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Abstract: We review the recent progress in the study of line defects in three-dimensional Chern–
Simons-matter superconformal field theories, notably the ABJM theory. The first part is focused on
kinematical defects, supporting a topological sector of the theory. After reviewing the construction of
this sector, we concentrate on the evaluation of topological correlators from the partition function
of the mass-deformed ABJM theory and provide evidence on the existence of topological quantum
mechanics living on the line. In the second part, we consider the dynamical defects realized as
latitude BPS Wilson loops for which an exact evaluation is available in terms of a latitude Matrix
Model. We discuss the fundamental relation between these operators, the defect superconformal
field theory and bulk physical quantities, such as the Bremsstrahlung function. This relation assigns a
privileged role to BPS Wilson operators, which become the meeting point for three exact approaches:
localization, integrability and conformal bootstrap.

Keywords: Chern–Simons-matter theories; topological operators; Wilson loops

1. Introduction

The study of quantum field theories with defects is of crucial importance not only
because they can be used to describe real physical systems that exhibit lower dimensional
interplays or doping defects, but also because defect theories have proved to be an efficient
tool for investigating physical properties of the bulk system itself. This becomes even more
efficient when (super)conformal invariance is at work.

Superconformal line defects can be of two types. The first kind of defects are trivial
lines viewed as boundary conditions for the functional integral of the theory, or equivalently,
as lower dimensional manifolds supporting subsectors of bulk operators. We will refer to
them as “kinematical defects”. The second kind of defects are extended operators, notably
Wilson loops, described by exponentials of integrated defect Lagrangians. We will refer to
them as “dynamical defects”.

In recent years, a boost in the study of superconformal theories (SCFT) with defects
has been achieved, thanks to the use of innovative theoretical tools, such as the AdS/CFT
correspondence, integrability, supersymmetric localization, the topological twist and the
superconformal bootstrap. We refer to [1] for an introduction to theories with boundaries
and defects.

In this review, we will focus on one-dimensional kinematical and dynamical defects
in three-dimensional SCFTs that allow for a Lagrangian description in terms of a quiver
Chern–Simons theory coupled to a suitable matter sector. Though we can have, in general,
0 ≤ N ≤ 8 supersymmetry, according to the particular matter content and the particular
value of the couplings, we will consider as a benchmark the N = 6 U(N)k ×U(N)−k
ABJM theory [2].

Beyond the genuine interest in three-dimensional SCFTs, which arises from the fact
that they describe realistic condensed matter systems around quantum critical points, these
theories play a central role in formulating the AdS4/CFT3 correspondence, providing, in
principle, a field theory dual formulation of four-dimensional quantum gravity. Though
the AdS4/CFT3 version of the correspondence shares many important features with the
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more common AdS5/CFT4 one—it involves supersymmetry and has an underlying inte-
grable structure—it also has peculiar differences, which make the two formulations not a
simple replica. The study of three-dimensional SCFTs with or without defects is then of
great interest.

After a brief reminder about the ABJM theory, its field content and its symmetries,
given in Section 2, the first part of this review will be devoted to the construction of
the topological sector of the theory, made by local operators projected on a line, which
belongs to the cohomology of a twisted nilpotent supercharge. In Section 3, we will focus
on topological correlation functions and present some evidence about their connection
with the derivatives of the partition function of the mass-deformed ABJM theory in its
matrix representation. This leads to the emergence of a topological quantum mechanics
supported by the kinematic defect. Its potential implications for the solvability of the bulk
theory, that is, for determining its CFT data (scaling dimensions and OPE coefficients), are
briefly addressed.

In Section 4, we move to consider the dynamical defects realized as latitude Wilson
loops. These are BPS operators corresponding to generalized connections, which include
parametric (latitude) couplings to the bosonic and fermionic matter sectors of the theory.
These operators play a fundamental role in the development of new exact methods in
quantum field theory. First of all, (latitude) Wilson loops are amenable of exact evaluation
via localization. On the other hand, as we will review, derivatives of latitude Wilson loops
determine the Bremsstrahlung function, which, in turn, can be evaluated using integrability.
At the same time, derivatives of latitude Wilson loops give rise to correlation functions of
the one-dimensional defect theory, which can be also approached using SCFT techniques,
notably Ward identities and the conformal bootstrap. To complete the picture, for some
Wilson loops, the dual description in terms of fundamental strings ending on the Wilson
contour at the boundary is known. Therefore, BPS Wilson loops are the best playground
for testing the consistency among different exact methods—localization, integrability, and
conformal bootstrap—and for performing precision tests of the AdS/CFT correspondence.
Complementarily, the interplay between SCFT techniques, localization, integrability and
holographic techniques makes the study of defect SCFTs very promising.

Section 5 is devoted to some conclusions. A list of interesting open problems that need
further investigation is also reported there.

2. The ABJM Theory

We begin with a short summary of the field description of the ABJ(M) theories [2,3].
This is a class of three-dimensional U(N1)k ×U(N2)−k quiver theories, whose field content
is given by two Chern–Simons gauge vectors, Aµ and Âµ, minimally coupled to SU(4)
complex scalars CI , C̄I and the corresponding fermions ψ̄I , ψI , I = 1, . . . , 4, all belonging
to the (anti)bifundamental representation of the gauge group. The total action is given by

S = SCS + Smat + Sbos
pot + Sferm

pot (1)

where

SCS =
k

4πi

∫
d3x εµνρ

{
Tr
(

Aµ∂ν Aρ +
2
3

iAµ Aν Aρ

)
−Tr

(
Âµ∂ν Âρ +

2
3

iÂµ Âν Âρ

)}
Smat =

∫
d3x Tr

[
DµCI DµC̄I − iΨ̄IγµDµΨI

]
(2)

Here k is the Chern–Simons level and Dµ the covariant derivatives1. Matter fields are
subject to a non-trivial potential, (Sbos

pot + Sferm
pot ) in (1). More precisely, Sbos

pot is a pure scalar
sextic potential, whereas Sferm

pot contains quartic couplings between scalars and fermions.
The interested reader can find their explicit expressions in, for instance, [5].
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We will primarily focus on the ABJM model with equal gauge ranks, N1 = N2,
though most of the discussion that follows has a simple generalization (with some slight
differences) to the more general ABJ theory (N1 6= N2).

For a particular choice of the couplings in the potential terms, the theory possesses
N = 6 superconformal symmetry. The superconformal algebra is osp(6|4), which includes
the su(4) R-symmetry generators. It can be studied perturbatively in the coupling constant
λ = N/k for N � k. In the opposite regime, for N � k5 the model is dual to M-theory on
AdS4 × S7/Zk, whereas in the range k� N � k5, it corresponds to Type IIA string theory
on AdS4 ×CP3.

More general quiver Chern–Simons-matter theories have been constructed, which
possess N = 2, 3, 4, 5 superconformal symmetry [5–12].

Exact results for the 3DN ≥ 2 Chern–Simons-matter theories were obtained, using su-
persymmetric localization [13,14], which allows to trade the functional integral computing
the partition function with a standard matrix integral2. For the ABJM theory compactified
on the S3 sphere, the partition function is known to be as follows [16]

Z =
∫ N

∏
a=1

dλa eiπkλ2
a

N

∏
b=1

dµb e−iπkµ2
b ×

N

∏
a<b

sinh2 π(λa − λb)
N

∏
a<b

sinh2 π(µa − µb)

N

∏
a=1

N

∏
b=1

cosh2 π(λa − µb)

(3)

Here, the integrals are on the two sets of eigenvalues {λa}, {µa} of the Cartan subal-
gebras of the two U(N) gauge groups. Correlation functions of gauge invariant operators,
which preserve the localizing supercharge, can, in principle, be computed exactly from (3)
with suitable insertions.

The matrix integral (3) can be checked at weak coupling (N/k � 1) by matching a
genuine perturbative calculation [16], while its expansion at strong coupling reproduces
the string holographic prediction [17,18] and provides a non-trivial test of the AdS/CFT
correspondence.

The matrix models computing partition functions have been also obtained for the
mass deformed ABJM theory [19–23] and for the theory compactified on the squashed
sphere [24,25]. We refer to the literature for their explicit expressions.

3. Kinematical Defects in the ABJM Theory

Solving the ABJM theory amounts to classifying all the quantum-local and non-local-
gauge invariant observables in irreducible representations of the superconformal algebra
and computing all their correlation functions. In principle, this can be done by using
exact methods, such as supersymmetric localization and the bootstrap approach; however,
in practice, computational difficulties can make the program quite challenging. A way
to circumvent technical obstacles is to start from investigating suitable subsectors of the
theory, where correlators are easier to evaluate, but at the same time, can provide some
information on the whole spectrum of the theory.

