An Overview on the Nature of the Bounce in LQC and PQM
Abstract
:1. Introduction
2. Cosmological Quantum Dynamics
- The concept of probability to find a physical system into a given state is the “large numbers” limit of the frequency by which that state is registered in repeated experiments.
- The “measure” operation on a given quantum system must be performed by a classical (or better, quasi-classical) observer, who induces a “collapse” of the wave function into a specific eigenstate by physically interacting with the quantum environment.
- The information we receive from the quantum Universe in the Planck regime (mediated by the physics of the cosmic microwave background radiation (CMB)) is already a single classical determination of the quantum system, among all the possible ones.
- That information cannot be induced by a direct measurement on the primordial Universe, simply because it lives in our past light cone, and no physical interaction between our classical apparatus and the Planckian Universe can take place (even if we were able to detect photons directly emitted in the quantum phase).
2.1. The Isotropic Universe
2.2. Internal Clock
2.3. The Bianchi Universes
The Bianchi IX Model
3. Loop Quantum Cosmology
3.1. Loop Quantum Gravity
3.2. Standard Loop Quantum Cosmology
3.2.1. Classical Phase Space
3.2.2. Kinematics
3.2.3. Dynamics
- Singularity resolution: an initially semiclassical state remains sharply peaked around the classical trajectories and the expectation values of the Dirac observables are in good agreement with their classical counterparts for most of the evolution when coherent states are considered. However, when the matter density approaches a critical value, the state bounces from the expanding branch to a contracting one with the same value of , as shown in Figure 1. This occurs in every sector and for any choice of , universally solving the singularity by replacing the Big Bang with a Big Bounce.
- Critical density: the critical value of the matter density results in being inversely proportional to the expectation value and can, therefore, be made arbitrarily small by choosing a sufficiently large value for . This fact, besides being physically unreasonable because it could imply departures from the classical trajectories well away from the Planck regime, becomes even more problematic in the case of a closed model: the point of maximum expansion depends on as well. In order to have a bounce density comparable with that of Planck, a very small value is needed, but in that case, the Universe would never become big enough to be considered classical; on the other hand, a closed Universe that grows to become classical needs a large value of but would have a bounce density comparable with, for example, that of water.
3.3. Improved Loop Quantum Cosmology
- Singularity resolution: also in this case, the states remain sharply peaked throughout all the evolution, and the expectation values of the Dirac observables calculated on coherent states follow the classical trajectory up to a critical value of the energy density; when that value is approached, the states jump to a contracting branch and undergo a quantum bounce instead of following the classical trajectory into the singularity, as shown in Figure 2.
- Critical density: the real improvement of the new scheme is that the numerical value of the bounce density is independent of and is the same in all simulations, given by . The behavior of the energy density was also studied independently from the evolution of wave packets by analyzing the evolution of the density operator defined as follows:
