Fundamental Properties of the Dark and the Luminous Matter from the Low Surface Brightness Discs
Abstract
1. Introduction
2. DM Phenomenon in the Particles Framework
2.1. Weakly Interacting Massive Particles (WIMPs)
2.2. Scalar Fields and Fuzzy Dark Matter
2.3. Self-Interacting Dark Matter (SIDM)
2.4. Sterile Neutrino: Warm Dark Matter Particle
3. WIMPS as DM Candidates?
- (i)
- Indirect Detection
- (ii)
- Direct Detection
- (iii)
- Collider Production
3.1. Observational Issues with WIMP Scenario
3.2. Issues with NO-WIMP Dark Particle Candidates
4. The Dark and the Luminous Matter Distribution in Disc/LSB Galaxies
4.1. The Stellar Disc
4.2. The Gaseous Disc
4.3. The Stellar Bulge
4.4. The DM Halo
- (i)
- The NFW profile, described by Equation (1) which is the popular fit of the outcome of N-body simulations in the ΛCDM scenario. It is characterised by a central cusp and by an external tail ; in more detail, we have that, in simulations, in the interval : where the upper and lower limits originate from the different values, among halos, of the concentrations c (see below) and, in each halo, of the radius r;
- (ii)
- empirical cored profiles characterised by a central constant density within a core radius (i.e., for) and by an external tail whose negative slope can vary according to the specific adopted model.
4.5. RC Analysis
- (i)
- (ii)
- From the maximum disc hypothesis, according to which, inside , the stellar disk takes the maximum possible value , under the constraint that, at any radius, (see [173]).
5. The Universal Rotation Curve of LSB Galaxies
6. Low Surface Brightness (LSB) Galaxies
7. LSBs Mass Modelling. The URC Method
8. Mass Modelling of Individual LSB Rotation Curves
9. LSBs Structure Scaling Laws
10. The Compactness
11. Angular Momentum
12. Accelerations in Low Surface Brightness Galaxies
13. A Direct Interaction between Luminous and Dark Matter from the Structural Properties of the LSBs?
- vs. ; and
- vs. vs. , holding for disk systems; and
- vs. , holding for LSBs and dwarf disks.
14. Conclusions
- (a)
- To enlarge the LSBs rotation curves sample and increase their level of spatial resolution to have a better knowledge of the properties of these galaxies and of the various LM vs DM relationships. A larger statistic will also allow us a better approach of the URC method, by involving the compactness from the beginning of the rotation curves analysis;
- (b)
- To study the giant LSBs, special objects which are often made of a HSB disc embedded in a large LSB disc. Dwarf and giant LSBs have different evolutionary histories (e.g., [269]) and, moreover, we want to understand how the DM phenomenon realises itself over a range, for the halo mass, of 5 dex;
- (c)
- (d)
- (e)
- (f)
- To envisage observations in LSBs (as well as in other Hubble types) that could further reveal the presence of a LM–DM particle interaction;
- (g)
- Tto obtain kinematical observations at high redshifts. This will allow us to deep our knowledge on the evolution of the luminous and the dark matter distributions obtaining decisive evidences about the actual DM scenario.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
1 | That encloses 83% of the total disk light |
2 | The virial radius is defined as the radius at which the DM mass inside it is 200 times the critical density of the Universe times the volume inside this radius. |
3 | It is interesting to notice that, before then, the NFW profile emerged from simulations, the PISO profile was the favourite in modelling the DM halos around galaxies |
4 | In this review we consider the RC and the circular velocity as equivalent quantities, assumption not allowed in other contexts. |
5 | We neglect here for simplicity the projection effects. |
6 | Since in spirals the kinematics is all in the rotation plane, the spherical coordinate r coincides with the cylindrical coordinate R |
7 | For some author coadded = stacked |
8 | That can be both an individual RC of an object with (, ) that we indicate with: , or the RC emerging from the coaddition of many RCs of objects with similar optical velocities and optical radii (whose averaged values are (<>, <>)) that we indicate with: |
9 | Online data link in [38]. |
10 | In Equation (15), for simplicity, we have neglected the minor HI component |
11 | That, inside the inner galactic regions is in reasonable agreement with the Burkert profile (Equation (12)) for |
12 | In a sample, for the jth galaxy (with and ), the measured RC value at a radius reads as: |
13 | The sum of the stellar and the HI |
14 | More specifically: any SM particle. |
References
- Ade, P.A.R.; Aghanim, N.; Alves, M.I.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Planck Collaboration; et al. Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 2014, 571, A1. [Google Scholar] [CrossRef]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; Planck Collaboration; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2018, 641, A6. [Google Scholar]
- Faber, S.; Gallagher, J. Masses and mass-to-light ratios of galaxies. Annu. Rev. Astron. Astrophys. 1979, 17, 135–187. [Google Scholar] [CrossRef]
- Trimble, V. Existence and Nature of Dark Matter in the Universe. Annu. Rev. Astron. Astrophys. 1987, 25, 425–427. [Google Scholar] [CrossRef]
- Rubin, V.C.; Ford, W.K.J.; Thonnard, N. Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc). Astrophys. J. 1980, 238, 471–487. [Google Scholar] [CrossRef]
- Bosma, A. 21-cm line studies of spiral galaxies. I—Observations of the galaxies NGC 5033, 3198, 5055, 2841, and 7331. Astron. J. 1981, 86, 1791–1846. [Google Scholar] [CrossRef]
- Bosma, A. 21-cm line studies of spiral galaxies. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. Astron. J. 1981, 86, 1825–1846. [Google Scholar] [CrossRef]
- Okabe, T.; Oguri, M.; Peirani, S.; Suto, Y.; Dubois, Y.; Pichon, C.; Kitayama, T.; Sasaki, S.; Nishimichi, T. Shapes and alignments of dark matter haloes and their brightest cluster galaxies in 39 strong lensing clusters. Mon. Not. R. Astron. Soc. 2020, 496, 2591–2604. [Google Scholar] [CrossRef]
- Clowe, D.; Gonzalez, A.; Markevitch, M. Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657-558: Direct Evidence for the Existence of Dark Matter. Astrophys. J. 2004, 604, 596–603. [Google Scholar] [CrossRef]
- Rees, M.J.; Ostriker, J.P. Cooling, dynamics and fragmentation of massive gas clouds: Clues to the masses and radii of galaxies and clusters. Mon. Not. R. Astron. Soc. 1977, 179, 541–559. [Google Scholar] [CrossRef]
- Cavaliere, A.; FuscoFemiano, R. The Distribution of Hot Gas in Clusters of Galaxies. Astron. Astrophys. 1978, 70, 677–684. [Google Scholar]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Planck Collaboration; et al. Planck 2015 results (XIII. Cosmological parameters). Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef]
- Persic, M.; Salucci, P. The baryon content of the universe. Mon. Not. R. Astron. Soc. 1992, 258, 14P–18P. [Google Scholar] [CrossRef]