Remarkable examples are topological sectors made up by local operators restricted on
lower dimensional subspaces, whose correlation functions are space-time independent.
These sectors can be constructed whenever the theory, once reduced to the given subspace,
possesses enough supersymmetry to allow for a topological twist, as originally introduced
by Witten [13]. The original Lorentz group on the lower dimensional subspace is traded
for a twisted Lorentz group, whose generators are given by linear combinations of the
original Lorentz and R-symmetry ones. The new generators turn out to be Q-exact in
the cohomology of a spin-zero cohomological supercharge Q, given by a linear combi-
nation of the original supersymmetry and superconformal charges. As a consequence,
correlators of local operators in the Q-cohomology are independent of the metric and the
space-time coordinates. Representatives of the Q-cohomology classes are then dubbed
topological operators.
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Here, we review how this procedure can be applied to construct a one-dimensional
topological subsector of the ABJM theory [26].

3.1. The Topological Line of ABJM

The topological sector of the ABJM theory is constructed from local gauge-invariant
operators, restricted to live on a kinematic defect, that is, a trivial straight line. For the
scope of constructing it explicitly, in the Euclidean three-dimensional space, we consider
a line parallel to the x3-direction, parametrized as xµ(s) = (0, 0, s), with s ∈ (−∞,+∞)
being its proper time.

Fixing this kinematic defect breaks the originalN = 6 superconformal algebra osp(6|4)
to su(1, 1|3)⊕ u(1)b, whose generators are given by3

1D conformal algebra sl(2) : (P, K, D)

R− symmetry su(3) : R b
a a, b = 1, 2, 3

Super(conformal) charges : Qa, Q̄a, Sa, S̄a a, b = 1, 2, 3

u(1)m : M = 3iM12 − 2J 1
1

u(1)b : B = M12 + 2i J 1
1 (4)

here, P is the translation operator along the line, while K and D generate special conformal
transformations and dilations, respectively. The super(conformal) charges satisfy the
hermitian conjugation rules (Sa)† = Q̄a, (S̄a)† = Qa.

Unitary irreducible representations (UIR) of the su(1, 1|3) algebra are labeled by four
quantum numbers, [∆, m, j1, j2], where ∆ is the conformal weight, m the u(1)m charge, while
j1, j2 are the eigenvalues of the two su(3) Cartan matrices. An exhaustive classification of
UIRs can be found in [27] (see also [26,28]).

The elementary matter fields listed in Section 2 can be reorganized according to SU(3)
representations as follows

CI = (Z, Ya) C̄I = (Z̄, Ȳa) ψI = (ψ, χa) ψ̄I = (ψ̄, χ̄a) a = 1, 2, 3 (5)

where Ya(Ȳa), χa(χ̄a) belong to the 3(3̄) of SU(3), while Z, Z̄, ψ, ψ̄ are SU(3)-singlets. They
provide the building blocks for the field realization of UIRs in terms of local, gauge
invariant operators.

The topological twist. In order to perform the topological twist, inside the complexified
su(3)C R-symmetry algebra, we select the su(1, 1)(' sl(2)) subalgebra generated by(

iR3
1, iR1

3,
R1

1 − R3
3

2

)
≡ (R+,R−,R0) (6)

With respect to this subalgebra, the supercharges in (4) split into two doublets (Q1, Q3)
and (S1, S3), and their Hermitian conjugates (Q̄1, Q̄3), (S̄1, S̄3), which transform in the
fundamental of su(1, 1) and have u(1) charges 1/6 and −1/6, respectively. The remaining
supercharges Q2, S2 (Q̄2, S̄2) are instead singlets with U(1) charges −1/3 (1/3).

The topological twist is now performed by taking a suitable diagonal sum of the
original spacetime conformal algebra defined in (4) with the su(1, 1) given in (6). The
new generators

L̂+ = P +R+ L̂− = K +R− L̂0 = D +R0 (7)

satisfy a ŝu(1, 1) conformal algebra, the “twisted” algebra, which, together with the two
nilpotent supercharges

Q± =
1√
2

(
Q3 + iS1 ± (S̄3 + iQ̄1)

)
, Q2

+ = Q2
− = 0 (8)
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form a superalgebra with central extension Z = 1
4{Q−,Q+}.

The remarkable fact is that the ŝu(1, 1) generators are Q±-exact. In fact, it is easy to
check that

L̂+ =
{
Q+, Q̃+

}
=
{
Q−, Q̃−

}
L̂− =

{
Q+, S̃+

}
=
{
Q−, S̃−

}
L̂0 =

1
2

{
Q+,Q†

+

}
=

1
2

{
Q−,Q†

−

}
(9)

where Q̃± = 1√
2
(Q̄3 ∓ iQ1) and S̃± = 1√

2
(−iS̄1 ± S3).

The cohomology. The cohomology of the Q± charges is built by the set of local, gauge
invariant operators O(s) living on the line and satisfying4:

[Q,O(s)]± = 0 , O(s) 6= [Q,O′(s)]∓ (10)

We can solve the cohomological equations at the origin (s = 0) and then move the
operator along the line by acting with the twisted translation operator L̂+, according to

O(s) ≡ e−sL̂+ O(0) esL̂+ (11)

In fact, since L̂+ is Q-exact (see Equation (9)), translating the operator away from the
origin does not affect the cohomology.

Similarly, since L̂0 and Z generators are Q-exact, they act trivially within each coho-
mological class. Therefore, representatives of the Q-classes belong necessarily to the zero
eigenspaces of L̂0 and Z [29]. Vice versa, in a unitary representation, any element of the
kernel of L̂0 must be annihilated by Q. Now, observing that the highest weight of an irre-
ducible representation of the su(1, 1|3) superalgebra with quantum numbers [∆, m, j1, j2]
is an eigenvector of L̂0 and Z with eigenvalues l̂0 = ∆ − j2+j1

2 and z = 1
3

(
m− j2−j1

2

)
,

respectively, it follows that the Q-cohomology classes are in one-to-one correspondence
with [∆, m, j1, j2] representations satisfying

∆ =
j2 + j1

2
, m =

j2 − j1
2

(12)

Scanning all the irreducible representations of su(1, 1|3) [27,28], we find that con-
straints (12) are always satisfied by the superconformal primaries of the following short
multiplets5

B
1
6 , 1

6
j2−j1

2 ;j1,j2
, B

1
6 ,0
j2−j1

2 ;j1,j2
, B0, 1

6
j2−j1

2 ;j1,j2
(13)

for generic values of j1, j2. For j1 = 0 and/or j2 = 0, the multiplets become shorter and
enhance their degree of supersymmetry.

The field realization. Knowing the Lagrangian description of the ABJM theory, we can
realize topological operators as composite operators built out of the fundamental matter
fields restricted to live on the one-dimensional kinematical defect. Taking into account
their explicit quantum numbers assignment (see, for instance, Tables 2 and 3 of [26]) it is
easy to see that the operator

On(0) = Tr(Y1Ȳ3)n (14)

defined at the origin satisfies the cohomological constraints (39,12) with [∆, m, j1, j2] =

[n, 0, n, n]. It is the superconformal primary of the B
1
6 , 1

6
0;n,n short multiplet. Therefore, it is 1/6

BPS on the line.



Universe 2021, 7, 348 6 of 26

For simplicity, we will focus on O1(0) = Tr(Y1Ȳ3), which we rename O. Applying
twisted translation (11), from direct inspection, we obtain the operator at position (0, 0, s)
on the line, as follows

O(s) = Tr(Ya(s)Ȳb(s)) ūa(s) vb(s) , with ūa(s)=(1, 0, is) va(s)=(−is, 0, 1) (15)

or more explicitly

O(s) = Tr(Y1Ȳ3)− is Tr(Y1Ȳ1) + is Tr(Y3Ȳ3) + s2 Tr(Y3Ȳ1) (16)

We note that the operator is given by a position-dependent linear combination of su-
perconformal primaries. This is reminiscent of what happens in 4DN = 4 SYM theory [30]
and in N = 4, 8 three-dimensional theories [31].

It is important to stress that the twisted translation leads to (15) when we use indiffer-
ently either the Q+ or the Q− cohomology. One could be tempted to conclude that things
should work nicely also by considering the cohomology of an arbitrary linear combination
(a+Q+ + a−Q−) with complex numbers a±. However, this is not true in general. As
explained in [32], good cohomological charges are only the ones corresponding to linear
combinations of the following form

Qβ =
1√
2

(
Q3 + iS1 + eiβ(S̄3 + iQ̄1)

)
, β ∈ R (17)

all satisfying Q2
β = 0. In conclusion, we have a one-parameter family of cohomological

supercharges that can be used to perform the topological twist on the line.

3.2. The 1D Topological Correlators

We are interested in evaluating correlation functions of the topological operators
defined in the previous section. Focusing on O, we study the generic n-point function

〈O(s1) · · · O(sn)〉 ≡
∫
O(s1) · · · O(sn) e−S (18)

As anticipated in the previous discussion, these correlators are expected to be, in
general, non-vanishing and position independent. In fact, since from (11) it follows that
∂sO(s) = −[L̂+,O(s)] and L̂+ is Q-exact, we obtain

∂sj 〈O(s1) · · · O(sj) · · · O(sn)〉= 〈
{
Q,O(s1) · · · [Q̃,O(sj)] · · · O(sn)

}
〉 = 0 , ∀ j = 1, · · · , n (19)

Moreover, since O(s) is 1/6 BPS, we expect these correlators to acquire at most finite
quantum corrections.