3.4. Effective Dynamics
3.4.1. Effective Scheme
3.4.2. Effective Scheme
3.5. Loop Quantization of the Anisotropic Sector
3.5.1. Bianchi Type I
3.5.2. Bianchi Type II
3.5.3. Bianchi Type IX
3.6. Criticisms and Shortcomings of LQC
4. Polymer Cosmology
4.1. Polymer Quantum Mechanics
4.1.1. Polymer Kinematics
P-Polarization
Q-Polarization
4.1.2. Polymer Dynamics
4.2. Polymer Cosmology in the Ashtekar Variables
4.2.1. The FLRW Universe in the Ashtekar Variables
4.2.2. The Bianchi I Universe in the Ashtekar Variables
4.3. Polymer Cosmology in the Volume-like Variables
4.3.1. The FLRW Universe in the Volume Variables
4.3.2. The Bianchi I Model in the Anisotropic Volume Variables:
4.3.3. The Bianchi I Model in the Volume Variables:
4.4. Polymer Cosmology in the Misner-like Variables
4.4.1. The Bianchi IX Model in the Misner Variables
4.4.2. The Inhomogeneous Mixmaster Model in the Volume Variable
4.5. The Link between Polymer Quantum Mechanics and Loop Quantum Cosmology: Canonical Equivalence
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | In [45] it is shown that by combining the semiclassical solutions for with (125) we obtain that with slopes depending on the initial conditions on the motion. |
References
- DeWitt, B.S. Quantum theory of gravity. 1. The canonical theory. Phys. Rev. 1967, 160, 1113–1148. [Google Scholar] [CrossRef] [Green Version]
- DeWitt, B.S. Quantum theory of gravity. 2. The manifestly covariant theory. Phys. Rev. 1967, 162, 1195–1239. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum theory of gravity. 3. Applications of the covariant theory. Phys. Rev. 1967, 162, 1239–1256. [Google Scholar] [CrossRef]
- Kuchar, K.V. Canonical Quantum Gravity. arXiv 1993, arXiv:gr-qc/9304012. [Google Scholar]
- Ashtekar, A. New variables for classical and quantum gravity. Phys. Rev. Lett. 1986, 57, 2244–2247. [Google Scholar] [CrossRef]
- Rovelli, C.; Smolin, L. Loop space representation of quantum General Relativity. Nucl. Phys. B 1990, 331, 80–152. [Google Scholar] [CrossRef]
- Rovelli, C.; Smolin, L. Discreteness of area and volume in quantum gravity. Nucl. Phys. B 1995, 442, 593–619. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C.; Smolin, L. Spin networks and quantum gravity. Phys. Rev. D 1995, 52, 5743–5759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cianfrani, F.; Lecian, O.M.; Lulli, M.; Montani, G. Canonical Quantum Gravity: Fundamentals and Recent Developments; World Scientific: Singapore, 2014. [Google Scholar] [CrossRef]
- Hartle, J.B.; Hawking, S.W. Wave function of the Universe. Phys. Rev. D 1983, 28, 2960–2975. [Google Scholar] [CrossRef]
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C.; Vidotto, F. Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Rovelli, C. Quantum Gravity; Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar] [CrossRef]
- Montani, G.; Battisti, M.V.; Benini, R.; Imponente, G. Primordial Cosmology; World Scientific: Singapore, 2009. [Google Scholar]
- Cianfrani, F.; Montani, G. A critical analysis of the cosmological implementation of Loop Quantum Gravity. Mod. Phys. Lett. A 2012, 27, 1250032. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M. Critical evaluation of common claims in Loop Quantum Cosmology. Universe 2020, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Cianfrani, F.; Montani, G. Implications of the gauge-fixing in Loop Quantum Cosmology. Phys. Rev. D 2012, 85, 024027. [Google Scholar] [CrossRef] [Green Version]
- Corichi, A.; Vukašinac, T.; Zapata, J.A. Polymer Quantum Mechanics and its continuum limit. Phys. Rev. D 2007, 76, 044016. [Google Scholar] [CrossRef] [Green Version]