- Copi, C.J.; Schramm, D.N.; Turner, M.S. Big-bang nucleosynthesis and the baryon density of the universe. Science 1995, 267, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Nicastro, F.; Kaastra, J.; Krongold, Y.; Borgani, S.; Branchini, E.; Cen, R.; Dadina, M.; Danforth, C.W.; Elvis, M.; Fiore, F.; et al. Observations of the missing baryons in the warm-hot intergalactic medium. Nature 2018, 558, 406–409. [Google Scholar] [CrossRef]
- Alcock, C.; Allsman, R.A.; Alves, D.R.; Axelrod, T.S.; Becker, A.C.; Bennett, D.P.; Cook, K.H.; Dalal, N.; Drake, A.J.; Freeman, K.C.; et al. The MACHO Project: Microlensing Results from 5.7 Years of Large Magellanic Cloud Observations. Astrophys. J. 2000, 542, 281–307. [Google Scholar] [CrossRef]
- Tisserand, P.; Le Guillou, L.; Afonso, C.; Albert, J.N.; Andersen, J.; Ansari, R.; Aubourg, É.; Bareyre, P.; Beaulieu, J.-P.; Charlot, X.; et al. The small scale environment of low surface brightness disk galaxies. Astron. Astrophys. 2007, 469, 387–404. [Google Scholar] [CrossRef]
- Wyrzykowski, L.; Skowron, J.; Kozowski, S. The OGLE view of microlensing towards the Magellanic Clouds IV. OGLE-III SMC data and final conclusions on MACHOs. Mon. Not. R. Astron. Soc. 2011, 416, 2949–2961. [Google Scholar] [CrossRef]
- Kolb, E.W.; Turner, M.S. The Early Universe; Addison Wesley: Boston, MA, USA, 1990. [Google Scholar]
- Mukhanov, V. Physical Foundations of Cosmology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Ellis, G.F.R.; Maartens, R.; MacCallum, M.A.H. Relativistic Cosmology; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Jungman, G.; Kamionkowski, M.; Griest, K. Supersymmetric dark matter. Phys. Rep. 1996, 267, 195–373. [Google Scholar] [CrossRef]
- Bertone, G. Particle Dark Matter: Observations, Models and Searches; Cambridge University Press: Cambridge, UK, 2010; 762p. [Google Scholar]
- Bertone, G.; Hooper, D.; Silk, J. Particle dark matter: Evidence, candidates and constraints. Phys. Rep. 2005, 405, 279–390. [Google Scholar] [CrossRef]
- Arcadi, G.; Dutra, M.; Ghosh, P.; Lindner, M.; Mambrini, Y.; Pierre, M.; Profumo, S.; Queiroz, F.S. The waning of the WIMP? A review of models, searches, and constraints. Eur. Phys. J. C 2018, 78, 203. [Google Scholar] [CrossRef]
- Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 1983, 270, 365–370. [Google Scholar] [CrossRef]
- Capozziello, S.; de Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef]
- Salucci, P.; Turini, N.; di Paolo, C. Paradigms and Scenarios for the Dark Matter Phenomenon. Universe 2020, 6, 118. [Google Scholar] [CrossRef]
- okas, E.L. Dark matter distribution and dynamics of dwarf spheroidal galaxies. In Galactic Dynamics in the Era of Large Surveys; Valluri, M., Sellwood, J.A., Eds.; Cambridge University Press: Cambridge, UK, 2020; Volume 353, pp. 239–245. [Google Scholar] [CrossRef]
- Karukes, E.V.; Salucci, P. The universal rotation curve of dwarf disk galaxies. Mon. Not. R. Astron. Soc. 2017, 465, 4703–4722. [Google Scholar] [CrossRef]
- Impey, C.; Bothun, G. Low surface brightness galaxies. Annu. Rev. Astron. Astrophys. 1997, 35, 267–307. [Google Scholar] [CrossRef]
- Bothun, G.; Schombert, J.; Impey, C.; Sprayberry, D.; McGaugh, S. The small scale environment of low surface brightness disk galaxies. Astron. J. 1993, 106, 530–547. [Google Scholar] [CrossRef]
- Das, M.; Reynolds, C.S.; Vogel, S.N.; McGaugh, S.; Kantharia, N.G. Chandra Observations of Nuclear X-Ray Emission from Low Surface Brightness Galaxies. Astrophys. J. 2009, 693, 1300–1305. [Google Scholar] [CrossRef]
- van der Hulst, J.M.; Skillman, E.D.; Smith, T.R.; Bothun, G.D.; McGaugh, S.S.; de Blok, W.J.G. Star Formation Thresholds in Low Surface Brightness Galaxies. Astron. J. 1993, 106, 548–559. [Google Scholar] [CrossRef]
- Zwaan, M.A.; van der Hulst, J.M.; de Blok, W.J.G.; McGaugh, S.S. The Tully-Fisher relation for low surface brightness galaxies: Implications for galaxy evolution. Mon. Not. R. Astron. Soc. 1995, 273, L35–L38. [Google Scholar] [CrossRef]
- de Blok, W.J.G.; McGaugh, S.S.; Rubin, V.C. High-Resolution Rotation Curves of Low Surface Brightness Galaxies. Astron. J. 2001, 122, 2396–2427. [Google Scholar] [CrossRef]
- de Blok, W.J.G.; Bosma, A. High-Resolution Rotation Curves of Low Surface Brightness Galaxies. Astron. Astrophys. 2002, 385, 816–846. [Google Scholar] [CrossRef]
- Di Paolo, C.; Salucci, P.; Erkurt, A. The universal rotation curve of low surface brightness galaxiesIV: The interrelation between dark and luminous matter. Mon. Not. R. Astron. Soc. 2019, 490, 5451–5477. [Google Scholar] [CrossRef]
- van der Kruit, P.; Freeman, K. Galaxy Disks. Annu. Rev. Astron. Astrophys. 2011, 49, 301–307. [Google Scholar] [CrossRef]
- Ellis, G. The Standard Cosmological Model: Achievements and Issues. Found. Phys. 2018, 48, 1226–1245. [Google Scholar] [CrossRef]
- Roszkowski, L.; Sessolo, E.; Trojanowski, S. WIMP dark matter candidates and searches—Current status and future prospects. Rep. Prog. Phys. 2018, 81, 066201. [Google Scholar] [CrossRef]
- Freese, K. Status of dark matter in the universe. Int. J. Mod. Phys. D 2017, 26, 1730012. [Google Scholar] [CrossRef]
- Salucci, P. The distribution of dark matter in galaxies. Astron. Astrophys. Rev. 2019, 27, 2. [Google Scholar] [CrossRef]
- Sarkar, A.; Das, S.; Sethi, S.K. How late can the dark matter form in our universe? J. Cosmol. Astropart. Phys. 2015, 2015, 004. [Google Scholar] [CrossRef]
- Bergstrom, L. Non-baryonic dark matter: Observational evidence and detection methods. Rep. Prog. Phys. 2000, 63, 793–841. [Google Scholar] [CrossRef]
- Garrett, K.; Duda, G. Dark Matter: A Primer. Adv. Astron. 2011, 2011, 1–22. [Google Scholar] [CrossRef]
- Bauer, M.; Plehn, T. Yet Another Introduction to Dark Matter. arXiv 2017, arXiv:1705.01987. [Google Scholar]
- Profumo, S. An Introduction to Particle Dark Matter; World Scientific Publishing Co Pte Ltd: Singapore, 2017. [Google Scholar]
- Steigman, G.; Dasgupta, B.; Beacom, J.F. Precise relic WIMP abundance and its impact on searches for dark matter annihilation. Phys. Rev. D 2012, 86, 023506. [Google Scholar] [CrossRef]
- Steigman, G.; Turner, M. Cosmological constraints on the properties of weakly interacting massive particles. Nucl. Phys. B 1985, 253, 375–386. [Google Scholar] [CrossRef]
- Munoz, C. Models of Supersymmetry for Dark Matter. EPJ Web Conf. 2017, 136, 1002. [Google Scholar] [CrossRef]
- Aaij, R.; Beteta, C.A.; Adametz, A.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; et al. Strong Constraints on the Rare Decays. Phys. Rev. Lett. 2012, 108, 231801. [Google Scholar] [CrossRef] [PubMed]
- Bechtle, P.; Bringmann, T.; Desch, K.; Dreiner, H.; Hamer, M.; Hensel, C.; Krämer, M.; Nguyen, N.; Porod, W.; Prudent, X.; et al. Constrained supersymmetry after two years of LHC data: A global view with Fittino. J. High Energy Phys. 2012, 2012, 98. [Google Scholar] [CrossRef]
- Kennedy, R.; Frenk, C.; Cole, S.; Benson, A. Constraining the warm dark matter particle mass with Milky Way satellites. Mon. Not. R. Astron. Soc. 2014, 442, 2487–2495. [Google Scholar] [CrossRef]