An important observation is now in order. What makes O special inside the class (14)
of topological operators is that it coincides with one of the scalar chiral superprimaries (in
SU(4) notation)

O J
I (~x) = Tr(CI(~x)C̄ J(~x))− 1

4
δ J

I Tr(CK(~x)C̄K(~x)) (20)

which seat in the stress–energy tensor multiplet. In fact, using decomposition (5), it is
easy to see that O is nothing but O 4

2 in (20) localized on the line at the origin. Therefore,
we expect its correlation functions (18) to carry some information about the correlation
functions of the stress–energy tensor, itself. In particular, its two-point function can be
used to evaluate the central charge cT of the ABJM theory. In fact, if we project the
general identity

〈O J
I (~x)O L

K (~0)〉 = cT
16

(
δL

I δJ
K −

1
4

δJ
I δL

K

)
1

16π2~x 2 (21)
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on the line by setting ~x = (0, 0, s) and multiplying by the polarization vectors Ūa(s) =
(0, ūa(s)), Va(s) = (0, va(s)) obtained by promoting the ones in (15) to SU(4) notation,
we obtain

cT = −256 π2 〈O(s)O(0)〉 (22)

This is an example on how we can extract information on the bulk theory from the
kinematical defect.

The perturbative result. The perturbative evaluation of correlation functions relies on the
expansion of the Euclidean path integral (18) in powers of the ABJM coupling constant N/k.

As anticipated, we expect the correlators to be constant, at most depending on the
order of the operators along the line. At tree level, this happens since the worldline
dependence at the denominator encoded in the propagators is canceled by an analogous
numerator coming from the contraction of the polarization vectors [26]. The evaluation of
loop contributions reveals that there are no one-loop corrections, whereas the two-point
function at two loops reads [26]

〈O(s)O(0)〉(2) = − N2

(4π)2

(
1− π2

3k2 (N2 − 1)
)

(23)

From this result, exploiting (22), we can read the two-loop result for the central charge
of ABJM theory, which turns out to be

cT = 16N2
(

1− π2

3k2 (N2 − 1) + O
(

1
k3

))
(24)

Higher order contributions are, in principle, computable, but the evaluation of Feyn-
man integrals becomes more and more challenging. It is then convenient to rely on different
approaches for computing the two-point function, as we now describe.

The correlators from the matrix model. As already mentioned, the partition function on S3

for the ABJM theory is known exactly from localization (see Equation (3)). In principle, the
same technique can be applied to compute correlators (18). Under compactification on the
three spheres, the infinite line in R3 gets mapped to the great circle S1 ⊂ S3. Accordingly,
the topological operator (15) gets mapped into its spherical version O(ϕ), which is nothing
but the operator evaluated on the great circle parametrized by 0 ≤ ϕ ≤ 2π, contracted with
the polarization vectors on the sphere, ūa

S = (cos ϕ
2 , 0, sin ϕ

2 ), vS a = (− sin ϕ
2 , 0, cos ϕ

2 ) [26].
Superconformal invariance ensures that

〈O(s1) · · · O(sn)〉R3 = 〈O(ϕ1) · · · O(ϕn)〉S3 (25)

It is important to stress that the topological operator O is no longer invariant under
the action of the localizing supercharge used in [16] to obtain the matrix model (3). The
only possible supercharges that can be used in the localization procedure are the cohomo-
logical supercharges Qβ in Equation (17), which are symmetries of the theory and kill the
topological operators. Redoing the localization with these supercharge requires to first
bring the cohomological charge off-shell, finding a convenient Q-exact term to deform the
action and then localize the integrand.

The problem was first attacked in [33] for the case of N = 4 SCFTs described by
Yang–Mills vector multiplets suitably coupled to hypermultiplets. Using the nilpotent
supercharge Q, which features the one-dimensional topological sector of the Higgs branch,
one obtains a different but equivalent matrix model for the N = 4 partition function
Z [S3], which can be interpreted as coming from the gauge sector minimally coupled to
a one-dimensional Gaussian model localized on the great circle S16. Remarkably, this
one-dimensional factor coincides exactly with the contribution from the one-dimensional
topological sector defined by the Q-cohomology. In fact, it is described by the action
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Sσ = −4πr
∫ π

−π
dϕ J̄a(∂ϕ + σ)J a (26)

where J a are dimension-1 topological operators7, σ is the scalar in the three-dimensional
vector multiplet, and r is the radius of the sphere. It follows that correlators can be
computed with the ordinary prescription

〈J a1(s1) · · · J an(sn)〉 ∼
∫
[DJ DJ̄ ] e−Sσ J a1(s1) · · · J an(sn) (27)

for a one-dimensional quantum mechanics.
A few comments are now in order. First of all, if we remove the operator insertions

the matrix model reduces to the one in Equation (3) evaluating the partition function [33],
consistent with the fact that the result for the partition function must be independent of
the choice of the localizing supercharge. Second, it can be proved that the SYM action is
Q-exact, with respect to the cohomological supercharge. Therefore, in three-dimensional
N = 4 SCFT theories with a Yang–Mills-type action, correlators (27) are expected to be
independent of the coupling constant.

This results can be easily generalized to non-conformal theories obtained by deform-
ing the original SCFT with mass parameters ma. The matrix model computing the partition
function of the mass deformed theory on S3 is known in the large N limit [22,23] and ex-
actly [36]. On the other hand, in the alternative derivation described above this deformation
is equivalent to add mass terms of the form −4πr2ma ∫ π

−π dτ J a(τ) to the one-dimensional
Gaussian model (26) [33]. It follows that taking derivatives of the matrix model on S3

respect to the mass parameters ma is equivalent to bring down factors −4πr2
∫ π
−π dτ J a(τ)

inside the Gaussian one-dimensional functional, so obtaining integrated correlation func-
tions of topologically twisted operators living on the great circle. Precisely, the following
remarkable identity holds [37,38]〈 ∫ π

−π
dτ1 . . .

∫ π

−π
dτn J a1(τ1) . . .J an(τn)

〉
=

1
(4πr2)n

1
Z

∂n

∂ma1 . . . ∂man
Z [S3, ma]

∣∣∣
ma=0

(28)

In particular, since the topological correlators are position independent, the integrals
on the l.h.s. can be trivially performed, leading to a constant factor (2π)n times the
correlator. Therefore, identity (28) provides an exact prescription for computing correlators
in the one-dimensional topological sector in terms of the derivatives of the deformed
matrix model of the three-dimensional theory. Read in the opposite direction, this allows
to reconstruct the exact partition function of the three-dimensional theory on the sphere
once we have solved the one-dimensional topological theory, i.e., we know exactly all
its correlators.

This procedure can be generalized to N = 8 SCFTs [37], being these theories special
cases of N = 4 SCFTs with an extra so(4) flavor symmetry. In this case, the topological
sector is constructed from the three-dimensional operators in (20), which belong to the
N = 8 stress-energy tensor multiplet. Ward identities then relate topological correlators to
the ones of the stress-energy tensor in a particular kinematic configuration. In particular,
the topological two-point function is related to the central charge as in (22). On the other
hand, the topological two-point function can be computed, using prescription (28). Putting
everything together, it then follows that cT is related to the second derivative of the mass-
deformed partition function, according to

cT = − 64
π2

d2

dm2 logZ [S3, m]
∣∣∣
m=0

(29)

This coincides with the relation found in [39] for N ≥ 2 SCFTs, using an alternative
approach. This is a non-trivial check of identity (28) for the N = 8 case.

For N = 8 and N = 4 SCFTs, the topological sector has played a notable role in per-
forming a precision study of the theories through conformal bootstrap, allowing to compute
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exactly some OPE data and constraining “islands” in the parameter space [31,37,40,41]. At
the same time, it was instrumental in fixing contributions to the scattering amplitudes of
super-gravitons in M-theory in 11 dimensions [42].

For N = 6 ABJ(M) theory, the topological sector was considered in connection with
string theory amplitudes in AdS4 ×CP3 [38]. However, for this case, a direct derivation
of identity (28) is not available since the absence of a N = 4 SYM mirror theory and
the presence of Chern–Simons terms somehow preclude a direct derivation of a one-
dimensional action for the topological sector. It is then necessary to provide indirect
evidence of identity (28) through the use of alternative approaches.

A first piece of evidence was recently given in [26] by a perturbative evaluation of
identity (29) for the ABJM theory. In fact, referring to the topological operator O in (15),
it was shown there that the two-loop result (24) for the central charge coming from a
genuine two-loop evaluation of 〈O(s)O(0)〉matches exactly the second derivative of the
mass-deformed matrix model of ABJ(M) on S3 [19–21]

Z =
1

(N!)2

∫
dλ dµ

eiπk ∑i(λ2
i −µ2

i ) ∏i<j 16 sinh2[π(λi − λj
)]

sinh2[π(µi − µj
)]

∏i,j 4 cosh
[
π(λi − µj) +

πm+
2
]

cosh
[
π(λi − µj) +

πm−
2
] (30)

respect to m+ or equivalently m−, where m± are the mass assignments of the fundamental
scalars (Z, Ya)→ (m+,−m+, m−,−m−) in the mass-deformed ABJM theory.