- Corichi, A.; Vukašinac, T.; Zapata, J.A.; Macias, A.; Lämmerzahl, C.; Camacho, A. On a Continuum Limit for Loop Quantum Cosmology. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2008. [Google Scholar] [CrossRef]
- Ashtekar, A.; Gupt, B. Generalized effective description of Loop Quantum Cosmology. Phys. Rev. D 2015, 92, 084060. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Vandersloot, K. Semiclassical states, effective dynamics, and classical emergence in Loop Quantum Cosmology. Phys. Rev. D 2005, 72, 084004. [Google Scholar] [CrossRef] [Green Version]
- Battisti, M.V.; Lecian, O.M.; Montani, G. Polymer quantum dynamics of the Taub Universe. Phys. Rev. D 2008, 78, 103514. [Google Scholar] [CrossRef] [Green Version]
- Battisti, M.V.; Lecian, O.M.; Montani, G. GUP vs polymer quantum cosmology: The Taub model. arXiv 2009, arXiv:0903.3836. [Google Scholar]
- Hossain, G.M.; Husain, V.; Seahra, S.S. Nonsingular inflationary Universe from polymer matter. Phys. Rev. D 2010, 81, 024005. [Google Scholar] [CrossRef] [Green Version]
- Lawrie, I.D. Time evolution in quantum cosmology. Phys. Rev. D 2011, 83, 043503. [Google Scholar] [CrossRef] [Green Version]
- Kreienbuehl, A.; Pawłowski, T. Singularity resolution from polymer quantum matter. Phys. Rev. D 2013, 88, 043504. [Google Scholar] [CrossRef] [Green Version]
- Lecian, O.M.; Montani, G.; Moriconi, R. Semiclassical and quantum behavior of the Mixmaster model in the polymer approach. Phys. Rev. D 2013, 88, 103511. [Google Scholar] [CrossRef] [Green Version]
- Cianfrani, F.; Montani, G.; Pittorino, F. Nonsingular cosmology from evolutionary quantum gravity. Phys. Rev. D 2014, 90, 103503. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.M.; Husain, V.; Seahra, S.S. Polymer inflation. Phys. Rev. D 2015, 91, 065006. [Google Scholar] [CrossRef] [Green Version]
- Moriconi, R.; Montani, G.; Capozziello, S. Big Bounce cosmology from quantum gravity: The case of a cyclical Bianchi I Universe. Phys. Rev. D 2016, 94, 023519. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.M.; Husain, V. Semiclassical cosmology with polymer matter. Class. Quantum Gravity 2017, 34, 084003. [Google Scholar] [CrossRef] [Green Version]
- Moriconi, R.; Montani, G. Behavior of the Universe anisotropy in a Big Bounce cosmology. Phys. Rev. D 2017, 95, 123533. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Seahra, S.S. Natural inflation from polymer quantization. Phys. Rev. D 2017, 96, 103524. [Google Scholar] [CrossRef] [Green Version]
- Crinò, C.; Montani, G.; Pintaudi, G. Semiclassical and quantum behavior of the Mixmaster model in the polymer approach for the isotropic Misner variable. Eur. Phys. J. C 2018, 78, 886. [Google Scholar] [CrossRef]
- Montani, G.; Marchi, A.; Moriconi, R. Bianchi I model as a prototype for a cyclical Universe. Phys. Lett. B 2018, 777, 191–200. [Google Scholar] [CrossRef]
- Ben Achour, J.; Livine, E.R. Polymer quantum cosmology: Lifting quantization ambiguities using a SL(2,R) conformal symmetry. Phys. Rev. D 2019, 99, 126013. [Google Scholar] [CrossRef] [Green Version]
- Montani, G.; Mantero, C.; Bombacigno, F.; Cianfrani, F.; Barca, G. Semiclassical and quantum analysis of the isotropic Universe in the polymer paradigm. Phys. Rev. D 2019, 99, 063534. [Google Scholar] [CrossRef] [Green Version]
- Antonini, S.; Montani, G. Singularity-free and non-chaotic inhomogeneous Mixmaster in polymer representation for the volume of the Universe. Phys. Lett. B 2019, 790, 475–483. [Google Scholar] [CrossRef]