- Navarro, J.; Frenk, C.; White, S. A Universal Density Profile from Hierarchical Clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Wechsler, R.; Zentner, A.; Bullock, J.; Kravtsov, A.V.; Allgood, B.A. The Dependence of Halo Clustering on Halo Formation History, Concentration, and Occupation. Astrophys. J. 2006, 652, 71–84. [Google Scholar] [CrossRef]
- Klypin, A.; Trujillo-Gomez, S.; Primack, J. Dark matter halos in the standard cosmological model: Results from the bolshoi simulation. Astrophys. J. 2011, 740, 102. [Google Scholar] [CrossRef]
- Naab, T.; Ostriker, J. Theoretical challenges in galaxy formation. Annu. Rev. Astron. Astrophys. 2017, 55, 59–109. [Google Scholar] [CrossRef]
- Bullock, J.; Boylan-Kolchin, M. Small-scale challenges to the ΛCDM paradigm. Annu. Rev. Astron. Astrophys. 2017, 55, 343–387. [Google Scholar] [CrossRef]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Hu, W.; Barkana, R.; Gruzinov, A. Fuzzy Cold Dark Matter: The Wave Properties of Ultralight Particles. Phys. Rev. Lett. 2000, 85, 1158–1161. [Google Scholar] [CrossRef] [PubMed]
- Ringwald, A. Exploring the Role of Axions and Other WISPs in the Dark Universe. Phys. Dark Univ. 2012, 1, 116–135. [Google Scholar] [CrossRef]
- Hui, L.; Ostriker, J.P.; Tremaine, S.; Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D 2017, 95, 043541. [Google Scholar] [CrossRef]
- Bernal, N.; Heikinheimo, M.; Tenkanen, T.; Tuominen, K.; Vaskonen, V. The dawn of FIMP Dark Matter: A review of models and constraints. Int. J. Mod. Phys. A 2017, 32, 1730023. [Google Scholar] [CrossRef]
- Duffy, L.; van Bibber, K. Axions as dark matter particles. New J. Phys. 2009, 11, 105008. [Google Scholar] [CrossRef]
- Kane, G.; Sinha, K.; Watson, S. Cosmological moduli and the post-inflationary universe: A critical review. Int. J. Mod. Phys. D 2015, 24, 1530022. [Google Scholar] [CrossRef]
- Schive, H.; Liao, M.; Woo, T.; Wong, S.-K.; Chiueh, T.; Broadhurst, T.; Hwang, W.-Y. Understanding the Core-Halo Relation of Quantum Wave Dark Matter from 3D Simulations. Phys. Rev. Lett. 2014, 113, 261302. [Google Scholar] [CrossRef]
- Spergel, D.N.; Steinhardt, P.J. Observational Evidence for Self-Interacting Cold Dark Matter. Phys. Rev. Lett. 2000, 84, 3760–3763. [Google Scholar] [CrossRef]
- Vogelsberger, M.; Zavala, J.; Simpson, C.; Jenkins, A. Dwarf galaxies in CDM and SIDM with baryons: Observational probes of the nature of dark matter. Mon. Not. R. Astron. Soc. 2014, 444, 3684–3698. [Google Scholar] [CrossRef]
- Zavala, J.; Vogelsberger, M.; Walker, M. Constraining self-interacting dark matter with the Milky Way dwarf spheroidals. Mon. Not. R. Astron. Soc. 2013, 431, L20–L24. [Google Scholar] [CrossRef]
- Tulin, S.; Yu, H.; Zurek, K.M. Beyond collisionless dark matter: Particle physics dynamics for dark matter halo structure. Phys. Rev. D 2013, 87, 115007. [Google Scholar] [CrossRef]
- Bellazzini, B.; Cliche, M.; Tanedo, P. Effective theory of self-interacting dark matter. Phys. Rev. D 2013, 88, 083506. [Google Scholar] [CrossRef]
- Boddy, K.K.; Feng, J.L.; Kaplinghat, M.; Shadmi, Y.; Tait, T. Strongly interacting dark matter: Self-interactions and keV lines. Phys. Rev. D 2014, 90, 095016. [Google Scholar] [CrossRef]
- Elbert, O.D.; Bullock, J.S.; Garrison-Kimmel, S.; Rocha, M.; Oñorbe, J.; Peter, A.H.G. Dwarf galaxies in CDM and SIDM with baryons: Observational probes of the nature of dark matter. Mon. Not. R. Astron. Soc. 2015, 453, 29–37. [Google Scholar] [CrossRef]
- Kaplinghat, M.; Linden, T.; Yu, H. Galactic Center Excess in γ Rays from Annihilation of Self-Interacting Dark Matter. Phys. Rev. Lett. 2015, 114, 211303. [Google Scholar] [CrossRef]
- Drewes, M. The Phenomenology of Right Handed Neutrinos. Int. J. Mod. Phys. E 2013, 22, 1330019. [Google Scholar] [CrossRef]
- Adhikari, R.; Agostini, M.; Ky, N.A.; Araki, T.; Archidiacono, M.; Bahr, M.; Baur, J.; Behrens, J.; Bezrukov, F.; Dev, B.; et al. A White Paper on keV sterile neutrino Dark Matter. J. Cosmol. Astropart. Phys. 2017, 2017, 025. [Google Scholar] [CrossRef]
- Boyarsky, A.; Drewes, M.; Lasserre, T.; Mertens, S.; Ruchayskiy, O. Sterile neutrino Dark Matter. Prog. Part. Nucl. Phys. 2019, 104, 1–45. [Google Scholar] [CrossRef]
- Asaka, T.; Blanchet, S.; Shaposhnikov, M. The nuMSM, dark matter and neutrino masses. Phys. Lett. B 2005, 631, 151–156. [Google Scholar] [CrossRef]
- Ma, E. Verifiable radiative seesaw mechanism of neutrino mass and dark matter. Phys. Rev. D 2006, 73, 077301. [Google Scholar] [CrossRef]
- Naumov, D.V. The Sterile Neutrino: A short introduction. EPJ Web Conf. 2019, 207, 04004. [Google Scholar] [CrossRef]
- de Vega, H.J.; Sanchez, N.G. Cosmological evolution of warm dark matter fluctuations. II. Solution from small to large scales and keV sterile neutrinos. Phys. Rev. D 2012, 85, 043517. [Google Scholar] [CrossRef]
- Dodelson, S.; Widrow, L.M. Sterile neutrinos as dark matter. Phys. Rev. Lett. 1994, 72, 17–20. [Google Scholar] [CrossRef]
- Shi, X.; Fuller, G.M. New Dark Matter Candidate: Nonthermal Sterile Neutrinos. Phys. Rev. Lett. 1999, 82, 2832–2835. [Google Scholar] [CrossRef]
- Kusenko, A. Sterile neutrinos: The dark side of the light fermions. Phys. Rep. 2009, 481, 1–28. [Google Scholar] [CrossRef]
- Destri, C.; de Vega, H.J.; Sanchez, N.G. Warm dark matter primordial spectra and the onset of structure formation at redshift z. Phys. Rev. D 2013, 88, 083512. [Google Scholar] [CrossRef]
- de Vega, H.J.; Moreno, O.; Moya de Guerra, E.; Ramón Medrano, M.; Sánchez, N.G. Role of sterile neutrino warm dark matter in rhenium and tritium beta decays. Nucl. Phys. B 2013, 866, 177–195. [Google Scholar] [CrossRef]
- de Vega, H.J.; Sanchez, N.G. The dark matter distribution function and halo thermalization from the Eddington equation in galaxies. Int. J. Mod. Phys. A 2016, 31, 1650073. [Google Scholar] [CrossRef]
- Lovell, M.R.; Frenk, C.S.; Eke, V.R.; Jenkins, A.; Gao, L.; Theuns, T. The properties of warm dark matter haloes. Mon. Not. R. Astron. Soc. 2014, 439, 300–317. [Google Scholar] [CrossRef]
- Destri, C.; de Vega, H.J.; Sanchez, N.G. Fermionic warm dark matter produces galaxy cores in the observed scales because of quantum mechanics. New Astron. 2013, 22, 39–50. [Google Scholar] [CrossRef]
- de Vega, H.J.; Sanchez, N.G. Equation of state, universal profiles, scaling and macroscopic quantum effects in warm dark matter galaxies. Eur. Phys. J. C 2017, 77, 81. [Google Scholar] [CrossRef]
- de Vega, H.J.; Sanchez, N.G. Model-independent analysis of dark matter points to a particle mass at the keV scale. Mon. Not. R. Astron. Soc. 2010, 404, 885–894. [Google Scholar] [CrossRef]
- de Vega, H.J.; Salucci, P.; Sanchez, N.G. The mass of the dark matter particle: Theory and galaxy observations. New Astron. 2012, 17, 653–666. [Google Scholar] [CrossRef]
- de Vega, H.J.; Salucci, P.; Sanchez, N.G. Observational rotation curves and density profiles versus the Thomas-Fermi galaxy structure theory. Mon. Not. R. Astron. Soc. 2014, 442, 2717–2727. [Google Scholar] [CrossRef]
- Di Paolo, C.; Nesti, F.; Villante, F. Phase-space mass bound for fermionic dark matter from dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 2018, 475, 5385–5397. [Google Scholar] [CrossRef]