As a last observation, we note that in N = 6, 8 Chern–Simons-matter theories, the
Chern–Simons Lagrangian is not Q-exact, regardless of the Q supercharge that we use to
localize the functional integral that computes correlators. Therefore, topological correlators
are expected to depend in general on the coupling constant of the theory. The perturbative
result given in Equation (23) confirms this expectation.

4. Dynamical Defects: BPS Wilson Loops

A notable class of dynamical one-dimensional defects in U(N)×U(N) ABJM theory
is made by the supersymmetric/BPS Wilson loops. These are non-local, gauge invariant
operators of the following form

W = TrPe−i
∫

Γ L Ŵ = TrPe−i
∫

Γ L̂ (31)

where L, L̂ are generalized connections for the two gauge groups respectively, whose
structure is detailed below, and Γ is an open or closed one-dimensional contour8.

For a suitable choice of L, L̂ and the shape of Γ, these operators may preserve a fraction
of the supersymmetry charges of the theory. This protects them from acquiring divergent
contributions at quantum level. Nevertheless, their vacuum expectation value is, in general,
a (finite) non-trivial function of the coupling constant, which interpolates between the
weak and the strong regimes. Therefore, they represent a powerful tool for proving the
AdS/CFT correspondence and a natural playground for testing non-perturbative methods.

A one-dimensional defect SCFT can be defined on a Wilson line/loop by restricting
subsets of ABJM local operators to live on the Wilson line. The one-dimensional observables
are correlation functions of these local operators computed on the non-trivial vacuum
dressed with the Wilson line. Precisely, for a generic operator O on the infinite straight line
we define correlators as

〈〈TrO(sn)O(sn−1) · · · O(s1)〉〉 =
〈TrWsn ,+∞O(sn)Wsn−1,snO(sn−1) · · ·Ws1,s2O(s1)W−∞,s1〉

〈TrW−∞,+∞〉
(32)

where we have used the notation Wa,b ≡ Pe−i
∫ b

a L.
An efficient way to insert local operators along the Wilson loop is by applying a broken

symmetry generator to the operator itself [44]. For instance, applying the generators of the
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transverse translations, we obtain correlators of operators belonging to the displacement
multiplet [45]. Alternatively, along the lines described above for the topological line, one
can consider the matrix model, computing the vacuum expectation value of parametric
Wilson operators, and take derivatives respect to the parameters. We will comment further
on this point in Section 4.5. For the time being, we focus on the classification and the
quantum properties of the Wilson loops in the ABJM theory and their relation with other
important physical quantities.

4.1. The General Classification

Ordinary gauge invariant Wilson operators W = TrPe−i
∫

Γ dxµ Aµ , Ŵ = TrPe−i
∫

Γ dxµ Âµ

break all the supersymmetries of the ABJM theory. However, generalizing the connections
Aµ, Âµ to include also couplings with the matter sector may enhance a fraction of the
supersymmetry. Based on the dimensional and group representation arguments, it is easy
to see that in three dimensions, we can, in principle, include couplings to bilinear scalars
(dimension-one operators in the adjoint of the gauge group) and fermions (dimension-one
fields in the (anti)bifundamental).

“Bosonic” Wilson operators that include only couplings to scalar matter was origi-
nally proposed in [7] and further elaborated in [46–48]. They correspond to generalized
connections for the two U(N) gauge groups, of the following form

LB = Aµ ẋµ − 2πi
k
|ẋ|M I

J CIC̄ J , L̂B = Âµ ẋµ − 2πi
k
|ẋ|M I

J C̄ JCI (33)

whereM is a constant matrix featuring the coupling to scalars. ForM = diag(1, 1,−1,−1)
and choosing the contour to be the infinite straight line or the great circle the two Wilson
operators WB, ŴB become 1/6 BPS. These operators have a dual description in terms of
fundamental type IIA strings ending on the Wilson contour at the AdS4 boundary and
smeared along a CP1 inside CP3 [47–51].

As proposed in [52], enhancement of supersymmetry can be obtained by promoting
the generalized connection to be an even supermatrix belonging to the U(N|N) supergroup,
which includes also fermionic couplings in the off-diagonal blocks. Precisely, it has the
following form

LF =

 A −i
√

2π
k |ẋ|ηI ψ̄I

−i
√

2π
k |ẋ|ψI η̄ I Â

 with


A ≡ Aµ ẋµ − 2πi

k |ẋ|M̃
I

J CI C̄ J

Â ≡ Âµ ẋµ − 2πi
k |ẋ|M̃

I
J C̄ JCI

(34)

where ηI , η̄ I are commuting spinors which drive the coupling to fermions. Choosing the
contour to be the straight line or the great circle, M̃ = diag(−1, 1, 1, 1) and suitably fixing
the couplings to fermions this operator turns out to be 1/2 BPS [52]. It is dual to the
1/2 BPS fundamental string ending on the Wilson contour at the AdS4 boundary and
localized in CP3. Because of the inclusion of fermions, it is sometimes called the “fermionic”
Wilson operator, here WF. According to the general prescription introduced in [53,54], its
expression can be derived by the Higgsing U(N + 1)×U(N + 1) ABJM theory down to
U(N)×U(N) via the assignment of a non-vanishing vacuum expectation value (vev) to
one of the scalars [55].

More general fermionic operators can be defined by allowing the couplings to the
matter sector to depend on some arbitrary parameter [56]. According to the general
classification given in [57] (see also [58] for a short summary), there exist four classes
of fermionic 1/6 BPS Wilson operators W I

F, W I I
F , W I I I

F , W IV
F , which differ for the specific

couplings to scalars and fermions and include the 1/2 BPS operator WF for a special
choice of the couplings. They all preserve the same spectrum of supercharges and are
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cohomologically equivalent to a bosonic 1/6 BPS Wilson loop Wbos corresponding to
the superconnection

Lbos =

(
LB 0
0 L̂B

)
(35)

with LB, L̂B given in (33). In other words,

W I,I I,I I I,IV
F = Wbos +Q−exact term (36)

where Q is a linear combination of supercharges preserved by all the operators. For a
particular choice of the parameters, this states the cohomological equivalence between the
1/2 BPS operator WF and the 1/6 BPS Wbos, first discovered in [52].

4.2. The “Latitude” Wilson Loops

Another set of bosonic and fermionic Wilson operators were introduced in [59,60].
These are obtained from the original operators (33) and (34) evaluated on the great circle
by rotating the internal scalar couplings by an angle α and/or deforming the contour to
a latitude circle on S3 featured by a latitude angle θ9. Though the two deformations are
in principle independent, the general expression of the latitude Wilson loops turns out to
depend only on the effective parameter ν = sin 2α cos θ [60].

The general structure of the latitude bosonic connections are still as in (33), but with
modified coupling given by

M I
J (ν, τ) =


−ν e−iτ

√
1− ν2 0 0

eiτ
√

1− ν2 ν 0 0
0 0 −1 0
0 0 0 1

 (37)

For generic values of ν ∈ [0, 1], these operators are 1/12 BPS, that is, they preserve two
independent linear combinations of the original N = 6 supercharges, Q1(ν) and Q2(ν),
whose coefficients depend explicitly on ν [60]. For the special value ν = 1, the matrixM
reduces to diag(L, L̂), with L, L̂ given in (33), and the supersymmetry is enhanced to 1/6
BPS, as discussed in the previous subsection.

Similarly, the latitude fermionic operator is still given in (34), but with the more
general couplings

M̃ J
I (ν, τ)=


−ν e−iτ

√
1− ν2 0 0

eiτ
√

1− ν2 ν 0 0
0 0 1 0
0 0 0 1

 , ηα
I (ν, τ) = e

iντ
2√
2


√

1 + ν

−
√

1− νeiτ

0
0


I

(1,−ie−iτ)α

η̄ I
α = i(ηα

I )
† (38)

For generic ν, this operator is 1/6 BPS, while for ν = 1, it enhances to the 1/2 BPS
described by superconnection (34)10.

Both the operators have a smooth limit for ν→ 0, where they give rise to Zarembo-like
Wilson loops [61].

Fermionic latitude operators are dual to 1/6 BPS string configurations in AdS4 ×CP3

with the endpoints describing a circle inside CP3 [62]. The latitude parameter corresponds
to a constant boundary condition for one of the CP3 angular variables. Instead, an explicit
string solution dual to the bosonic latitude Wilson loop is not known yet. A preliminary
discussion can be found in [62] and steps towards the solution of the problem appeared
in [63].
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As discussed in [60], classically the latitude fermionic WL is cohomologically equivalent
to a linear combination of bosonic latitudes. In fact, one can show that

WF(ν) =
e−

iπν
2 WB(ν)− e

iπν
2 ŴB(ν)

e−
iπν

2 − e
iπν

2
+ Q(ν)−exact term (39)

where Q(ν) is a linear combination of super-Poincaré and superconformal charges pre-
served by all the operators [60]. We note that for ν = 1, it reduces to WF = 1

2 (WB + ŴB),
up to Q-exact terms [52].