- Barca, G.; Di Antonio, P.; Montani, G.; Patti, A. Semiclassical and quantum polymer effects in a flat isotropic Universe. Phys. Rev. D 2019, 99, 123509. [Google Scholar] [CrossRef] [Green Version]
- Cascioli, V.; Montani, G.; Moriconi, R. WKB approximation for the polymer quantization of the Taub model. arXiv 2020, arXiv:1903.09417. [Google Scholar]
- Achour, J.B.; Livine, E. Protected SL(2,R) symmetry in quantum cosmology. J. Cosmol. Astropart. Phys. 2019, 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Giovannetti, E.; Montani, G. Polymer representation of the Bianchi IX cosmology in the Misner variables. Phys. Rev. D 2019, 100, 104058. [Google Scholar] [CrossRef] [Green Version]
- Campolongo, A.; Montani, G. Specific entropy as a clock for the evolutionary quantization of the isotropic Universe. Eur. Phys. J. C 2020, 80, 983. [Google Scholar] [CrossRef]
- Mandini, F.; Barca, G.; Giovannetti, E.; Montani, G. Polymer quantum dynamics of the isotropic Universe in the Ashtekar-Barbero-Immirzi and in the volume variables. arXiv 2021, arXiv:2006.10614. [Google Scholar]
- Giovannetti, E.; Montani, G.; Schiattarella, S. Semiclassical and quantum features of the Bianchi I cosmology in the polymer representation. arXiv 2021, arXiv:2105.00360. [Google Scholar]
- Bojowald, M. Loop Quantum Cosmology. Living Rev. Relativ. 2005, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum nature of the Big Bang. Phys. Rev. Lett. 2006, 96, 141301. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum nature of the Big Bang: An analytical and numerical investigation. Phys. Rev. D 2006, 73, 124038. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum nature of the Big Bang: Improved dynamics. Phys. Rev. D 2006, 74, 084003. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Corichi, A.; Singh, P. Robustness of key features of Loop Quantum Cosmology. Phys. Rev. D 2008, 77, 024046. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Singh, P. Loop Quantum Cosmology: A status report. Class. Quantum Gravity 2011, 28, 213001. [Google Scholar] [CrossRef] [Green Version]
- Battefeld, D.; Peter, P. A critical review of classical bouncing cosmologies. Phys. Rep. 2015, 571, 1–66. [Google Scholar] [CrossRef] [Green Version]
- Brandenberger, R.; Peter, P. Bouncing cosmologies: Progress and problems. Found. Phys. 2017, 47, 797–850. [Google Scholar] [CrossRef] [Green Version]
- Misner, C.W. Quantum Cosmology. I. Phys. Rev. 1969, 186, 1319–1327. [Google Scholar] [CrossRef]
- Imponente, G.; Montani, G. Inhomogeneous de Sitter solution with scalar field and perturbations spectrum. Mod. Phys. Lett. A 2004, 19, 1281–1290. [Google Scholar] [CrossRef] [Green Version]
- Imponente, G.; Montani, G. Classical and quantum behavior of the generic cosmological solution. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Benini, R.; Montani, G. Frame independence of the inhomogeneous Mixmaster chaos via Misner-Chitré-like variables. Phys. Rev. D 2004, 70, 103527. [Google Scholar] [CrossRef] [Green Version]
- Benini, R.; Montani, G. Inhomogeneous quantum Mixmaster: From classical towards quantum mechanics. Class. Quantum Gravity 2006, 24, 387–404. [Google Scholar] [CrossRef]
- Benini, R.; Montani, G. Covariant description of the inhomogeneous Mixmaster chaos. In Proceedings of the XI Marcel Grossmann meeting on Relativistic Astrophysics, Berlin, Germany, 23–29 July 2006. [Google Scholar] [CrossRef] [Green Version]
- Benini, R.; Montani, G. Classical and quantum aspects of the inhomogeneous Mixmaster chaoticity. In Proceedings of the MG11 Meeting on General Relativity, Berlin, Germany, 23–29 July 2006. [Google Scholar] [CrossRef] [Green Version]