- Alvey, J.; Sabti, N.; Tiki, V.; Blas, D.; Bondarenko, K.; Boyarski, A.; Escuedro, M.; Fairbairn, M.; Orkney, M.; Read, J.I. New constraints on the mass of fermionic dark matter from dwarf spheroidal galaxies. Mon. Not. R. Astron. Soc. 2021, 501, 1188–1201. [Google Scholar] [CrossRef]
- Boyarsky, D.; Ruchayskiy, O.; Iakubovskyi, D.; Franse, J. Unidentified Line in X-Ray Spectra of the Andromeda Galaxy and Perseus Galaxy Cluster. Phys. Rev. Lett. 2014, 113, 251301. [Google Scholar] [CrossRef] [PubMed]
- Gunn, J.E.; Lee, B.W.; Lerche, I.; Schramm, D.N.; Steigman, G. Some astrophysical consequences of the existence of a heavy stable neutral lepton. Astrophys. J. 1978, 223, 1015–1031. [Google Scholar] [CrossRef]
- Bergstrom, L.; Ullio, P.; Buckley, J. Observability of gamma rays from dark matter neutralino annihilations in the Milky Way halo. Astropart. Phys. 1998, 9, 137–162. [Google Scholar] [CrossRef]
- Geringer-Sameth, A.; Koushiappas, S.M.; Walker, M. Dwarf galaxy annihilation and decay emission profiles for dark matter experiments. Astrophys. J. 2015, 801, 74. [Google Scholar] [CrossRef]
- Hoof, S.; Geringer-Sameth, A.; Trotta, R. A Global Analysis of Dark Ma er Signals from 27 Dwarf Spheroidal Galaxies using Ten Years of Fermi-LAT Observations. arXiv 2018, arXiv:1812.06986v1. [Google Scholar]
- Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Bourbeau, E.; Brantseg, T.; Buchovecky, M.; Buckley, J.H.; Bugaev, V.; Byrum, K.; et al. Dark matter constraints from a joint analysis of dwarf Spheroidal galaxy observations with VERITAS. Phys. Rev. D 2017, 95, 082001. [Google Scholar] [CrossRef]
- Abdallah, H.; Abramowski, A.; Aharonian, F.; Benkhali, F.A.; Akhperjanian, A.G.; Angüner, E.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; et al. Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with H.E.S.S. Phys. Rev. Lett. 2016, 117, 111301. [Google Scholar] [CrossRef]
- Cui, M.Y.; Pan, X.; Yuan, Q.; Fan, Y.Z.; Zong, H.S. Revisit of cosmic ray antiprotons from dark matter annihilation with updated constraints on the background model from AMS-02 and collider data. J. Cosmol. Astropart. Phys. 2018, 2018, 024. [Google Scholar] [CrossRef]
- Iovine, N.; Sánchez, J.; Baur, S. Combined Search for Neutrinos from Dark Matter Annihilation in the Galactic Centre using ANTARES and IceCube. arXiv 2019, arXiv:1908.07300v1. [Google Scholar]
- Goodman, M.W.; Witten, E. Detectability of certain dark-matter candidates. Phys. Rev. D 1985, 31, 3059–3063. [Google Scholar] [CrossRef]
- Schumann, M. Direct detection of WIMP dark matter: Concepts and status. J. Phys. G Nucl. Part. Phys. 2019, 46, 103003. [Google Scholar] [CrossRef]
- Kang, S.; Scopel, S.; Tomar, G.; Yoon, J. Present and projected sensitivities of Dark Matter direct detection experiments to effective WIMP-nucleus couplings. Astropart. Phys. 2019, 109, 50–68. [Google Scholar] [CrossRef]
- Kane, G.; Watson, S. Dark Matter and LHC: What is the Connection? Mod. Phys. Lett. A 2008, 23, 2103–2123. [Google Scholar] [CrossRef]
- Trevisani, N. Collider Searches for Dark Matter (ATLAS + CMS). Universe 2018, 4, 131. [Google Scholar] [CrossRef]
- Fox, P.; Harnik, R.; Kopp, J.; Tsai, Y. LEP shines light on dark matter. Phys. Rev. D 2011, 84, 014028. [Google Scholar] [CrossRef]
- Klypin, A.; Kravtsov, A.V.; Valenzuela, O.; Prada, F. Where Are the Missing Galactic Satellites? Astrophys. J. 1999, 522, 82–92. [Google Scholar] [CrossRef]
- Moore, B.; Ghigna, S.; Governato, F.; Lake, G.; Quinn, T.; Stadel, J.; Tozzi, P. Dark Matter Substructure within Galactic Halos. Astrophys. J. 1999, 524, L19–L22. [Google Scholar] [CrossRef]
- Zavala, J.; Jing, Y.P.; Faltenbacher, A.; Yepes, G.; Hoffman, Y.; Gottlöber, S.; Catinella, B. The velocity function in the local environment from ΛCDM and ΛWDM constrained simulations. Astrophys. J. 2009, 700, 1779–1793. [Google Scholar] [CrossRef]
- Papastergis, E.; Martin, A.M.; Giovanelli, R.; Haynes, M.P. The velocity width function of galaxies from the 40 per cent alfalfa survey: Shedding light on the cold dark matter overabundance problem. Astrophys. J. 2011, 739, 38. [Google Scholar] [CrossRef]
- Bullock, J.S. Notes on the Missing Satellites Problem. arXiv 2010, arXiv:1009.4505. [Google Scholar]
- Klypin, A.; Karachentsev, I.; Makarov, D.; Nasonova, O. Abundance of field galaxies. Mon. Not. R. Astron. Soc. 2015, 454, 1798–1810. [Google Scholar] [CrossRef]
- Ferrero, I.; Abadi, M.G.; Navarro, J.F.; Sales, L.V.; Gurovich, S. The dark matter haloes of dwarf galaxies: A challenge for the cold dark matter paradigm. Mon. Not. R. Astron. Soc. 2012, 425, 2817–2823. [Google Scholar] [CrossRef]
- Boylan-Kolchin, M.; Bullock, J.S.; Kaplinghat, M. The Milky Way’s bright satellites as an apparent failure of ΛCDM. Mon. Not. R. Astron. Soc. 2012, 422, 1203–1218. [Google Scholar] [CrossRef]
- Garrison-Kimmel, S.; Boylan-Kolchin, M.; Bullock, J.S.; Kirby, E.N. Too big to fail in the Local Group. Mon. Not. R. Astron. Soc. 2014, 444, 222236. [Google Scholar] [CrossRef]
- Papastergis, E.; Giovanelli, R.; Haynes, M.P.; Shankar, F. Is there a too big to fail problem in the field? Astron. Astrophys. 2015, 574, A113. [Google Scholar] [CrossRef]
- Salucci, P. The constant-density region of the dark haloes of spiral galaxies. Mon. Not. R. Astron. Soc. 2001, 320, L1–L5. [Google Scholar] [CrossRef][Green Version]
- Gentile, G.; Salucci, P.; Klein, U.; Vergani, D.; Kalberla, P. The cored distribution of dark matter in spiral galaxies. Mon. Not. R. Astron. Soc. 2004, 351, 903–922. [Google Scholar] [CrossRef]
- Gentile, G.; Burkert, A.; Salucci, P.; Klein, U.; Walter, F. High-resolution rotation curves of low surface brightness galaxies. Atrophys. J. Lett. 2005, 634, L145. [Google Scholar] [CrossRef]
- Simon, J.D.; Bolatto, A.D.; Leroy, A.; Blitz, L.; Gates, E.L. High-Resolution Measurements of the Halos of Four Dark Matter-Dominated Galaxies: Deviations from a Universal Density Profile. Astrophys. J. 2005, 621, 757–776. [Google Scholar] [CrossRef]
- Del Popolo, A.; Kroupa, P. Density profiles of dark matter haloes on galactic and cluster scales. Astron. Astrophys. 2009, 502, 733–747. [Google Scholar] [CrossRef]
- Oh, S.H.; de Blok, W.J.G.; Brinks, E.; Walter, F.; Kennicutt, J.R.C. Dark and luminous matter in things dwarf galaxies. Astron. J. 2011, 141, 193. [Google Scholar] [CrossRef]
- Weinberg, D.H.; Bullock, J.S.; Governato, F.; Kuzio de Naray, R.; Peter, A.H.G. Cold dark matter: Controversies on small scales. Proc. Natl. Acad. Sci. USA 2015, 112, 12249–12255. [Google Scholar] [CrossRef]
- Dehghani, R.; Salucci, P.; Ghaffarnejad, H. Navarro-Frenk-White dark matter profile and the dark halos around disk systems. Astron. Astrophys. 2020, 643, A161. [Google Scholar] [CrossRef]
- Navarro, J.F.; Eke, V.R.; Frenk, C.S. The cores of dwarf galaxy haloes. Mon. Not. R. Astron. Soc. 1996, 283, L72–L78. [Google Scholar] [CrossRef]