If this equivalence survives at quantum level, taking the vacuum expectation value
of both sides of (39), we can determine 〈WF(ν)〉 as a linear combination of the bosonic
〈WB(ν)〉, 〈ŴB(ν)〉. However, in three dimensions, the evaluation of Wilson loop vev is
affected by framing ambiguities [64]11. Therefore, the problem of understanding how
the classical cohomological equivalence gets implemented at quantum level is strictly
interconnected with the problem of understanding framing.

This problem was extensively discussed in [68–70], where it was shown that the
cohomological equivalence gets enhanced at quantum level in exactly the same form (39) if
the vev is computed at framing ν, where ν is the latitude12. Precisely, if perturbatively we
define (λ = N/k),

〈WB(ν)〉ν ≡ eiΦB(ν,λ) 〈WB(ν)〉0 + O(k−3) , 〈ŴB(ν)〉ν ≡ eiΦ̂B(ν,λ) 〈ŴB(ν)〉0 + O(k−3)

〈WF(ν)〉ν ≡ 〈ŴF(ν)〉0 + O(k−3) (40)

where 〈·〉0 stands for expectation values computed in ordinary perturbation theory with
dimensional regularization and ΦB, Φ̂B are the framing functions, the quantum cohomo-
logical equivalence is conjectured to be [60]

〈WF(ν)〉ν =
e−

iπν
2 〈WB(ν)〉ν − e

iπν
2 〈ŴB(ν)〉ν

e−
iπν

2 − e
iπν

2
(41)

This identity was checked perturbatively, up to two loops for ν = 1 in [71–73], whereas
for generic ν, it was successively tested in [60]. At this order, the framing function is given
by ΦB(ν, λ) = −Φ̂B(ν, λ) = πνλ + O(λ3).

A direct perturbative evaluation of 〈WB(ν)〉ν at framing ν is done up to three loops, at
finite N [4]. Suitably normalizing the operator, the following result is obtained

〈WB(ν)〉ν = 1 + iπν
N
k
+

π2

6k2

(
2N2 + 1

)
+

iπ3N
6k3

[
ν3
(

N2 + 1
)
+ 3ν

]
+ O

(
k−4
)

(42)

whereas ŴB is simply the hermitian conjugate. Assuming the cohomological identity (41)
to be true, one can easily infer the three loop result also for 〈WF(ν)〉ν.

As discussed in [4], framing seems to have a quite different origin in the undeformed
(ν = 1) and deformed (ν 6= 1) cases.

For the ν = 1 Wilson operator, the three-loop result reveals that all the framing effects
are encoded into a phase, being the imaginary terms at odd orders associated only to
framing dependent Feynman diagrams [68]. Therefore, in this case, Equation (40) holds
with no need for O(k−3) corrections.

For the latitude instead, an imaginary contribution to 〈WB(ν)〉ν arises at three loops,
which is framing independent [4]. Therefore, in the general case, the phase in (40) is not
entirely due to framing. We should also expect that not all the framing effects are encoded
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into a phase, as it happens already at this order for multi-winding Wilson loops [70]. In
order to describe the most general situation, it is then convenient to replace Equation (40) as

〈WB(ν)〉ν ≡ eiΦB(ν,λ) |〈WB(ν)〉| , 〈ŴB(ν)〉ν ≡ eiΦ̂B(ν,λ) |〈ŴB(ν)〉|
〈WF(ν)〉ν ≡ |〈ŴF(ν)〉| (43)

with the understanding that in the no-latitude case, the modulus coincides with the vev
evaluated at framing zero, and ΦB, Φ̂B are the genuine framing functions, whereas for the
latitude, this is true only up to two loops.

We note that modding out the framing-zero two-loop result obtained by using ordinary
dimensional regularization [60], from result (40), we can infer the expansion of the framing
function at this order. In the large N limit, it reads

ΦB(ν, λ) = −Φ̂B(ν, λ) = πνλ− π3

6
(ν3 + 2ν)λ3 + O(λ5) (44)

Notably, this expression coincides with the one conjectured in [74], using the relation between circu-
lar Wilson loops, Bremsstrahlung functions and the cusp anomalous dimension [28,45,51,60,62,75].

4.3. The Matrix Model for BPS Wilson Loops

As reported in Section 2, correlation functions for gauge invariant, BPS operators can
be computed, using localization techniques. In particular, this turns out to be true for BPS
Wilson loops evaluated on closed paths on S3, as long as they preserve the supercharge
used for localizing the functional integral.

The Matrix Models computing the vev of the bosonic 1/6 BPS Wilson loops corre-
sponding to connections (33) and evaluated on the great circle was proposed in [16]. They
are simply given by the matrix representation of the partition function Z in (3) with the
following insertions

WB :
1
N

N

∑
a=1

e2π λa ŴB :
1
N

N

∑
a=1

e2π µa (45)

and normalized with the partition function itself. It is important to stress that the matrix
model always computes the vevs at framing one since the only point-splitting regularization
which does not break supersymmetry on S3 corresponds to taking the original path and
the framed one to belong to a Hopf fibration of the sphere.

In principle, prescription (45) provides an exact result for the bosonic operators, which
turn out to be complex functions of the coupling and thus, expressible as in (43), with the
framing function given by an odd power series in the coupling.

Since the matrix model is invariant under the supercharge that drives the cohomologi-
cal equivalence between WB, ŴB and WF, we immediately obtain

〈WF〉1 =
〈WB〉1 + 〈ŴB〉1

2
(46)

where the subscript indicates that the results are at framing one. This result turns out to be
real, in agreement with (43).

The matrix model can be expanded at small coupling λ [16–18], leading to a prediction
that can be tested against a genuine perturbative calculation. Indeed, up to three loops,
it matches the perturbative result (42) evaluated at ν = 1. The matrix model was also
computed at strong coupling, using a Fermi gas approach [76,77]. The leading contribution
of 〈WF〉1 at strong coupling matches the exponential behavior predicted from the large N
dual description [54]. Matching was found also for the first subleading correction in [78],
where the problem of fixing ambiguities in the normalization of the string path integral
was reconsidered, and a universal normalization was proposed.
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Generalizing the matrix model construction to the evaluation of the latitude Wilson
loops is not an easy task, due to the fact that these operators preserve supercharges, which
differ from the one used in [16] to localize the path integral and cannot be embedded in
the N = 2 superspace formalism easily. However, in [4] a ν-dependent matrix model
computing 〈WB(ν)〉ν was proposed, which is a slight deformation of the known one in
(45) [16]. The vevs are computed as follows

〈WB(ν)〉ν =

〈
1
N

N

∑
a=1

e2π
√

ν λa

〉
〈ŴB(ν)〉ν =

〈
1
N

N

∑
a=1

e2π
√

ν µa

〉
(47)

where now the average is evaluated and normalized with the following partition function

Z(ν) =
∫ N

∏
a=1

dλa eiπkλ2
a

N

∏
b=1

dµb e−iπkµ2
b (48)

×

N

∏
a<b

sinh
√

νπ(λa − λb) sinh
π(λa − λb)√

ν

N

∏
a<b

sinh
√

νπ(µa − µb) sinh
π(µa − µb)√

ν

N

∏
a=1

N

∏
b=1

cosh
√

νπ(λa − µb) cosh
π(λa − µb)√

ν

As before, the integral is over a set of (λa, µa) eigenvalues of the Cartan matrices of
U(N)×U(N).

This matrix model is expected to be the result of localizing the vevs by using the
ν-dependent supercharges preserved by WB(ν). However, in the absence of a localization
procedure that leads directly to (47) and (48), a number of strong consistency checks
are available:

(1) First of all, for ν = 1, it reduces to the known matrix model (45) and (3).
(2) A first non-trivial check concerns the partition function (48). Since its value should be

independent of the localizing supercharge that we use to infer the matrix model, (48)
should provide the ordinary ν-independent partition function of the ABJM model.
Indeed, this was successfully checked in [4] where it was shown that expression (48)
can be rearranged in such a way that the ν dependence disappears completely and it
ends up coinciding with the ABJM partition function (3). Since such manipulations
no longer work when we insert the WL exponentials (47), we correctly expect a
non-trivial ν-dependence in the Wilson loop vevs.

(3) Important checks come from comparing the matrix model results at weak and strong
couplings with alternative calculations. At weak coupling, its expansion perfectly
matches the perturbative result (42). This confirms the intuition that localization
should compute Wilson loops at framing ν.

