.; et al. Roadmap on Wilson loops in 3d Chern–Simons-matter theories. J. Phys. A 2020, 53, 173001. [Google Scholar] [CrossRef]
- Cooke, M.; Dekel, A.; Drukker, N. The Wilson loop CFT: Insertion dimensions and structure constants from wavy lines. J. Phys. A 2017, 50, 335401. [Google Scholar] [CrossRef]
- Correa, D.; Henn, J.; Maldacena, J.; Sever, A. An exact formula for the radiation of a moving quark in N = 4 super Yang Mills. J. High Energy Phys. 2012, 6, 048. [Google Scholar] [CrossRef]
- Berenstein, D.; Trancanelli, D. Three-dimensional N = 6 SCFT’s and their membrane dynamics. Phys. Rev. D 2008, 78, 106009. [Google Scholar] [CrossRef]
- Drukker, N.; Plefka, J.; Young, D. Wilson loops in 3-dimensional N = 6 supersymmetric Chern-Simons Theory and their string theory duals. J. High Energy Phys. 2008, 11, 019. [Google Scholar] [CrossRef]
- Chen, B.; Wu, J.B. Supersymmetric Wilson Loops in N = 6 Super Chern-Simons-matter theory. Nucl. Phys. 2010, B825, 38–51. [Google Scholar] [CrossRef]
- Kluson, J.; Panigrahi, K.L. Wilson loops in 3d QFT from D-branes in AdS(4) × CP**3. Eur. Phys. J. C 2009, 61, 339–349. [Google Scholar] [CrossRef][Green Version]
- Rey, S.J.; Suyama, T.; Yamaguchi, S. Wilson Loops in Superconformal Chern-Simons Theory and Fundamental Strings in Anti-de Sitter Supergravity Dual. J. High Energy Phys. 2009, 3, 127. [Google Scholar] [CrossRef]
- Lewkowycz, A.; Maldacena, J. Exact results for the entanglement entropy and the energy radiated by a quark. J. High Energy Phys. 2014, 5, 025. [Google Scholar] [CrossRef]
- Drukker, N.; Trancanelli, D. A Supermatrix model for N = 6 super Chern-Simons-matter theory. J. High Energy Phys. 2010, 2, 058. [Google Scholar] [CrossRef]
- Rey, S.J.; Yee, J.T. Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity. Eur. Phys. J. C 2001, 22, 379–394. [Google Scholar] [CrossRef]
- Maldacena, J.M. Wilson loops in large N field theories. Phys. Rev. Lett. 1998, 80, 4859–4862. [Google Scholar] [CrossRef]
- Lee, K.M.; Lee, S. 1/2-BPS Wilson Loops and Vortices in ABJM Model. J. High Energy Phys. 2010, 9, 4. [Google Scholar] [CrossRef]
- Ouyang, H.; Wu, J.B.; Zhang, J.J. Novel BPS Wilson loops in three-dimensional quiver Chern–Simons-matter theories. Phys. Lett. B 2016, 753, 215–220. [Google Scholar] [CrossRef]
- Ouyang, H.; Wu, J.B.; Zhang, J.-J. Construction and classification of novel BPS Wilson loops in quiver Chern–Simons-matter theories. Nucl. Phys. B 2016, 910, 496–527. [Google Scholar] [CrossRef]
- Mauri, A.; Penati, S.; Zhang, J.-j. New BPS Wilson loops in N=4 circular quiver Chern-Simons-matter theories. J. High Energy Phys. 2017, 11, 174. [Google Scholar] [CrossRef]
- Cardinali, V.; Griguolo, L.; Martelloni, G.; Seminara, D. New supersymmetric Wilson loops in ABJ(M) theories. Phys. Lett. 2012, B718, 615–619. [Google Scholar] [CrossRef]
- Bianchi, M.S.; Griguolo, L.; Leoni, M.; Penati, S.; Seminara, D. BPS Wilson loops and Bremsstrahlung function in ABJ(M): A two loop analysis. J. High Energy Phys. 2014, 6, 123. [Google Scholar] [CrossRef]
- Zarembo, K. Supersymmetric Wilson loops. Nucl. Phys. 2002, B643, 157–171. [Google Scholar] [CrossRef]
- Correa, D.H.; Aguilera-Damia, J.; Silva, G.A. Strings in AdS4×CP3 Wilson loops in N=6 super Chern-Simons-matter and bremsstrahlung functions. J. High Energy Phys. 2014, 6, 139. [Google Scholar] [CrossRef]