- Kirillov, A.A. Quantum creation of quasihomogeneous inflationary Universe. Grav. Cosmol. 1996, 2, 35–37. [Google Scholar]
- Kirillov, A.A.; Montani, G. Quasi-isotropization of the inhomogeneous Mixmaster Universe induced by an inflationary process. Phys. Rev. D 2002, 66, 064010. [Google Scholar] [CrossRef] [Green Version]
- Graham, R. Chaos and quantum chaos in cosmological models. Chaos Solitons Fractals 1995, 5, 1103–1122. [Google Scholar] [CrossRef] [Green Version]
- Vilenkin, A. The interpretation of the wave function of the Universe. Phys. Rev. D 1989, 39, 1116. [Google Scholar] [CrossRef] [PubMed]
- Blyth, W.F.; Isham, C.J. Quantization of a Friedmann Universe filled with a scalar field. Phys. Rev. D 1975, 11, 768–778. [Google Scholar] [CrossRef]
- Arnowitt, R.; Deser, S.; Misner, C.W. Canonical variables for General Relativity. Phys. Rev. 1959, 117, 6. [Google Scholar] [CrossRef] [Green Version]
- Matschull, H.J. Dirac’s Canonical Quantization Program. arXiv 1996, arXiv:quant-ph/9606031. [Google Scholar]
- Cianfrani, F.; Lulli, M.; Montani, G. Solution of the noncanonicity puzzle in General Relativity: A new Hamiltonian formulation. Phys. Lett. B 2012, 710, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. Cosmology; Oxford University Press: Oxford, UK, 2008. [Google Scholar]
- Kolb, E.W.; Turner, M.S. The Early Universe; CRC Press: Boca Raton, FL, USA, 1990; Volume 69. [Google Scholar]
- Misner, C.W. Mixmaster Universe. Phys. Rev. Lett. 1969, 22, 1071–1074. [Google Scholar] [CrossRef]
- Szulc, L.; Kaminski, W.; Lewandowski, J. Closed Friedmann–Robertson–Walker model in Loop Quantum Cosmology. Class. Quantum Gravity 2007, 24, 2621–2635. [Google Scholar] [CrossRef]
- Ashtekar, A.; Pawlowski, T.; Singh, P.; Vandersloot, K. Loop Quantum Cosmology of K=1 FRW models. Phys. Rev. D 2007, 75, 024035. [Google Scholar] [CrossRef] [Green Version]
- Pawłowski, T.; Pierini, R.; Wilson-Ewing, E. Loop Quantum Cosmology of a radiation-dominated flat FLRW Universe. Phys. Rev. D 2014, 90, 123538. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M. Homogeneous Loop Quantum Cosmology. Class. Quantum Gravity 2003, 20, 2595–2615. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M.; Date, G.; Vandersloot, K. Homogeneous Loop Quantum Cosmology: The role of the spin connection. Class. Quantum Gravity 2004, 21, 1253–1278. [Google Scholar] [CrossRef]
- Bojowald, M.; Date, G. Quantum suppression of the generic chaotic behavior close to cosmological singularities. Phys. Rev. Lett. 2004, 92, 071302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bojowald, M.; Date, G.; Hossain, G.M. The Bianchi IX model in Loop Quantum Cosmology. Class. Quantum Gravity 2004, 21, 3541–3569. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Wilson-Ewing, E. Loop Quantum Cosmology of Bianchi type I models. Phys. Rev. D 2009, 79, 083535. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Wilson-Ewing, E. Loop Quantum Cosmology of Bianchi type II models. Phys. Rev. D 2009, 80, 123532. [Google Scholar] [CrossRef] [Green Version]
- Wilson-Ewing, E. Loop Quantum Cosmology of Bianchi type IX models. Phys. Rev. D 2010, 82, 043508. [Google Scholar] [CrossRef] [Green Version]
- Martín-Benito, M.; Garay, L.J.; Mena Marugán, G.A.; Wilson-Ewing, E. Loop Quantum Cosmology of the Bianchi I model: Complete quantization. J. Phys. Conf. Ser. 2012, 360, 012031. [Google Scholar] [CrossRef] [Green Version]
- Garay, L.J.; Martín-Benito, M.; Mena Marugán, G. Inhomogeneous Loop Quantum Cosmology: Hybrid quantization of the Gowdy model. Phys. Rev. D 2010, 82, 044048. [Google Scholar] [CrossRef] [Green Version]