(4) Expressions (47) were computed at large N in the strong coupling limit, using the
Fermi gas approach [4]. Applying a genus expansion in powers of the string coupling
gs =

2πi
k , and introducing the new variable κ through the identity

λ =
log2 κ

2π2 +
1

24
+ O

(
κ−2

)
(49)

the genus-zero terms (that is the leading order in 1/k) read

〈WB(ν)〉ν
∣∣
g=0 =

−κν Γ
(

ν−1
2

)
Γ
(

ν+1
2

)
+ i π κ

(
1 + i tan πν

2
)
Γ(ν + 1)

4π Γ(ν + 1)
(50)
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with 〈ŴB(ν)〉 given simply by the Hermitian conjugate. Using the cohomological
equivalence in (39) the strong coupling expansion for the fermionic latitude Wilson
loop can be easily inferred to be

〈WF(ν)〉ν
∣∣
g=0 = −i

2−ν−2 κν Γ
(
− ν

2
)

√
π Γ
( 3

2 −
ν
2
) (51)

Remarkably, its leading behavior at strong coupling

〈WF(ν)〉 ∼ eπν
√

2λ (52)

reproduces the holographic prediction found in [62]. Moreover, in [79,80] the ratio 〈WF(1)〉
〈WF(ν)〉

∣∣∣
g=0

was computed holographically at strong coupling, at the next-to-leading order, and the
result perfectly matches the matrix model prediction (51).

Very recently, the hard task of proving that the matrix model is the result of applying
a localization procedure driven by a ν-dependent supercharge was taken on [81]. Though
the authors did not manage to solve directly the very difficult problem of bringing the
latitude supercharges off-shell as required to make localization work, they managed to
show that matrix model (48) emerges as the result of applying the Källén approach [82]
(generalized to Chern–Simons theories with matter in [83]) under the assumption that
also for the latitude supersymmetry algebra, there exists a kind of topologically twisted
Lagrangian as the one considered there, which is on-shell equivalent to the ABJM one.

Before closing this section, we note that the expectation values (47) satisfy the func-
tional identity

∂ν log
(
〈WB(ν)〉ν + 〈ŴB(ν)〉ν

)
= 0 (53)

In other words, the real part of the average 〈WB(ν)〉ν is independent of ν. This non-
trivial property is going to be useful for the discussion on the Bremsstrahlung function in
the next section.

4.4. The Bremsstrahlung Function

In SCFTs, circular Wilson loops have remarkable connections with other physical
quantities, such as the Bremsstrahlung function and the cusp anomalous dimension. In this
section, we review the main results regarding latitude Wilson loops in the ABJM theory. We
will address how this connections have far reaching consequences, primarily because they
extend to other physical quantities the possibility of an exact evaluation via localization.
Moreover, they assign a privileged role to Wilson operators, which become the meeting
point for localization, integrability and conformal bootstrap.

The definition of B. The physical definition of the Bremsstrahlung function B is encoded
in the expression for the energy ∆E lost by a massive quark slowly moving in a gauge
background with velocity v,

∆E = 2π B
∫

dt v̇2 , with |v| � 1 (54)

In general B is a non-trivial function of the coupling constant of the theory.
In CFTs, it is also related to the cusp anomalous dimension Γcusp(φ). This is the

quantity that weights the singular part of a Wilson operator evaluated on a cusped contour,
that is a contour made by two semi-infinite straight lines that meet at a point forming an
angle φ. Close to the cusp short distance singularities appear, which exponentiate as

〈W∠〉φ ∼ e−Γcusp(φ) log L
ε (55)
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Here L is the length of the two straight lines (the IR regulator) and ε the UV regulator. For
small angles, φ � 1, the cusp anomalous dimension behaves as Γcusp(φ) ∼ −B φ2 [45],
where B is the Bremsstrahlung function defined in (54).

In ABJM theory, since there are both bosonic and fermionic Wilson operators we can de-
fine different types of cusped operators and consequently different types of Bremsstrahlung
functions [51,84].

First, if we compute UV divergent contributions to the fermionic, 1/2 BPS operator
WF close to a cusp, we obtain

〈W∠
F (θ)〉φ ∼ e−Γ1/2

cusp(φ,θ) log L
ε , Γ1/2

cusp(φ, θ) ∼
φ,θ�1

B1/2 (θ
2 − φ2) (56)

where θ is an internal angle that describes possible relative rotations of the matter couplings
in the Wilson loops defined on the two edges of the cusp (encoded in the parameter
ν = cos θ of Section 4.2). The particular θ, φ dependence that appears at small angles in (56)
is dictated by the fact that for θ2 = φ2 the cusped operator becomes BPS-thus finite-and the
cusp anomalous dimension has to vanish.

Second, if we study the short distance behavior of a 1/6 BPS bosonic operator WB
near a cusp, no BPS enhancement occurs in this case, and the small angle behavior of the
cusp anomalous dimension is given in terms of two different Bremsstrahlung functions
as follows

〈W∠
B (θ)〉φ ∼ e−Γ1/6

cusp(φ,θ) log L
ε , Γ1/6

cusp(φ, θ) ∼
φ,θ�1

Bθ
1/6 θ2 − Bφ

1/6 φ2 (57)

Beyond being related to the cusp anomalous dimension, the B functions have also
remarkable relations with two-point correlation functions of the one-dimensional defect
SCFT defined on a Wilson line. Focusing for instance on the evaluation of B1/2, from (56),
where we set φ = 0 (infinite straight line) it is easy to see that [28,45]

B1/2 = −1
2

∂2

∂θ2 log 〈WF(θ)〉
∣∣∣
θ=0

=
1

2N

(
4π2

k2 (cs + ĉs)−
π

k
c f

)
(58)

where cs, ĉs and c f are the coefficients appearing in the two-point functions on the Wilson
line (see definition (32)) for dimension-one operators in the displacement multiplet built
up from the fundamental ABJM fields in (5)13

〈〈(YaZ̄)(s1) (ZȲb)(s2)〉〉 = δb
a

cs

(s1 − s2)2 , 〈〈(Z̄Ya)(s1) (ȲbZ)(s2)〉〉 = δb
a

ĉs

(s1 − s2)2

〈〈 χ+
a (s1) χ̄b

+(s2)〉〉 = iδb
a c f

(s1 − s2)

|s1 − s2|3
(59)

These results simply follow from the fact that in the Wilson line, the θ (alias ν) parameter
appears inside the couplings to the matter fields. Therefore, deriving, with respect to the
parameter, brings down operators in the matter sector.

The exact prescription for computing B. All the Bs are, in general, functions of the cou-
pling constant λ = N/k of the ABJM theory and require specific determination. Although,
in principle, they could be computed directly from the cusp anomalous dimension, this is
generally obstructed by the fact that the perturbative evaluation of Γcusp is not an easy task,
being already at low orders. A more successful approach could arise if we were able to
relate these quantities to physical observables that are exactly computable via localization.
The striking result found in [45] by exploiting the line-to-circle mapping in CFTs provides
an exact prescription for computing B in four-dimensional N = 4 SYM in terms of the 1/2
BPS circular Wilson loop, which is amenable of matrix model evaluation.



Universe 2021, 7, 348 17 of 26

For the ABJM theory, this problem was originally addressed in [51], where the follow-
ing prescription for computing Bφ

1/6 in (57) in terms a m-winding circular 1/6 BPS bosonic
WL was proposed

Bφ
1/6 =

1
4π2 ∂m log| 〈Wm

B 〉 |
∣∣∣
m=1

(60)

A similar prescription was later proposed for computing B1/2 in (56) [60] and Bθ
1/6 in

(57) [62] in terms of fermionic (34) and bosonic (33) latitude Wilson loops, respectively

B1/2 =
1

4π2 ∂ν log| 〈WF(ν)〉 |
∣∣∣
ν=1

, Bθ
1/6 =

1
4π2 ∂ν log| 〈WB(ν)〉 |

∣∣∣
ν=1

(61)

These identities were proved in [28,62], respectively, by exploiting the relation between
the Bremsstrahlung functions and correlation functions in one-dimensional defect CFTs
defined on the circular Wilson loops (the analogues of Equations (58) and (59) on the circle).
Moreover, the interesting relation

Bθ
1/6 =

1
2

Bφ
1/6 (62)

was guessed in [85,86] from a four-loop calculation and finally proved in [74], using a
superconformal defect approach. We note that, according to identities (60) and (61), this
implies a non-trivial relation between the ν-derivative of the latitude WB(ν) and the m-
derivative of the m-winding Wilson loop.

Expanding the matrix models at weak coupling, from (61), we can read the first few
orders in the perturbative expansion of the Bremsstrahlung functions to be

B1/2 =
λ�1

λ

8
− π2

48
λ3 + O(k−5)

Bφ
1/6 = 2Bθ

1/6 =
λ�1

λ2

4
− π2

4
λ4 + O(k−6)

Similarly, expanding the matrix models at strong coupling, we obtain

B1/2 =
λ�1

√
2λ

4π
− 1

4π2 −
1

96π

1√
2λ

Bφ
1/6 = 2Bθ

1/6 =
λ�1

√
2λ

4π
− 1

4π2 −
1

96π

1√
2λ

+

(
1

4π3 −
5

96π

)
1√
2λ

(63)

Perturbative checks up to two loops for Bφ
1/6 and B1/2 can be found in [60,84], whereas

a similar check for Bθ
1/6 is given in [60]. A three-loop calculation of Γcusp [87] provides

a non-trivial check for B1/2 at this order. At strong coupling, B1/2 matches the string
prediction at next-to-leading order [75,88].