- Correa, D.H.; Giraldo-Rivera, V.I.; Silva, G.A. Supersymmetric mixed boundary conditions in AdS2 and DCFT1 marginal deformations. J. High Energy Phys. 2020, 3, 010. [Google Scholar] [CrossRef]
- Witten, E. Quantum Field Theory and the Jones Polynomial. Commun. Math. Phys. 1989, 121, 351–399. [Google Scholar] [CrossRef]
- Guadagnini, E.; Martellini, M.; Mintchev, M. Perturbative Aspects of the Chern-Simons Field Theory. Phys. Lett. B 1989, 227, 111–117. [Google Scholar] [CrossRef]
- Guadagnini, E.; Martellini, M.; Mintchev, M. Chern-Simons Model and New Relations Between the Homfly Coefficients. Phys. Lett. B 1989, 228, 489–494. [Google Scholar] [CrossRef][Green Version]
- Guadagnini, E.; Martellini, M.; Mintchev, M. Wilson Lines in Chern-Simons Theory and Link Invariants. Nucl. Phys. B 1990, 330, 575–607. [Google Scholar] [CrossRef]
- Bianchi, M.S.; Griguolo, L.; Leoni, M.; Mauri, A.; Penati, S.; Seminara, D. Framing and localization in Chern-Simons theories with matter. J. High Energy Phys. 2016, 6, 133. [Google Scholar] [CrossRef]
- Bianchi, M.S.; Griguolo, L.; Leoni, M.; Mauri, A.; Penati, S.; Seminara, D. The quantum 1/2 BPS Wilson loop in N=4 Chern-Simons-matter theories. J. High Energy Phys. 2016, 9, 009. [Google Scholar] [CrossRef]
- Bianchi, M.S. A note on multiply wound BPS Wilson loops in ABJM. J. High Energy Phys. 2016, 9, 047. [Google Scholar] [CrossRef]
- Bianchi, M.S.; Giribet, G.; Leoni, M.; Penati, S. 1/2 BPS Wilson loop in N = 6 superconformal Chern-Simons theory at two loops. Phys. Rev. D 2013, 88, 026009. [Google Scholar] [CrossRef]
- Bianchi, M.S.; Giribet, G.; Leoni, M.; Penati, S. The 1/2 BPS Wilson loop in ABJ(M) at two loops: The details. J. High Energy Phys. 2013, 10, 085. [Google Scholar] [CrossRef]
- Griguolo, L.; Martelloni, G.; Poggi, M.; Seminara, D. Perturbative evaluation of circular 1/2 BPS Wilson loops in N = 6 Super Chern-Simons theories. J. High Energy Phys. 2013, 9, 157. [Google Scholar] [CrossRef]
- Bianchi, L.; Preti, M.; Vescovi, E. Exact Bremsstrahlung functions in ABJM theory. J. High Energy Phys. 2018, 7, 060. [Google Scholar] [CrossRef]
- Aguilera-Damia, J.; Correa, D.H.; Silva, G.A. Semiclassical partition function for strings dual to Wilson loops with small cusps in ABJM. J. High Energy Phys. 2015, 3, 002. [Google Scholar] [CrossRef]
- Klemm, A.; Marino, M.; Schiereck, M.; Soroush, M. Aharony-Bergman-Jafferis–Maldacena Wilson loops in the Fermi gas approach. Z. Naturforsch. A 2013, 68, 178–209. [Google Scholar] [CrossRef]
- Okuyama, K. Instanton Corrections of 1/6 BPS Wilson Loops in ABJM Theory. J. High Energy Phys. 2016, 9, 125. [Google Scholar] [CrossRef]
- Giombi, S.; Tseytlin, A.A. Strong coupling expansion of circular Wilson loops and string theories in AdS5×S5 and AdS4×CP3. J. High Energy Phys. 2020, 10, 130. [Google Scholar] [CrossRef]
- Medina-Rincon, D. Matching quantum string corrections and circular Wilson loops in AdS4×CP3. J. High Energy Phys. 2019, 8, 158. [Google Scholar] [CrossRef]
- David, M.; De León Ardón, R.; Faraggi, A.; Pando Zayas, L.A.; Silva, G.A. One-loop holography with strings in AdS4×CP3. J. High Energy Phys. 2019, 10, 070. [Google Scholar] [CrossRef]
- Griguolo, L.; Guerrini, L.; Yaakov, I. Localization and Duality for ABJM Latitude Wilson Loops. J. High Energy Phys. 2021, 8, 1. [Google Scholar] [CrossRef]
- Kallen, J. Cohomological localization of Chern-Simons theory. J. High Energy Phys. 2011, 8, 8. [Google Scholar] [CrossRef][Green Version]