- Wilson-Ewing, E. Anisotropic Loop Quantum Cosmology with self-dual variables. Phys. Rev. D 2016, 93, 083502. [Google Scholar] [CrossRef] [Green Version]
- Corichi, A.; Karami, A. Loop Quantum Cosmology of Bianchi IX: Inclusion of inverse triad corrections. Int. J. Mod. Phys. D 2016, 25, 1642011. [Google Scholar] [CrossRef] [Green Version]
- Wilson-Ewing, E. A quantum gravity extension to the Mixmaster dynamics. Class. Quantum Gravity 2019, 36, 195002. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Lewandowski, J.; Marolf, D.; Mourão, J.; Thiemann, T. Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. J. Math. Phys. 1995, 36, 6456–6493. [Google Scholar] [CrossRef] [Green Version]
- Thiemann, T. Quantum Spin Dynamics (QSD). Class. Quantum Gravity 1998, 15, 839–873. [Google Scholar] [CrossRef] [Green Version]
- Thiemann, T. Quantum Spin Dynamics (QSD): II. The kernel of the Wheeler - DeWitt constraint operator. Class. Quantum Gravity 1998, 15, 875–905. [Google Scholar] [CrossRef]
- Ashtekar, A.; Lewandowski, J. Quantum theory of geometry. I. Area operators. Class. Quantum Gravity 1997, 14, A55–A81. [Google Scholar] [CrossRef]
- Ashtekar, A.; Lewandowski, J. Quantum theory of geometry. II. Volume operators. Adv. Theor. Math. Phys. 1998, 1, 388–429. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Pullin, J. Loop Quantum Gravity: The First 30 Years; World Scientific Publishing Co. Pte Ltd.: Singapore, 2017. [Google Scholar]
- Ashtekar, A.; Bianchi, E. A short review of Loop Quantum Gravity. Rep. Prog. Phys. 2021, 84, 042001. [Google Scholar] [CrossRef] [PubMed]
- Ashtekar, A. New Hamiltonian formulation of General Relativity. Phys. Rev. D 1987, 36, 1587–1602. [Google Scholar] [CrossRef] [PubMed]
- Thiemann, T. Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity. Phys. Lett. B 1996, 380, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Haro, J.; Elizalde, E. Loop Cosmology: Regularization vs. quantization. Europhys. Lett. 2010, 89, 69001. [Google Scholar] [CrossRef]
- Zhang, X. Thermodynamics in new model of Loop Quantum Cosmology. Eur. Phys. J. C 2021, 81, 117. [Google Scholar] [CrossRef]
- Li, L.F.; Zhu, J.Y. Thermodynamics in Loop Quantum Cosmology. Adv. High Energy Phys. 2009, 2009, 905705. [Google Scholar] [CrossRef]
- Agullo, I.; Ashtekar, A.; Nelson, W. Quantum gravity extension of the inflationary scenario. Phys. Rev. Lett. 2012, 109, 251301. [Google Scholar] [CrossRef] [Green Version]
- Linsefors, L.; Barrau, A. Duration of inflation and conditions at the Bounce as a prediction of effective isotropic Loop Quantum Cosmology. Phys. Rev. D 2013, 87, 123509. [Google Scholar] [CrossRef] [Green Version]
- Linsefors, L.; Barrau, A. Exhaustive investigation of the duration of inflation in effective anisotropic Loop Quantum Cosmology. Class. Quantum Gravity 2015, 32, 035010. [Google Scholar] [CrossRef] [Green Version]
- Bolliet, B.; Barrau, A.; Martineau, K.; Moulin, F. Some clarifications on the duration of inflation in Loop Quantum Cosmology. Class. Quantum Gravity 2017, 34, 145003. [Google Scholar] [CrossRef] [Green Version]
- Martineau, K.; Barrau, A.; Schander, S. Detailed investigation of the duration of inflation in Loop Quantum Cosmology for a Bianchi I Universe with different inflaton potentials and initial conditions. Phys. Rev. D 2017, 95, 083507. [Google Scholar] [CrossRef] [Green Version]
- Assanioussi, M.; Dapor, A.; Liegener, K.; Pawłowski, T. Emergent de Sitter epoch of the loop quantum cosmos: A detailed analysis. Phys. Rev. D 2019, 100, 084003. [Google Scholar] [CrossRef] [Green Version]