The B and the framing. The exact prescriptions in (61) for computing the Bremsstrahlung
functions in terms of latitude Wilson loops lead to a new remarkable interpretation of
framing in three-dimensional Chern–Simons-matter theories [60,74,87].

To elaborate on this point, we begin by considering the identity in (61) for B1/2. We
first substitute 〈WF(ν)〉 there with its expression (41) sustained by the cohomological
equivalence, and write the bosonic BPS Wilson loops as in (43) in terms of their moduli
and phases. Finally, taking the ν-derivative under condition (53) and evaluating the result
at ν = 1, we find

B1/2 = − i
8π

〈WB〉 − 〈ŴB〉
〈WB〉+ 〈ŴB〉

=
1

8π
tan ΦB (64)

where WB, ŴB are the underformed bosonic 1/6 BPS WLs corresponding to connections
(33) and ΦB their framing function (43), evaluated at ν = 1. As already discussed, for
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ν = 1, this phase contains all and only framing contributions. Therefore, the result (64) sug-
gests that framing—which, in topological Chern–Simons theories, corresponds to integer
topological invariants and represents a controllable regularization scheme dependence—in
non-topological Chern–Simons-matter theories is no longer a number; rather, it is the
function that sources the Bremsstrahlung function.

A similar interpretation holds also for the bosonic Bθ
1/6. In fact, if we elaborate

prescription (61), exploiting identity (53), we easily obtain

Bθ
1/6 =

1
4π2 tan ΦB(ν) ∂νΦB(ν)

∣∣∣
ν=1

(65)

where now ΦB(ν) is the generic bosonic phase function at latitude ν defined in (43). In
this case, as already mentioned, it contains all but not only framing contributions. This
identity is exploited to perform non-trivial checks of the whole construction. In fact, the
four-loop calculation of [85,86] for Γ1/6

cusp allows to determine Bθ
1/6 up to this order. Using

Equation (65), this in turn provides a prediction for the expansion of ΦB(ν) up to λ3 [74].
Merging this result with the two-loop calculation of |〈WB(ν)〉| [60], one obtains a three-loop
expansion for 〈WB(ν)〉ν, which coincides with result (42), obtained by a genuine three-loop
calculation of 〈WB(ν)〉 done at framing ν [4], and is remarkably reproduced by the matrix
model average (45) expanded at weak coupling.

Finally, exploiting identity (62), we can write the following chain of equalities [74]

Bθ
1/6 =

1
2

Bφ
1/6 =

2
π

B1/2 ∂νΦ(ν)
∣∣∣
ν=1

(66)

which relates all the Bremsstrahlung functions of the ABJM theory. Eventually, they are all
determined by the same Φ(ν) phase.

Connection with integrability. The link between the Bremsstrahlung functions and the
circular BPS Wilson loops—eventually, the matrix models—opens a window on the study of
the connection between two different exact techniques in quantum field theory: localization
and integrability. This is already evident in four dimensions. In fact, in the planar limit
of the N = 4 SU(N) SYM theory, the Bremsstrahlung function was obtained by solving
a boundary TBA system of integral equations [89–92]. Therefore, exact results obtained
using integrability can be matched with the analogues obtained using localization.

The ABJM theory is also known to be integrable in the planar limit [93–99]. A system
of TBA equations was proposed, which, however, involves a still unknown function h(λ),
mastering the dispersion relation of a single magnon moving on a spin chain [94,100,101].
Although expansions of h(λ) were found at weak [102,103] and strong [104] coupling, a
prescription for determining it exactly is still unknown. A conjecture for its exact expres-
sion was provided in [105] by exploiting its relation with another observable, the slope
function describing the small spin limit of SL(2) operators, which is amenable of exact
evaluation via localization techniques. At weak coupling, this conjecture was tested up to
order λ3 [102,106]. At strong coupling, it was tested up to two loops in the string sigma
model [104,107,108].

Alternatively, it should be possible to find a three-dimensional analogue of the set
of TBA integral equations proposed in [89,90] to determine the Bremsstrahlung functions.
Having in this calculation h(λ) as an input, a direct comparison with our proposal (61)
for B would provide, in principle, an all-order definition for h. Matching the localization
and integrability results would then be crucial for an exact proof of the conjecture in [105].
Some preliminary steps in this direction involve the exact evaluation of the fermionic cusp
anomalous dimension in a suitable scaling limit [109].

4.5. One-Dimensional SCFT on the Wilson Line

In general, extended operators break (super)symmetries of the bulk theory. However,
as already discussed, a BPS Wilson loop preserves a fraction of superconformal charges.
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This operator then supports a one-dimensional SCFT, whose excitations are local operators
living on the Wilson contour. In other words, a BPS Wilson loop defines a superconformal
defect, which is entirely specified by the spectrum of local operators and their correlation
functions as defined in (32). Superconformal invariance and broken symmetries constrain
the correlation functions to satisfy non-trivial Ward identities that can be used to sort out
their structure. In principle, the defect SCFT can be solved by applying the bootstrap
machinery [110–112] to determine the spectrum of scale dimensions and the operator
product expansion coefficients.

In this section, we give just a sketch of some recent progress in the application of SCFT
techniques to the study of Wilson defects in the ABJM theory.

First of all, given the rich spectrum of Wilson loops of the ABJM theory, we can classify
two main superconformal defects: the bosonic defect living on the 1/6 BPS bosonic operator
WB, and the fermionic defect living on the 1/2 BPS WF. They define a su(1, 1|1) and a
su(1, 1|3) SCFT, respectively. The parametric family of 1/6 BPS Wilson loops introduced
in [56,57] and reviewed in Section 4.1 interpolate between 1/2 and 1/6 defect SCFTs,
and can be interpreted as exactly marginal deformations of the defect SCFT [63]. More
general 1/6 and 1/12 superconformal defects are described by fermionic and bosonic
latitudes, respectively.

The Wilson defects were investigated, using standard algebraic approaches. Defect
supermultiplets associated to the broken currents, notably, the displacement multiplet
for 1/2 BPS defects and the displacement and the R-symmetry multiplets for the 1/6
BPS defect, were constructed, and Ward identities constraining the structure of two- and
three-point functions were derived [28,74,113].

Defect correlation functions were investigated in different contexts and with different
purposes. In particular, their relation with the matrix model computing the Wilson loop
itself was exploited. The main connection comes from the fact that taking derivatives of
the expectation value of parametric Wilson loops with respect to the parameters provides
integrated correlation functions for local operators on the Wilson contour, which are, in
principle, computable exactly if a matrix model description of the vev is available.

As already mentioned—see Equations (58) and (59)—integrated two-point functions
of dimension-one operators belonging to the displacement supermultiplet, inserted on the
fermionic latitude defect WF(ν), are related to derivatives of WF(ν) with respect to ν. They
were shown to be a key ingredient in the rigorous proof of identity (61) for B1/2 [28].

Integrated two-point functions of biscalar, dimension-one local operators inserted
on WB were considered in [62] to prove identity (61) for Bθ

1/6 and in [74] to prove relation
(62). These are the expectation values of dimension-one operators belonging to the R-
symmetry supermultiplet, arising from small deformations of the latitude bosonic Wilson
loop WB(ν) with respect to the ν parameter. Contact terms that master the singular behavior
of these correlators at coincident points are responsible for the appearance of an imaginary
contribution at three loops [4]. This provides an explanation from the defect perspective
of the emergence of a framing independent, imaginary contribution to 〈WB(ν)〉 discussed
in Section 4.2. Relating defect correlators to derivatives of the latitude Wilson loop allows
to conclude that imaginary terms in the latitude deformation arise from an anomalous
behavior of the relevant two–point functions on the defect.

The deep connection between three-point functions of dimension-one scalar bilinears
and the matrix model computing 〈WB(ν)〉 was extensively discussed in [114] for the
U(N1)×U(N2) ABJ theory in the color limit N2 � N1 � 1, where a topological sector
seems to emerge.

For the fermionic 1/2 BPS defect, four-point functions of local operators belonging
to the displacement supermultiplet were computed at strong coupling, up to the first
subleading correction, using the analytic bootstrap approach [113]. The insertions have
a dual description in terms of fluctuations of the dual fundamental string in AdS4 ×
CP3 ending on the Wilson contour at the boundary. The bootstrap solution was shown
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to be perfectly consistent with the result obtained in the dual theory via AdS2 Witten
diagrams [113].

Defect data have relevant implications also for bulk physical quantities, notably, the
Bremsstrahlung function. In [51], it was conjectured that the Bremsstrahlung function
Bφ, which is related to the derivatives of BPS Wilson loops according to prescription (60),
has also a remarkable relation with the one-point function of the stress-energy tensor on
the superconformal defect, according to the famous relation Bφ = 2hω, where hω is the
coefficient of the one-point function of Tµν. In [115], it was argued that Bφ is also related
to one of the leading coefficients of the anomalous dimension of defect operators at large
transverse spin. Finally, Ward identities of the defect theory can be used to link the two
Bremsstrahlung functions, Bφ and Bθ [74], as described in Section 4.4.