- Ohta, K.; Yoshida, Y. Non-Abelian Localization for Supersymmetric Yang-Mills-Chern-Simons Theories on Seifert Manifold. Phys. Rev. D 2012, 86, 105018. [Google Scholar] [CrossRef]
- Griguolo, L.; Marmiroli, D.; Martelloni, G.; Seminara, D. The generalized cusp in ABJ(M) N = 6 Super Chern-Simons theories. J. High Energy Phys. 2013, 5, 113. [Google Scholar] [CrossRef]
- Bianchi, M.S.; Mauri, A. ABJM θ-Bremsstrahlung at four loops and beyond. J. High Energy Phys. 2017, 11, 173. [Google Scholar] [CrossRef]
- Bianchi, M.S.; Mauri, A. ABJM θ-Bremsstrahlung at four loops and beyond: Non-planar corrections. J. High Energy Phys. 2017, 11, 166. [Google Scholar] [CrossRef]
- Bianchi, M.S.; Griguolo, L.; Mauri, A.; Penati, S.; Preti, M.; Seminara, D. Towards the exact Bremsstrahlung function of ABJM theory. J. High Energy Phys. 2017, 8, 022. [Google Scholar] [CrossRef]
- Forini, V.; Puletti, V.G.M.; Ohlsson Sax, O. The generalized cusp in AdS4×CP3 and more one-loop results from semiclassical strings. J. Phys. A 2013, 46, 115402. [Google Scholar] [CrossRef]
- Drukker, N. Integrable Wilson loops. J. High Energy Phys. 2013, 10, 135. [Google Scholar] [CrossRef]
- Correa, D.; Maldacena, J.; Sever, A. The quark anti-quark potential and the cusp anomalous dimension from a TBA equation. J. High Energy Phys. 2012, 8, 134. [Google Scholar] [CrossRef]
- Gromov, N.; Sever, A. Analytic Solution of Bremsstrahlung TBA. J. High Energy Phys. 2012, 11, 075. [Google Scholar] [CrossRef]
- Gromov, N.; Levkovich-Maslyuk, F.; Sizov, G. Analytic Solution of Bremsstrahlung TBA II: Turning on the Sphere Angle. J. High Energy Phys. 2013, 10, 036. [Google Scholar] [CrossRef]
- Minahan, J.A.; Zarembo, K. The Bethe ansatz for superconformal Chern-Simons. J. High Energy Phys. 2008, 9, 040. [Google Scholar] [CrossRef]
- Gaiotto, D.; Giombi, S.; Yin, X. Spin Chains in N = 6 Superconformal Chern-Simons-Matter Theory. J. High Energy Phys. 2009, 4, 066. [Google Scholar] [CrossRef]
- Arutyunov, G.; Frolov, S. Superstrings on AdS(4) × CP**3 as a Coset Sigma-model. J. High Energy Phys. 2008, 9, 129. [Google Scholar] [CrossRef]
- Stefanski, B., Jr. Green-Schwarz action for Type IIA strings on AdS(4) × CP**3. Nucl. Phys. B 2009, 808, 80–87. [Google Scholar] [CrossRef]
- Gromov, N.; Vieira, P. The AdS(4)/CFT(3) algebraic curve. J. High Energy Phys. 2009, 2, 040. [Google Scholar] [CrossRef]
- Gromov, N.; Vieira, P. The all loop AdS4/CFT3 Bethe ansatz. J. High Energy Phys. 2009, 1, 016. [Google Scholar] [CrossRef]
- Bombardelli, D.; Cavaglià, A.; Fioravanti, D.; Gromov, N.; Tateo, R. The full Quantum Spectral Curve for AdS4/CFT3. J. High Energy Phys. 2017, 9, 140. [Google Scholar] [CrossRef]
- Nishioka, T.; Takayanagi, T. On Type IIA Penrose Limit and N=6 Chern-Simons Theories. J. High Energy Phys. 2008, 8, 001. [Google Scholar] [CrossRef]
- Grignani, G.; Harmark, T.; Orselli, M. The SU(2) × SU(2) sector in the string dual of N = 6 superconformal Chern-Simons theory. Nucl. Phys. B 2009, 810, 115–134. [Google Scholar] [CrossRef]
- Minahan, J.A.; Ohlsson Sax, O.; Sieg, C. Magnon dispersion to four loops in the ABJM and ABJ models. J. Phys. A 2010, 43, 275402. [Google Scholar] [CrossRef]
- Leoni, M.; Mauri, A.; Minahan, J.A.; Ohlsson Sax, O.; Santambrogio, A.; Sieg, C.; Tartaglino-Mazzucchelli, G. Superspace calculation of the four-loop spectrum in N = 6 supersymmetric Chern-Simons theories. J. High Energy Phys. 2010, 12, 074. [Google Scholar] [CrossRef]