- Linsefors, L.; Cailleteau, T.; Barrau, A.; Grain, J. Primordial tensor power spectrum in holonomy corrected Omega-LQC. Phys. Rev. D 2013, 87, 107503. [Google Scholar] [CrossRef] [Green Version]
- Barrau, A.; Bojowald, M.; Calcagni, G.; Grain, J.; Kagan, M. Anomaly-free cosmological perturbations in effective Canonical Quantum Gravity. J. Cosmol. Astropart. Phys. 2015, 2015, 51. [Google Scholar] [CrossRef] [Green Version]
- Agullo, I.; Ashtekar, A.; Nelson, W. The pre-inflationary dynamics of Loop Quantum Cosmology: Confronting quantum gravity with observations. Class. Quantum Gravity 2013, 30, 085014. [Google Scholar] [CrossRef] [Green Version]
- Schander, S.; Barrau, A.; Bolliet, B.; Linsefors, L.; Mielczarek, J.; Grain, J. Primordial scalar power spectrum from the Euclidean Big Bounce. Phys. Rev. D 2016, 93, 023531. [Google Scholar] [CrossRef] [Green Version]
- Martineau, K.; Barrau, A.; Grain, J. A first step towards the inflationary trans-Planckian problem treatment in Loop Quantum Cosmology. Int. J. Mod. Phys. D 2018, 27, 1850067. [Google Scholar] [CrossRef] [Green Version]
- Barrau, A.; Jamet, P.; Martineau, K.; Moulin, F. Scalar spectra of primordial perturbations in Loop Quantum Cosmology. Phys. Rev. D 2018, 98, 086003. [Google Scholar] [CrossRef] [Green Version]
- Taveras, V. Corrections to the Friedmann equations from Loop Quantum Gravity for a Universe with a free scalar field. Phys. Rev. D 2008, 78, 064072. [Google Scholar] [CrossRef] [Green Version]
- Kasner, E. Geometrical theorems on Einstein’s cosmological equations. Am. J. Math. 1921, 43, 217–221. [Google Scholar] [CrossRef]
- Belinski, V.A.; Khalatnikov, I.M. Effects of scalar and vector fields on the nature of the cosmological singularity. Sov. Phys. JETP 1973, 36, 591. [Google Scholar]
- Bojowald, M. Consistent Loop Quantum Cosmology. Class. Quantum Gravity 2009, 26, 075020. [Google Scholar] [CrossRef]
- Alesci, E.; Cianfrani, F. A new perspective on cosmology in Loop Quantum Gravity. EPL Europhys. Lett. 2013, 104, 10001. [Google Scholar] [CrossRef] [Green Version]
- Alesci, E.; Cianfrani, F. Loop Quantum Cosmology from Loop Quantum Gravity. arXiv 2014, arXiv:1410.4788. [Google Scholar] [CrossRef]
- Alesci, E.; Cianfrani, F. Quantum Reduced Loop Gravity and the foundation of Loop Quantum Cosmology. Int. J. Mod. Phys. D 2016, 25, 1642005. [Google Scholar] [CrossRef] [Green Version]
- Alesci, E.; Botta, G.; Cianfrani, F.; Liberati, S. Cosmological singularity resolution from quantum gravity: The emergent-bouncing Universe. Phys. Rev. D 2017, 96, 046008. [Google Scholar] [CrossRef] [Green Version]
- Alesci, E.; Barrau, A.; Botta, G.; Martineau, K.; Stagno, G. Phenomenology of Quantum Reduced Loop Gravity in the isotropic cosmological sector. Phys. Rev. D 2018, 98, 106022. [Google Scholar] [CrossRef] [Green Version]
- Alesci, E.; Botta, G.; Luzi, G.; Stagno, G.V. Bianchi I effective dynamics in Quantum Reduced Loop Gravity. Phys. Rev. D 2019, 99, 106009. [Google Scholar] [CrossRef] [Green Version]
- Gielen, S.; Oriti, D. Quantum cosmology from quantum gravity condensates: Cosmological variables and lattice-refined dynamics. New J. Phys. 2014, 16, 123004. [Google Scholar] [CrossRef] [Green Version]
- Oriti, D.; Sindoni, L.; Wilson-Ewing, E. Emergent Friedmann dynamics with a quantum bounce from quantum gravity condensates. Class. Quantum Gravity 2016, 33, 224001. [Google Scholar] [CrossRef] [Green Version]
- Oriti, D.; Sindoni, L.; Wilson-Ewing, E. Bouncing cosmologies from quantum gravity condensates. Class. Quantum Gravity 2017, 34, 04LT01. [Google Scholar] [CrossRef]