- Read, J.I.; Gilmore, G. Mass loss from dwarf spheroidal galaxies: The origins of shallow dark matter cores and exponential surface brightness profiles. Mon. Not. R. Astron. Soc. 2005, 356, 107–124. [Google Scholar] [CrossRef]
- Mashchenko, S.; Couchman, H.M.P.; Wadsley, J. The removal of cusps from galaxy centres by stellar feedback in the early Universe. Nature 2006, 442, 539–542. [Google Scholar] [CrossRef]
- Pontzen, A.; Governato, F. Cold dark matter heats up. Nature 2014, 506, 171–178. [Google Scholar] [CrossRef]
- Di Cintio, A.; Brook, C.B.; Macciò, A.V.; Stinson, G.S.; Knebe, A.; Dutton, A.A.; Wadsley, J. The dependence of dark matter profiles on the stellar-to-halo mass ratio: A prediction for cusps versus cores. Mon. Not. R. Astron. Soc. 2014, 437, 415–423. [Google Scholar] [CrossRef]
- Dutton, A.; Macciò, A.; Buck, T.; Dixon, K.L.; Blank, M.; Obreja, A. NIHAO XX: The impact of the star formation threshold on the cusp-core transformation of cold dark matter haloes. Mon. Not. R. Astron. Soc. 2019, 486, 655–671. [Google Scholar] [CrossRef]
- Benítez-Llambay, A.; Frenk, C.; Ludlow, A.D.; Navarro, J. Baryon-induced dark matter cores in the EAGLE simulations. Mon. Not. R. Astron. Soc. 2019, 488, 2387–2404. [Google Scholar] [CrossRef]
- Burkert, A. Fuzzy Dark Matter and Dark Matter Halo Cores. Astrophys. J. 2020, 904, 161. [Google Scholar] [CrossRef]
- Banerjee, A.; Adhikari, S.; Dalal, N.; More, S.; Kravtsov, A. Signatures of Self-Interacting dark matter on cluster density profile and subhalo distributions. arXiv 2019, arXiv:1906.12026. [Google Scholar] [CrossRef]
- Nashwan, S.; James, A.; Miguel, E.; Malcolm, F.; Diego, B. Refined bounds on MeV-scale thermal dark sectors from BBN and the CMB. J. Cosmol. Astropart. Phys. 2020, 2020, 004. [Google Scholar]
- Iršič, V.; Viel, M.; Haehnelt, M.; Bolton, J.; Cristiani, S.; Becker, G.D.; D’Odorico, V.; Cupani, G.; Kim, T.-S.; Berg, T.A.M.; et al. New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data. Phys. Rev. D 2017, 96, 023522. [Google Scholar] [CrossRef]
- Enzi, W.; Murgia, R.; Newton, O.; Vegetti, S.; Frenk, C.; Viel, M.; Cautun, M.; Fassnacht, C.D.; Auger, M.; Despali, G.; et al. Joint constraints on thermal relic dark matter from strong gravitational lensing, the Lyman-α forest, and Milky Way satellites. arXiv 2020, arXiv:2010.13802. [Google Scholar]
- Corbelli, E.; Salucci, P. The extended rotation curve and the dark matter halo of M33. Mon. Not. R. Astron. Soc. 2000, 311, 441–447. [Google Scholar] [CrossRef]
- Binney, J. Is the flattening of elliptical galaxies necessarily due to rotation? Mon. Not. R. Astron. Soc. 1976, 177, 19–29. [Google Scholar] [CrossRef]
- Binney, J. On the rotation of elliptical galaxies. Mon. Not. R. Astron. Soc. 1978, 183, 501–514. [Google Scholar] [CrossRef]
- Kormendy, J.; Bender, R. A Proposed Revision of the Hubble Sequence for Elliptical Galaxies. Astrophys. J. 1996, 464, L119–L122. [Google Scholar] [CrossRef]
- Cappellari, M.; Emsellem, E.; Bacon, R.; Bureau, M.; Davies, R.L.; De Zeeuw, P.T.; Falcón-Barroso, J.; Krajnović, D.; Kuntschner, H.; McDermid, R.; et al. The SAURON project. X. The orbital anisotropy of elliptical and lenticular galaxies: Revisiting the (V/σ, ϵ) diagram with integral-field stellar kinematics. Mon. Not. R. Astron. Soc. 2007, 379, 418–444. [Google Scholar] [CrossRef]
- Kent, S.M. Dark matter in spiral galaxies. I. Galaxies with optical rotation curves. Astron. J. 1986, 91, 1301–1327. [Google Scholar] [CrossRef]
- Freeman, K.C. On the Disks of Spiral and S0 Galaxies. Astrophys. J. 1970, 160, 811. [Google Scholar] [CrossRef]
- McGaugh, S.; Bothun, G. Structural Characteristics and Stellar Composition of Low Surface Brightness Disk Galaxies. Astron. J. 1994, 107, 530–542. [Google Scholar] [CrossRef]
- Wyder, T.; Martin, D.C.; Barlow, T.; Forster, K.; Friedman, P.G.; Morrissey, P.; Neff, S.G.; Neill, J.D.; Schiminovich, D.; Seibert, M.; et al. The star formation law at low surface density. Astrophys. J. 2009, 696, 1834–1853. [Google Scholar] [CrossRef]
- Evoli, C.; Salucci, P.; Lapi, A.; Danese, L. The HI content of local late-type galaxies. Astrophys. J. 2011, 743, 45. [Google Scholar] [CrossRef]
- Wang, J.; Fu, J.; Aumer, M.; Kauffmann, G.; Józsa, G.I.G.; Serra, P.; Huang, M.-L.; Brinchmann, J.; van der Hulst, J.; Bigiel, F. An observational and theoretical view of the radial distribution of HI gas in galaxies. Mon. Not. R. Astron. Soc. 2014, 441, 2159–2172. [Google Scholar] [CrossRef]
- Gratier, P.; Braine, J.; Rodriguez-Fernandez, N.J. Molecular and atomic gas in the Local Group galaxy M 33. Astron. Astrophys. 2010, 522, A3. [Google Scholar] [CrossRef]
- Yegorova, I.; Salucci, P. The radial Tully-Fisher relation for spiral galaxies I. Mon. Not. R. Astron. Soc. 2007, 377, 507–515. [Google Scholar] [CrossRef]
- Noordermeer, E. The rotation curves of flattened Sérsic bulges. Mon. Not. R. Astron. Soc. 2008, 385, 1359–1364. [Google Scholar] [CrossRef]
- Binney, J.; Tremaine, S. Galactic Dynamics; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Persic, M.; Salucci, P.; Stel, F. The universal rotation curve of spiral galaxies—I. The dark matter connection. Mon. Not. R. Astron. Soc. 1996, 281, 27–47. [Google Scholar] [CrossRef]
- Hoekstra, H.; Bhuvnesh, J. Weak Gravitational Lensing and Its Cosmological Applications. Annu. Rev. Nucl. Part. Sci. 2008, 58, 99–123. [Google Scholar] [CrossRef]
- Zu, Y.; Mandelbaum, R. Mapping stellar content to dark matter haloes using galaxy clustering and galaxy-galaxy lensing in the SDSS DR7. Mon. Not. R. Astron. Soc. 2015, 454, 1161–1191. [Google Scholar] [CrossRef]
- Donato, F.; Gentile, G.; Salucci, P.; Frigerio Martins, C.; Wilkinson, M.I.; Gilmore, G.; Grebel, E.K.; Koch, A.; Wyse, R. A constant dark matter halo surface density in galaxies. Mon. Not. R. Astron. Soc. 2009, 397, 1169–1176. [Google Scholar] [CrossRef]
- Shankar, F.; Lapi, A.; Salucci, P.; De Zotti, G.; Danese, L. New Relationships between Galaxy Properties and Host Halo Mass, and the Role of Feedbacks in Galaxy Formation. Astrophys. J. 2006, 643, 14–25. [Google Scholar] [CrossRef]
- Salucci, P.; Lapi, A.; Tonini, C.; Gentile, G.; Yegorova, I.; Klein, U. The universal rotation curve of spiral galaxies—II. The dark matter distribution out to the virial radius. Mon. Not. R. Astron. Soc. 2007, 378, 41–47. [Google Scholar] [CrossRef]
- Zobnina, D.I.; Zasov, A.V. Galaxies with Declining Rotation Curves. arXiv 2020, arXiv:2003.08845. [Google Scholar]
- Burkert, A. The Structure of Dark Matter Halos in Dwarf Galaxies. Astrophys. J. 1995, 447, L25. [Google Scholar] [CrossRef]
- Salucci, P.; Ratnam, C.; Monaco, P.; Danese, L. The masses of black holes in the nuclei of spirals. Mon. Not. R. Astron. Soc. 2000, 317, 488–496. [Google Scholar] [CrossRef]
- Salucci, P.; Burkert, A. Dark Matter Scaling Relations. Astrophys. J. 2000, 537, L9–L12. [Google Scholar] [CrossRef]
- Salucci, P. Dark Matter in Galaxies: Evidences and Challenges. Found. Phys. 2018, 48, 1517–1537. [Google Scholar] [CrossRef]
- Memola, E.; Salucci, P.; Babic, A. Dark matter halos around isolated ellipticals. Astron. Astrophys. 2011, 534, A50. [Google Scholar] [CrossRef]