5. Conclusions and Perspectives

We have reviewed some recent progress in the study of line defects in the three-
dimensional N = 6 ABJM theory. In the first part, we have considered kinematical defects,
that is, trivial one-dimensional submanifolds, which support a topological sector of the
theory. In the second part, we have focused on dynamical defects realized as latitude
bosonic and fermionic BPS Wilson operators.

The existence of one-dimensional topological sectors opens the possibility to determine
topological correlation functions exactly, as they are related to the derivatives of the mass-
deformed matrix model computing the bulk partition function. At the same time, this
relation represents a promising way to reconstruct the bulk SCFT from the data of a
simpler subsector. While this relation was proved for N = 4, 8 theories, a full proof
for the N = 6 ABJM theory is not available yet. Nevertheless, some indirect evidence
was already collected by computing topological correlators in the perturbative regime
and matching them with the conjectured expression from the matrix model expanded
at weak couplings. These findings support the conjecture that also for the ABJM theory,
like for the N = 4, 8 cases, the mass-deformed partition function works as the generating
functional for (integrated) correlation functions on the line, and should be strictly linked to
the functional integral for a topological one-dimensional quantum mechanics governing
the topological correlation functions of the full theory. It would be crucial to prove that a
topological quantum mechanics could emerge directly from some localization procedure,
describing not only the full topological sector, including operators of arbitrary dimensions,
but possibly the monopole sector [34].

Generalizing this construction to dynamical defects, it would be interesting to investi-
gate whether a topological sector can be supported also by the 1/2 BPS Wilson line. This
requires understanding if and how a dynamical defect allows for the construction of a
non-trivial cohomology realized in terms of local operators of the defect theory. If possible,
it would represent a direct tool to relate superconformal data of the bulk theory in terms of
the defect ones, and vice versa. This is presently under study [32].

We have reviewed a number of remarkable results obtained in the last few years on
generalized (latitude) Wilson loops. The main result concerns the proposal for a ν-latitude
Matrix Model that computes bosonic Wilson operator averages exactly, at framing ν. As-
suming cohomological equivalence to hold at quantum level at framing ν, this also provides
the exact result for the fermionic operators. These are new, exact, interpolating functions
that allow to test the AdS4/CFT3 correspondence in the large N limit. In particular, the
strong coupling expansion of the bosonic latitude constitutes a brand new prediction,
begging for a string theory confirmation.

The deep meaning of non-integer framing, its identification with the latitude parame-
ter and its connection with the Bremsstrahlung function should be better investigated, both
at perturbative level and at strong coupling in the matrix model formulation. Framing
functions at strong coupling should have a corresponding description in the dual string,
though in string theory, there is no notion of framing. It is then crucial to develop an
interpretation of framing in the string dual description. To the best of our knowledge, the
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only available interpretation is through its relation with the Bremsstrahlung function in
Equation (64). The evaluation of the cusp in the string dual model [75,88,108] indirectly
computes the framing function of the field theory result at strong coupling.

The exact mastery of latitude that Wilson operators has remarkably follows-up for
other physical quantities, primarily, the Bremsstrahlung functions and the correlation
functions of the defect theory. Since the Bremsstrahlung functions could be alternatively
computed by exploiting the exact solvability of the model, matching localization and inte-
grability results would provide a crucial check of the conjecture in [105] for the interpolating
function h(λ) of the ABJM theory.

Integrated correlation functions of defect operators of the form mI
J(τ)CI(τ)C̄ J(τ) can

be extracted in principle from derivatives of the bosonic latitude Wilson loop, with respect
to the ν parameter. Knowing the explicit expression of these correlators from the matrix
model would provide information on the OPE data of the defect SCFT. This is definitively
something that deserves deeper investigation, along the lines of what was done already in
four dimensions [116].

Beyond that, there are still quite a lot of important issues that need to be addressed.
First of all, an important question is to understand the relation between the defect

theories defined on WB(ν) and WF(ν). For instance, we should expect the cohomological
equivalence in (39) to play a prominent role in relating SCFT data of the two defect theories.
It might turn out that one can reconstruct entirely the defect theory on the fermionic Wilson
line from the bosonic one.

As reviewed above, the matrix model has a non-trivial dependence on framing, which
ultimately equals the deformation parameter ν. Understanding the meaning of framing
from the point of view of the defect theory is definitively an interesting question. Moreover,
when computing derivatives of the matrix model with respect to ν, framing contributions
will appear, which may affect the evaluation of the correlation functions. It would be then
interesting to understand how to disentangle framing effects from the defect correlators.

For clarity, we have focused on the ABJM theory. However, most of the results can
be easily generalized to the case of the U(N1)k × U(N2)−k ABJ theory [3]. In particu-
lar, the expressions for the latitude Wilson loops are basically the same, except for the
overall normalizing factors that will be functions of N1 and N2. A more general matrix
model was proposed also for this theory [4]. A difference between the two matrix models
emerges in the evaluation of the partition function, which, in the ABJ case, maintains a
non-trivial ν-dependence in its phase [4]. The appearance of this phase could be ascribed
to a Chern–Simons framing anomaly discussed in [39,117] and leads to the conclusion
that the deformation affects the partition function only in its somehow unphysical part,
whereas its modulus is ν-independent. However, this point is still not totally clear and
deserves further investigation.

Finally, it would be very interesting to generalize the present investigation to dynami-
cal defects in less supersymmetric theories, notably N ≥ 2 quiver Chern–Simons-matter
theories, where more general classes of latitude Wilson loops were constructed [58,118,119].
For Wilson loops defined on the maximal circle, the two-loop evaluation was performed
in [118]. Since the structure of the superconnections is similar to the one for the 1/2 BPS
Wilson loop in the ABJM theory, the topologies of the diagrams are exactly the same. The
calculation can then be done by easily exploiting the results for the loop integrals already
available for ABJM. Latitude Wilson loops in N = 4 quiver theories were constructed
in [119], where also a first proposal for a matrix model computing them can be found, as a
clever generalization of the matrix model in (47,48). It would be interesting to compute
the Bremsstrahlung functions associated to cusped Wilson operators belonging to different
classes and see, for instance, whether the B functions corresponding to different classes
turn out to be different. Moreover, their potential connection with circular Wilson loops is
an important problem to investigate along the lines of what was described in Section 4.4.
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Notes
1 We use conventions of [4], where DµCI = ∂µCI + iAµCI − iCI Âµ , DµC̄I = ∂µC̄I − iC̄I Aµ + iÂµC̄I and similarly for fermions.
2 For a nice introduction to localization, see, for instance, [15]. Briefly, this technique consists of deforming the original functional

integral, which evaluates the partition function by shifting S→ S + t QV, where Q is an odd symmetry generator, satisfying
Q2 = δ, with δ being a bosonic symmetry, V a positive semi-definite fermionic functional and t a positive number. As long as
δV = 0, it is easy to see that the functional integral does not depend on t. Therefore, it can be computed at t→ +∞, where it
localizes on the zero locus of QV. In a non-abelian gauge theory these are matrices, so that the original functional integration is
traded for a finite dimensional matrix integral. In this limit the saddle point approximation becomes exact and the integrand is
simply given by the exponential of the classical action evaluated at the saddle points times the one-loop determinant resulting
from the integration on the quadratic fluctuations of the fields around their saddle values. The whole procedure requires
compactifying the theory on the sphere in order to avoid IR divergences, but if we are dealing with a SCFT, this is not an issue.

3 We use notations and conventions in [26]. In particular, the two superalgebras and their irreducible representations are spelled
there, in Appendices B and C.

4 Since the construction is the same for Q+ and Q−, we will use the generic symbol Q to indicate one of the two supercharges.
5 We use the notation B

1
N , 1

M
m;j1,j2

to label a short irreducible representation, whose superconformal primary is annihilated by 1
N and

1
M fractions of Q and Q̄ supercharges in (4), respectively.

6 This construction can be extended to Coulomb branch operators [34], complicated by the presence of monopole operators, and
to more general manifolds [35].

7 These operators can be constructed from the lowest component of some flavor symmetry multiplet, therefore the a index runs
from 1 to the dimension of the flavor symmetry algebra.

8 For a comprehensive review on Wilson loops in three-dimensional Chern–Simons-matter theories, we refer the reader to [43].
9 The great circle corresponds to θ = 0.

10 The fermionic couplings correctly reduce to the ones on the great circle on S3 as given in [52].
11 These are finite regularization ambiguities associated to singularities arising when two fields running on the same closed contour

clash. In perturbation theory, this phenomenon is ascribable to the use of point–splitting regularization to define propagators at
coincident points [65–67].

12 Though in topological Chern-Simons theories framing is an integer [64], in non-topological theories it generalizes to a non-
integer number [60]. Therefore, it can no longer be ascribable to ambiguities associated to point-splitting regularization in
perturbation theory.

13 Here the plus components of the fermions are defined as χ+ = 1√
2
(χ1 + χ2), and χ̄+ = 1√

2
(χ̄1 + χ̄2).
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