- Oriti, D. The Universe as a quantum gravity condensate. C. R. Phys. 2017, 18, 235–245. [Google Scholar] [CrossRef]
- Gerhardt, F.; Oriti, D.; Wilson-Ewing, E. Separate Universe framework in Group Field Theory condensate cosmology. Phys. Rev. D 2018, 98, 066011. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A. Polymer geometry at Planck scale and quantum Einstein equations. Int. J. Mod. Phys. D 1996, 5, 629–648. [Google Scholar] [CrossRef] [Green Version]
- Corichi, A.; Vukašinac, T.; Zapata, J.A. Hamiltonian and physical Hilbert space in Polymer Quantum Mechanics. Class. Quantum Gravity 2007, 24, 1495–1511. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M.; Brizuela, D.; Hernández, H.H.; Koop, M.J.; Morales-Técotl, H.A. High-order quantum back-reaction and quantum cosmology with a positive cosmological constant. Phys. Rev. D 2011, 84, 043514. [Google Scholar] [CrossRef] [Green Version]
- Szulc, L. Loop Quantum Cosmology of diagonal Bianchi type I model: Simplifications and scaling problems. Phys. Rev. D 2008, 78, 064035. [Google Scholar] [CrossRef] [Green Version]
- Belinskii, V.; Khalatnikov, I.; Lifshitz, E. A general solution of the Einstein equations with a time singularity. Adv. Phys. 1982, 31, 639–667. [Google Scholar] [CrossRef]
- Cianfrani, F.; Montani, G.; Muccino, M. Semiclassical isotropization of the Universe during a de Sitter phase. Phys. Rev. D 2010, 82, 103524. [Google Scholar] [CrossRef] [Green Version]
- Grain, J.; Vennin, V. Unavoidable shear from quantum fluctuations in contracting cosmologies. Eur. Phys. J. C 2021, 81, 132. [Google Scholar] [CrossRef]
- Lyth, D.H. The primordial curvature perturbation in the ekpyrotic Universe. Phys. Lett. B 2002, 524, 1–4. [Google Scholar] [CrossRef]
- Khoury, J.; Ovrut, B.A.; Steinhardt, P.J.; Turok, N. Density perturbations in the ekpyrotic scenario. Phys. Rev. D 2002, 66, 046005. [Google Scholar] [CrossRef] [Green Version]
- Khoury, J.; Ovrut, B.A.; Seiberg, N.; Steinhardt, P.J.; Turok, N. From Big Crunch to Big Bang. Phys. Rev. D 2002, 65, 086007. [Google Scholar] [CrossRef] [Green Version]
- Steinhardt, P.J.; Turok, N. The cyclic Universe: An informal introduction. Nucl. Phys. B Proc. Suppl. 2003, 124, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Brandenberger, R.H. Unconventional Cosmology. In Quantum Gravity and Quantum Cosmology; Calcagni, G., Papantonopoulos, L., Siopsis, G., Tsamis, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 333–374. [Google Scholar] [CrossRef] [Green Version]
- Alexander, S.; Cormack, S.; Gleiser, M. A cyclic Universe approach to fine tuning. Phys. Lett. B 2016, 757, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Clifton, T.; Barrow, J.D. Ups and downs of cyclic Universes. Phys. Rev. D 2007, 75, 043515. [Google Scholar] [CrossRef] [Green Version]
- Barrow, J.D.; Ganguly, C. Cyclic Mixmaster Universes. Phys. Rev. D 2017, 95, 083515. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barca, G.; Giovannetti, E.; Montani, G. An Overview on the Nature of the Bounce in LQC and PQM. Universe 2021, 7, 327. https://doi.org/10.3390/universe7090327
Barca G, Giovannetti E, Montani G. An Overview on the Nature of the Bounce in LQC and PQM. Universe. 2021; 7(9):327. https://doi.org/10.3390/universe7090327
Chicago/Turabian StyleBarca, Gabriele, Eleonora Giovannetti, and Giovanni Montani. 2021. "An Overview on the Nature of the Bounce in LQC and PQM" Universe 7, no. 9: 327. https://doi.org/10.3390/universe7090327
APA StyleBarca, G., Giovannetti, E., & Montani, G. (2021). An Overview on the Nature of the Bounce in LQC and PQM. Universe, 7(9), 327. https://doi.org/10.3390/universe7090327