- Zhao, H. Analytical models for galactic nuclei. Mon. Not. R. Astron. Soc. 1996, 278, 488–496. [Google Scholar] [CrossRef]
- White, M. The mass of a halo. Astron. Astrophys. 2001, 367, 27–32. [Google Scholar] [CrossRef]
- Drory, N.; Bender, R.; Hopp, U. Comparing Spectroscopic and Photometric Stellar Mass Estimates. Astrophys. J. Lett. 2004, 616, L103–L106. [Google Scholar] [CrossRef]
- Salucci, P.; Yegorova, I.A.; Drory, N. The disc mass of spiral galaxies. Mon. Not. R. Astron. Soc. 2008, 388, 159–164. [Google Scholar] [CrossRef]
- Persic, M.; Salucci, P. The disc contribution to rotation curves of spiral galaxies. Mon. Not. R. Astron. Soc. 1990, 247, 349. [Google Scholar]
- Rubin, V.C.; Burstein, D.; Ford, J.W.K.; Thonnard, N. Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties. Astrophys. J. 1985, 289, 81–96. [Google Scholar] [CrossRef]
- Persic, M.; Salucci, P. The universal galaxy rotation curve. Astrophys. J. 1991, 368, 60–65. [Google Scholar] [CrossRef]
- Roscoe, D.F. An analysis of 900 optical rotation curves: Dark matter in a corner? Pramana 1999, 53, 1033. [Google Scholar]
- Catinella, B.; Giovanelli, R.; Haynes, M.P. Template Rotation Curves for Disk Galaxies. Astrophys. J. 2006, 640, 751–761. [Google Scholar] [CrossRef]
- Noordermeer, E.; van der Hulst, J.M.; Sancisi, R.; Swaters, R.S.; van Albada, T.S. The mass distribution in early-type disc galaxies: Declining rotation curves and correlations with optical properties. Mon. Not. R. Astron. Soc. 2007, 376, 1513–1546. [Google Scholar] [CrossRef]
- López Fune, E. Empirical velocity profiles for galactic rotation curves. Mon. Not. R. Astron. Soc. 2018, 475, 2132–2136. [Google Scholar] [CrossRef]
- Lapi, A.; Salucci, P.; Danese, L. Precision Scaling Relations for Disk Galaxies in the Local Universe. Astrophys. J. 2018, 859, 2. [Google Scholar] [CrossRef]
- Bothun, G.; Impey, C.; McGaugh, S. Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed. Publ. Astron. Soc. Pac. 1997, 109, 745. [Google Scholar] [CrossRef]
- Rosenbaum, S.; Bomans, D.J. The environment of Low Surface Brightness galaxies. Astron. Astrophys. 2004, 422, L5–L8. [Google Scholar] [CrossRef]
- Galaz, G.; Herrera-Camus, R.; Garcia-Lambas, D.; Padilla, N. Low Surface Brightness Galaxies in the SDSS: The Link between Environment, Star-forming Properties, and Active Galactic Nuclei. Astrophys. J. 2011, 728, 74. [Google Scholar] [CrossRef]
- Kovács, O.; Bogdán, A.; Canning, R. Constraining the Dark-matter Halo Mass of Isolated Low-surface-brightness Galaxies. Astrophys. J. 2019, 879, L12. [Google Scholar] [CrossRef]
- Rosenbaum, S.; Krusch, E.; Bomans, D.J.; Dettmar, R.J. The large-scale environment of low surface brightness galaxies. Astron. Astrophys. 2009, 504, 807–820. [Google Scholar] [CrossRef]
- Pustilnik, S.A.; Martin, J.M.; Tepliakova, A.L.; Kniazev, A.Y. Study of galaxies in the Lynx-Cancer void. III. New extreme low surface brightness dwarf galaxies. Mon. Not. R. Astron. Soc. 2011, 417, 1335–1349. [Google Scholar] [CrossRef]
- Merritt, A.; van Dokkum, P.; Abraham, R. The Discovery of Seven Extremely Low Surface Brightness Galaxies in the Field of the Nearby Spiral Galaxy M101. Astrophys. J. 2014, 787, L37. [Google Scholar] [CrossRef]
- Davies, J.I.; Davies, L.J.M.; Keenan, O.C. Probing the low surface brightness dwarf galaxy population of the virgo cluster. Mon. Not. R. Astron. Soc. 2016, 456, 1607–1617. [Google Scholar] [CrossRef]
- van der Kruit, P.C. The radial distribution of surface brightness in galactic disks. Astron. Astrophys. 1987, 173, 59–80. [Google Scholar]
- Schombert, J.M.; Bothun, G.D.; Schneider, S.E.; McGaugh, S.S. A Catalog of Low Surface Brightness Galaxies. List II. Astron. J. 1992, 103, 1107–1133. [Google Scholar] [CrossRef]
- de Block, W.J.G.; van der Hulst, J.; Bothun, G. Surface photometry of low surface brightness galaxies. Mon. Not. R. Astron. Soc. 1995, 274, 235–255. [Google Scholar] [CrossRef]
- Impey, C.; Sprayberry, D.; Irwin, M.; Bothun, G. Low Surface Brightness Galaxies in the Local Universe. I. The Catalog. Astrophys. J. Suppl. Ser. 1996, 105, 209. [Google Scholar] [CrossRef]
- Zhong, G.H.; Liang, Y.C.; Liu, F.S. The Arecibo Legacy Fast ALFA Survey. I. Science Goals, Survey Design, and Strategy. Mon. Not. R. Astron. Soc. 2008, 391, 986–999. [Google Scholar] [CrossRef]
- Williams, R.; Baldry, I.K.; Kelvin, L.S.; James, P.A.; Driver, S.P.; Prescott, M.; Brough, S.; Brown, M.J.I.; Davies, L.J.M.; Holwerda, B.W.; et al. Galaxy And Mass Assembly (GAMA): Detection of low-surface-brightness galaxies from SDSS data. Mon. Not. R. Astron. Soc. 2016, 463, 2746–2755. [Google Scholar] [CrossRef]
- Trujillo, I.; Fliri, J. Beyond 31 mag arcsec-2: The Frontier of Low Surface Brightness Imaging with the Largest Optical Telescopes. Astrophys. J. 2016, 823, 123. [Google Scholar] [CrossRef]
- Pahwa, I.; Saha, K. Structural properties of faint low-surface-brightness galaxies. Mon. Not. R. Astron. Soc. 2018, 478, 4657–4668. [Google Scholar] [CrossRef]
- Honey, M.; Das, M.; Ninan, J.; Manoj, P. Near-infrared imaging of barred halo-dominated low surface brightness galaxies. Mon. Not. R. Astron. Soc. 2016, 462, 2099–2121. [Google Scholar] [CrossRef]
- Saburova, A.; Chilingarian, I.; Kasparova, A.; Katkov, I.Y.; Fabricant, D.G.; Uklein, R. UGC 1378: A Milky Way sized galaxy embedded in a giant low surface brightness disc. Mon. Not. R. Astron. Soc. 2019, 489, 4669–4678. [Google Scholar] [CrossRef]
- Boissier, S.; Boselli, A.; Ferrarese, L.; Roehlly, Y.; Gwyn, S.D.J.; Cuillandre, J.-C.; Roediger, J.; Koda, J.; Mateos, J.C.M. The properties of the Malin 1 galaxy giant disk. A panchromatic view from the NGVS and GUViCS surveys. Astron. Astrophys. 2016, 593, A126. [Google Scholar] [CrossRef]
- de Blok, W.J.G.; McGaugh, S.S.; van der Hulst, J.M. HI Observations of Low Surface Brightness Galaxies: Probing Low-Density Galaxies. Mon. Not. R. Astron. Soc. 1996, 283, 18–54. [Google Scholar] [CrossRef]
- Burkholder, V.; Impey, C.; Sprayberry, D. High and Low Surface Brightness Galaxies in the Local Universe. V. Optical and HI Properties. Astrophys. J. 2001, 122, 2318–2340. [Google Scholar] [CrossRef]
- ONeil, K.; Bothun, G.; Van Driel, W.; Ragaigne, D.M. A new HI catalog of Low Surface Brightness galaxies out to z = 0.1. Tripling the number of massive LSB galaxies known. Astron. Astrophys. 2004, 428, 823–835. [Google Scholar] [CrossRef]
- Lei, F.; Wu, H.; Zhu, Y.; Du, W.; He, M.; Jin, J.-J.; Zhao, P.-S.; Zhang, B.-Q. An Hα Imaging Survey of the Low Surface Brightness Galaxies Selected from the Spring Sky Region of the 40% ALFALFA HI Survey. Astrophys. J. Suppl. Ser. 2019, 242, 11. [Google Scholar] [CrossRef]
- Du, W.; Cheng, C.; Wu, H. Low Surface Brightness Galaxy catalogue selected from the alpha.40-SDSS DR7 Survey and Tully-Fisher relation. Mon. Not. R. Astron. Soc. 2019, 483, 1754–1785. [Google Scholar] [CrossRef]
- Minchin, R.F.; Disney, M.J.; Parker, Q.A.; Boyce, P.J.; de Blok, W.; Banks, G.D.; Ekers, R.D.; Freeman, K.; Garcia, D.A.; Gibson, B.; et al. The cosmological significance of low surface brightness galaxies found in a deep blind neutral hydrogen survey. Mon. Not. R. Astron. Soc. 2004, 355, 1303–1314. [Google Scholar] [CrossRef]