- McLoughlin, T.; Roiban, R.; Tseytlin, A.A. Quantum spinning strings in AdS(4) × CP**3: Testing the Bethe Ansatz proposal. J. High Energy Phys. 2008, 11, 069. [Google Scholar] [CrossRef]
- Gromov, N.; Sizov, G. Exact Slope and Interpolating Functions in N = 6 Supersymmetric Chern-Simons Theory. Phys. Rev. Lett. 2014, 113, 121601. [Google Scholar] [CrossRef] [PubMed]
- Minahan, J.A.; Ohlsson Sax, O.; Sieg, C. Anomalous dimensions at four loops in N = 6 superconformal Chern-Simons theories. Nucl. Phys. B 2011, 846, 542–606. [Google Scholar] [CrossRef]
- Abbott, M.C.; Aniceto, I.; Bombardelli, D. Quantum Strings and the AdS4/CFT3 Interpolating Function. J. High Energy Phys. 2010, 12, 040. [Google Scholar] [CrossRef][Green Version]
- Bianchi, L.; Bianchi, M.S.; Bres, A.; Forini, V.; Vescovi, E. Two-loop cusp anomaly in ABJM at strong coupling. J. High Energy Phys. 2014, 10, 013. [Google Scholar] [CrossRef]
- Bonini, M.; Griguolo, L.; Preti, M.; Seminara, D. Surprises from the resummation of ladders in the ABJ(M) cusp anomalous dimension. J. High Energy Phys. 2016, 5, 180. [Google Scholar] [CrossRef][Green Version]
- Ferrara, S.; Grillo, A.F.; Gatto, R. Tensor representations of conformal algebra and conformally covariant operator product expansion. Annals Phys. 1973, 76, 161–188. [Google Scholar] [CrossRef]
- Polyakov, A.M. Nonhamiltonian approach to conformal quantum field theory. Zh. Eksp. Teor. Fiz. 1974, 66, 23–42. [Google Scholar]
- Billó, M.; Caselle, M.; Gaiotto, D.; Gliozzi, F.; Meineri, M.; Pellegrini, R. Line defects in the 3d Ising model. J. High Energy Phys. 2013, 7, 055. [Google Scholar] [CrossRef]
- Bianchi, L.; Bliard, G.; Forini, V.; Griguolo, L.; Seminara, D. Analytic bootstrap and Witten diagrams for the ABJM Wilson line as defect CFT1. J. High Energy Phys. 2020, 8, 143. [Google Scholar] [CrossRef]
- Bianchi, M.S. On three-point functions in ABJM and the latitude Wilson loop. J. High Energy Phys. 2020, 10, 075. [Google Scholar] [CrossRef]
- Lemos, M.; Liendo, P.; Meineri, M.; Sarkar, S. Universality at large transverse spin in defect CFT. J. High Energy Phys. 2018, 9, 091. [Google Scholar] [CrossRef]
- Giombi, S.; Komatsu, S. Exact Correlators on the Wilson Loop in N = 4 SYM: Localization, Defect CFT, and Integrability. J. High Energy Phys. 2018, 5, 109, Erratum in 2018, 11, 123. [Google Scholar] [CrossRef]
- Closset, C.; Dumitrescu, T.T.; Festuccia, G.; Komargodski, Z.; Seiberg, N. Comments on Chern-Simons Contact Terms in Three Dimensions. J. High Energy Phys. 2012, 9, 091. [Google Scholar] [CrossRef]
- Mauri, A.; Ouyang, H.; Penati, S.; Wu, J.B.; Zhang, J. BPS Wilson loops in N≥ 2 superconformal Chern-Simons-matter theories. J. High Energy Phys. 2018, 11, 145. [Google Scholar] [CrossRef]
- Drukker, N.; Tenser, M.; Trancanelli, D. Notes on hyperloops in N = 4 Chern-Simons-matter theories. J. High Energy Phys. 2021, 7, 159. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penati, S. Superconformal Line Defects in 3D. Universe 2021, 7, 348. https://doi.org/10.3390/universe7090348
Penati S. Superconformal Line Defects in 3D. Universe. 2021; 7(9):348. https://doi.org/10.3390/universe7090348
Chicago/Turabian StylePenati, Silvia. 2021. "Superconformal Line Defects in 3D" Universe 7, no. 9: 348. https://doi.org/10.3390/universe7090348
APA StylePenati, S. (2021). Superconformal Line Defects in 3D. Universe, 7(9), 348. https://doi.org/10.3390/universe7090348