- ONeil, K.; Bothun, G.D.; Schombert, J. Red, Gas-Rich Low Surface Brightness Galaxies and Enigmatic Deviations from the Tully-Fisher Relation. Astrophys. J. 2000, 119, 136–152. [Google Scholar] [CrossRef]
- Di Paolo, C. Fundamental Properties of the Dark and the Luminous Matter from Low Surface Brightness Discs. Ph.D. Thesis, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy, 2020. [Google Scholar]
- McGaugh, S.S.; Bothun, G.D.; Schombert, J.M. Galaxy Selection and the Surface Brightness Distribution. Astron. J. 1995, 110, 573. [Google Scholar] [CrossRef]
- Dalcanton, J.J.; Spergel, D.N.; Gunn, J.E.; Schmidt, M.; Schneider, D.P. The Number Density of Low-Surface Brightness Galaxies. Astron. J. 1997, 114, 635–654. [Google Scholar] [CrossRef]
- Trachternach, C.; Bomans, D.J.; Haberzettl, L.; Dettmar, R. An optical search for low surface brightness galaxies in the Arecibo HI Strip Survey. Astron. Astrophys. 2006, 458, 341–348. [Google Scholar] [CrossRef]
- Greco, J.P.; Greene, J.E.; Strauss, M.A.; MacArthur, L.A.; Flowers, X.; Goulding, A.D.; Huang, S.; Kim, J.H.; Komiyama, Y.; Leauthaud, A.; et al. Illuminating Low Surface Brightness Galaxies with the Hyper Suprime-Cam Survey. Astrophys. J. 2018, 857, 104. [Google Scholar] [CrossRef]
- Honey, M.; van Driel, W.; Das, M.; Martin, J.M. A study of the HI and optical properties of Low Surface Brightness galaxies: Spirals, dwarfs, and irregulars. Mon. Not. R. Astron. Soc. 2018, 476, 4488–4500. [Google Scholar] [CrossRef]
- Disney, M.J. Visibility of galaxies. Nature 1976, 263, 573–575. [Google Scholar] [CrossRef]
- Bothun, G.; Impey, C.D.; Malin, D.F.; Mould, J.R. Discovery of a Huge Low-Surface-Brightness Galaxy: A Proto-Disk Galaxy at Low Redshift? Astron. J. 1987, 94, 23–29. [Google Scholar] [CrossRef]
- Impey, C.D.; Bothun, G. Malin1: A quiescent disk galaxy. Astrophys. J. 1989, 341, 89–104. [Google Scholar] [CrossRef]
- Das, M. Giant Low Surface Brightness Galaxies: Evolution in Isolation. J. Astrophys. Astron. 2013, 34, 19–31. [Google Scholar] [CrossRef]
- Schombert, J.; McGaugh, S. Stellar Populations and the Star Formation Histories of LSB Galaxies: III. Stellar Population Models. Publ. Astron. Soc. Aust. 2014, 31, 036. [Google Scholar] [CrossRef]
- Kennicutt, R.C.J. The Star Formation Law in Galactic Disks. Astrophys. J. 1989, 344, 685–703. [Google Scholar] [CrossRef]
- Kennicutt, R.C.J. The Global Schmidt Law in Star-forming Galaxies. Astrophys. J. 1998, 498, 541–552. [Google Scholar] [CrossRef]
- Schmidt, M. The Rate of Star Formation. Astrophys. J. 1959, 129, 243. [Google Scholar] [CrossRef]
- Martin, C.; Kennicutt, R.J. Star Formation Thresholds in Galactic Disks. Astrophys. J. 2001, 555, 301–321. [Google Scholar] [CrossRef]
- Blitz, L.; Rosolowsky, E. The Role of Pressure in Giant Molecular Cloud Formation. Astrophys. J. 2004, 612, L29–L32. [Google Scholar] [CrossRef]
- Robertson, B.E.; Kravtsov, A.V. Molecular Hydrogen and Global Star Formation Relations in Galaxies. Astrophys. J. 2008, 680, 1083–1111. [Google Scholar] [CrossRef]
- van den Hoek, L.B.; de Blok, W.J.G.; van der Hulst, J.M.; de Jong, T. The evolution of the stellar populations in low surface brightness galaxies. Astron. Astrophys 2000, 357, 397–413. [Google Scholar]
- Lei, F.-J.; Wu, H.; Du, W.; Zhu, Y.-N.; Lam, M.-I.; Zhou, Z.-M.; He, M.; Jin, J.-J.; Cao, T.-W.; Zhao, P.-S.; et al. An Hα Imaging Survey of the Low-surface-brightness Galaxies Selected from the Fall Sky Region of the 40% ALFALFA HI Survey. Astrophys. J. Suppl. Ser. 2018, 235, 18. [Google Scholar] [CrossRef]
- Liang, Y.C.; Zhong, G.H.; Hammer, F.; Chen, X.Y.; Liu, F.S.; Gao, D.; Hu, J.Y.; Deng, L.C.; Zhang, B. A large sample of low surface brightness disc galaxies from the SDSS. II. Metallicities in surface brightness bins. Mon. Not. R. Astron. Soc. 2010, 409, 213–225. [Google Scholar] [CrossRef]
- Bresolin, F.; Kennicutt, R.C. Abundance gradients in low surface brightness spirals: Clues on the origin of common gradients in galactic discs. Mon. Not. R. Astron. Soc. 2015, 454, 3664–3673. [Google Scholar] [CrossRef]
- Matthews, L.; Gao, Y. CO Detections of Edge-on Low Surface Brightness Galaxies. Astrophys. J. 2001, 549, L191–L194. [Google Scholar] [CrossRef]
- ONeil, K.; Schinnerer, E. The First CO Map of a Low Surface Brightness Galaxy. Astrophys. J. 2003, 588, L81–L84. [Google Scholar] [CrossRef]
- Hinz, J.L.; Rieke, M.J.; Rieke, G.H.; Willmer, C.N.A.; Misselt, K.; Engelbracht, C.W.; Blaylock, M.; Pickering, T.E. Spitzer Observations of Low-Luminosity Isolated and Low Surface Brightness Galaxies. Astrophys. J. 2007, 663, 895–907. [Google Scholar] [CrossRef]
- Schombert, J.; McGaugh, S.; Maciel, T. Stellar Populations and the Star Formation Histories of Low Surface Brightness Galaxies. II. H II Regions. Astron. J. 2013, 146, 41. [Google Scholar] [CrossRef]
- Vorobyov, E.I.; Shchekinov, Y.; Bizyaev, D.; Bomans, D.; Dettmar, R.-J. The age of blue LSB galaxies. Astron. Astrophys. 2009, 505, 483–495. [Google Scholar] [CrossRef]
- Pickering, T.E.; Impey, C.D.; van Gorkom, J.H.; Bothun, G.D. Neutral Hydrogen Distributions and Kinematics of Giant Low Surface Brightness Disk Galaxies. Astron. J. 1997, 114, 1858. [Google Scholar] [CrossRef]
- Burkert, A. The structure and dark halo core properties of dwarf spheroidal galaxies. Astrophys. J. 2015, 808, 158. [Google Scholar] [CrossRef]
- Morelli, L.; Corsini, E.M.; Pizzella, A.; Dalla Bontà, E.; Coccato, L.; Méndez-Abreu, J.; Cesetti, M. Structure and Dynamics of Galaxies with a Low Surface-Brightness Disc—II. Stellar Populations of Bulges. Mon. Not. R. Astron. Soc. 2012, 423, 962–982. [Google Scholar] [CrossRef]
- Di Paolo, C.; Salucci, P.; Fontaine, J.P. The Radial Acceleration Relation (RAR): Crucial Cases of Dwarf Disks and Low-surface-brightness Galaxies. Astrophys. J. 2019, 873, 106. [Google Scholar] [CrossRef]
- Marchesini, D.; D’Onghia, E.; Chincarini, G.; Firmani, C.; Conconi, P.; Molinari, E.; Zacchei, A. Hα Rotation Curves: The Soft Core Question. Astrophys. J. 2002, 575, 801–813. [Google Scholar] [CrossRef]
- Swaters, R.A.; Madore, B.F.; van den Bosch, F.C.; Balcells, M. The Central Mass Distribution in Dwarf and Low Surface Brightness Galaxies. Astrophys. J. 2003, 583, 732–751. [Google Scholar] [CrossRef]
- Kuzio de Naray, R.; McGaugh, S.S.; de Blok, W.J.G.; Bosma, A. High-Resolution Optical Velocity Fields of 11 Low Surface Brightness Galaxies. Astrophys. J. Suppl. Ser. 2006, 165, 461–479. [Google Scholar] [CrossRef]
- Kuzio de Naray, R.; McGaugh, S.S.; de Blok, W.J.G. Mass Models for Low Surface Brightness Galaxies with High-Resolution Optical Velocity Fields. Astrophys. J. 2008, 676, 920–943. [Google Scholar] [CrossRef]
- Spano, M.; Marcelin, M.; Amram, P.; Carignan, C.; Epinat, B.; Hernandez, O. GHASP: An Hα kinematic survey of spiral and irregular galaxies—V. Dark matter distribution in 36 nearby spiral galaxies. Mon. Not. R. Astron. Soc. 2008, 383, 297–316. [Google Scholar] [CrossRef]
- Gentile, G.; Famaey, B.; Zhao, H.; Salucci, P. Universality of galactic surface densities within one dark halo scale-length. Nature 2009, 461, 627–628. [Google Scholar] [CrossRef]
- Plana, H.; Amram, P.; Mendes de Oliveira, C.; Balkowski, C. Mass distribution in hickson compact groups of galaxies. Astron. J. 2010, 139, 1–16. [Google Scholar] [CrossRef]
- Salucci, P.; Wilkinson, M.I.; Walker, M.G.; Gilmore, G.F.; Grebel, E.K.; Koch, A.; Frigerio Martins, C.; Wyse, R.F.G. Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws. Mon. Not. R. Astron. Soc. 2012, 420, 2034–2041. [Google Scholar] [CrossRef]
- Li, P.; Lelli, F.; McGaugh, S.; Starkman, N.; Schombert, J. A constant characteristic volume density of dark matter haloes from SPARC rotation curve fits. Mon. Not. R. Astron. Soc. 2019, 482, 5106–5124. [Google Scholar] [CrossRef]
- Chan, M. A universal constant for dark matter-baryon interplay. Sci. Rep. 2019, 9, 3570. [Google Scholar] [CrossRef]
- Moster, B.; Somerville, R.; Maulbetsch, C.; van den Bosch, F.; Macciò, A.; Naab, N.; Oser, L. Constraints on the relationship between stellar mass and halo mass at low and high redshift. Astrophys. J. 2010, 710, 903–923. [Google Scholar] [CrossRef]
- Moster, B.; Naab, T.; White, S. Galactic star formation and accretion histories from matching galaxies to dark matter haloes. Mon. Not. R. Astron. Soc. 2013, 428, 3121–3138. [Google Scholar] [CrossRef]
- Gammaldi, V.; Karukes, E.; Salucci, P. Theoretical predictions for dark matter detection in dwarf irregular galaxies with gamma rays. Phys. Rev. D 2018, 98, 083008. [Google Scholar] [CrossRef]
- Tonini, C.; Lapi, A.; Shankar, F.; Salucci, P. Measuring the Spin of Spiral Galaxies. Astrophys. J. 2006, 638, L13–L16. [Google Scholar] [CrossRef]
- Romanowsky, A.J.; Fall, S.M. Galaxy formation—Some comparisons between theory and observation. Astrophys. J. Suppl. Ser. 2012, 203, 17. [Google Scholar] [CrossRef]
- Mo, H.J.; Mao, S.; White, S.D.M. The formation of galactic discs. Mon. Not. R. Astron. Soc. 1998, 295, 319–336. [Google Scholar] [CrossRef]
- Barnes, J.; Efstathiou, G. Angular Momentum from Tidal Torques. Astrophys. J. 1987, 319, 575–600. [Google Scholar] [CrossRef]
- Bullock, J.S.; Dekel, A.; Kolatt, T.S.; Kravtsov, A.V.; Klypin, A.A.; Porciani, C.; Primack, J.R. A Universal Angular Momentum Profile for Galactic Halos. Astrophys. J. 2001, 555, 240–257. [Google Scholar] [CrossRef]
- Macciò, A.V.; Dutton, A.A.; van den Bosch, F.C.; Moore, B.; Potter, D.; Stadel, J. Concentration, spin and shape of dark matter haloes: Scatter and the dependence on mass and environment. Mon. Not. R. Astron. Soc. 2007, 378, 55–71. [Google Scholar] [CrossRef]
- Zjupa, J.; Springel, V. Angular momentum properties of haloes and their baryon content in the Illustris simulation. Mon. Not. R. Astron. Soc. 2017, 466, 1625–1647. [Google Scholar] [CrossRef]
- Peirani, S.; Mohayaee, R.; de Freitas Pacheco, J.A. The angular momentum of dark haloes: Merger and accretion effects. Mon. Not. R. Astron. Soc. 2004, 348, 921–931. [Google Scholar] [CrossRef]
- Fall, S. Galaxy formation—Some comparisons between theory and observation. In Internal Kinematics and Dynamics of Galaxies; Springer: Cham, Switzerland, 1983; Volume 391. [Google Scholar] [CrossRef]
- Shi, J.; Lapi, A.; Mancuso, C.; Wang, H.; Danese, L. Angular Momentum of Early- and Late-type Galaxies: Nature or Nurture? Astrophys. J. 2017, 843, 105. [Google Scholar] [CrossRef]
- McGaugh, S.; Lelli, F.; Schombert, J. Radial Acceleration Relation in Rotationally Supported Galaxies. Phys. Rev. Lett. 2016, 117, 201101. [Google Scholar] [CrossRef]
- Li, P.; Lelli, F.; McGaugh, S.; Schombert, J. Fitting the radial acceleration relation to individual SPARC galaxies. Astron. Astrophys. 2018, 615, A3. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. The Structure of Cold Dark Matter Halos. Astrophys. J. 1996, 462, 563. [Google Scholar] [CrossRef]
- Vegetti, S.; Despali, G.; Lovell, M.R.; Enzi, W. Constraining sterile neutrino cosmologies with strong gravitational lensing observations at redshift z ∼ 0.2. Mon. Not. R. Astron. Soc. 2018, 481, 3661–3669. [Google Scholar] [CrossRef]
- Merle, A. KeV sterile neutrino dark matter and neutrino model building. J. Phys. Conf. Ser. 2012, 375, 012047. [Google Scholar] [CrossRef]
- Merle, A. keV Neutrino Model Building. Int. J. Mod. Phys. D 2013, 22, 1330020. [Google Scholar] [CrossRef]
- Capela, F.; Pshirkov, M.; Tinyakov, P. Constraints on primordial black holes as dark matter candidates from capture by neutron stars. Phys. Rev. D 2013, 87, 123524. [Google Scholar] [CrossRef]
- Zumalacárregui, M.; Seljak, U. Limits on Stellar-Mass Compact Objects as Dark Matter from Gravitational Lensing of Type Ia Supernovae. Phys. Rev. Lett. 2018, 121, 141101. [Google Scholar] [CrossRef] [PubMed]
- Niikura, H.; Takada, M.; Yasuda, N.; Lupton, R.H.; Sumi, T.; More, S.; Kurita, T.; Sugiyama, S.; More, A.; Oguri, M.; et al. Microlensing constraints on primordial black holes with Subaru/HSC Andromeda observations. Nat. Astron. 2019, 3, 524–534. [Google Scholar] [CrossRef]
- Matthews, L.D.; van Driel, W.; Monnier-Ragaigne, D. HI observations of giant low surface brightness galaxies. Astron. Astrophys. 2001, 365, 1–10. [Google Scholar] [CrossRef]
- Bell, E.F.; Barnaby, D.; Bower, R.G.; De Jong, R.S.; Harper, J.D.A.; Hereld, M.; Loewenstein, R.F.; Rauscher, B.J. The star formation histories of low surface brightness galaxies. Mon. Not. R. Astron. Soc. 2000, 312, 470–496. [Google Scholar] [CrossRef]
- Mishra, A.; Kantharia, N.G.; Das, M. Giant Low Surface Brightness Galaxies. Bull. Soc. R. Sci. Liège 2018, 87, 365–370. [Google Scholar] [CrossRef]
- Dalcanton, J.; Spergel, D.N.; Summers, F. The Formation of Disk Galaxies. Astrophys. J. 1997, 482, 659–676. [Google Scholar] [CrossRef]
- Boissier, S.; Monnier Ragaigne, D.; van Driel, W.; Balkowski, C.; Prantzos, N. From spirals to low surface brightness galaxies. Astrophys. Space Sci. 2003, 284, 913–916. [Google Scholar] [CrossRef]
- Di Cintio, A.; Brook, C.; Macciò, A.; Dutton, A.; Cardona-Barrero, S. NIHAO XXI: The emergence of low surface brightness galaxies. Mon. Not. R. Astron. Soc. 2019, 486, 2535–2548. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salucci, P.; di Paolo, C. Fundamental Properties of the Dark and the Luminous Matter from the Low Surface Brightness Discs. Universe 2021, 7, 344. https://doi.org/10.3390/universe7090344
Salucci P, di Paolo C. Fundamental Properties of the Dark and the Luminous Matter from the Low Surface Brightness Discs. Universe. 2021; 7(9):344. https://doi.org/10.3390/universe7090344
Chicago/Turabian StyleSalucci, Paolo, and Chiara di Paolo. 2021. "Fundamental Properties of the Dark and the Luminous Matter from the Low Surface Brightness Discs" Universe 7, no. 9: 344. https://doi.org/10.3390/universe7090344
APA StyleSalucci, P., & di Paolo, C. (2021). Fundamental Properties of the Dark and the Luminous Matter from the Low Surface Brightness Discs. Universe, 7(9), 344. https://doi.org/10.3390/universe7090344