Extension of M Dwarf Spectra Based on Adversarial AutoEncoder
Abstract
:1. Introduction
- We used AAE to generate spectral data, and the model performed well with various kinds of spectral data, providing new ideas for the generation of spectral data.
- From a qualitative and quantitative perspective, we proved the high quality of the generated spectra and the effectiveness and robustness of the AAE.
- Our work provides a new direction for the combination of astronomy and machine learning.
2. Method
2.1. Reconstruction Stage
2.2. Regularization Stage
Algorithm 1 Adversarial AutoEncoder Training Strategy. |
Input: Target spectral data ; |
Output: Spectrum generated by AAE; |
1: for do |
2: for each mini-batch do |
Reconstruction phase: |
3: Encoding to by Q; |
4: Decoding to by P; |
5: compute Reconstruction loss between and as Equation (1) and update the |
encoder and decode; |
Regularization phase: |
6: Randomly choose vectors from a Gaussian distribution as true data |
7: Generate vectors from as false data by Generator G (same as Encoder P) |
8: Combine and as training data Z; |
9: Discriminating Z and compute Regularization loss as Equations (2) and (3), then |
update Discriminator D and Generator G; |
10: end for |
11: end for |
Generate data: |
12: Randomly choose vectors from a Gaussian distribution |
13: Use Encoder Q as Generator transforms to as generate data |
14: return |
2.3. Visualization of Dimensionality Reduction
3. Experiment
3.1. Spectra Acquisition and Preprocessing
- Discard all the spectral data with a signal-to-noise ratio < 5.
- The uniform wavelength range is 3800–9000 Å, and the sampling points for each sample data is 3522.
- Normalize each sampling point of the sample data, as shown in Equation (7). The range is [0, 1].
3.2. Spectra Generation
3.3. Qualitative Experiment
3.4. Quantitative Experiment
3.4.1. Evaluation Protocol
3.4.2. Quantitative Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | https://dr15.sdss.org/, accessed on 13 March 2021 |
References
- Welther, B.L. Discoveries, Achievements, and Personalities of the Women Who Evolved the Harvard Classification of Stellar Spectra: Williamina Fleming, Antonia Maury, and Annie Jump Cannon. Available online: https://ui.adsabs.harvard.edu/abs/2010AAS...21520004W/abstract (accessed on 31 August 2021).
- Gray, R.O.; Corbally, C.J. Stellar Spectral Classification; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Fischer, D.A.; Marcy, G.W. Multiplicity among M Dwarfs. Astrophys. J. 1992, 396, 178. [Google Scholar] [CrossRef]
- Bessell, M.S. The Late M Dwarfs. Astron. J. 1991, 101, 662. [Google Scholar] [CrossRef]
- Yanny, B.; Rockosi, C.; Newberg, H.J.; Knapp, G.R.; Adelman-McCarthy, J.K.; Alcorn, B.; Allam, S.; Allende Prieto, C.; An, D.; Anderson, K.S.J.; et al. SEGUE: A Spectroscopic Survey of 240,000 Stars with g = 14–20. Astron. J. 2009, 137, 4377–4399. [Google Scholar] [CrossRef] [Green Version]
- Blanton, M.R.; Bershady, M.A.; Abolfathi, B.; Albareti, F.D.; Allende Prieto, C.; Almeida, A.; Alonso-García, J.; Anders, F.; Anderson, S.F.; Andrews, B.; et al. Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe. Astron. J. 2017, 154, 28. [Google Scholar] [CrossRef]
- Cui, X.Q.; Zhao, Y.H.; Chu, Y.Q.; Li, G.P.; Li, Q.; Zhang, L.P.; Su, H.J.; Yao, Z.Q.; Wang, Y.N.; Xing, X.Z.; et al. The large sky area multi-object fiber spectroscopic telescope (LAMOST). Res. Astron. Astrophys. 2012, 12, 1197. [Google Scholar] [CrossRef]
- Zhao, G.; Zhao, Y.H.; Chu, Y.Q.; Jing, Y.P.; Deng, L.C. LAMOST spectral survey — An overview. Res. Astron. Astrophys. 2012, 12, 723–734. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2014, arXiv:1312.6114. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. arXiv 2014, arXiv:1406.2661. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Lucic, M.; Kurach, K.; Michalski, M.; Gelly, S.; Bousquet, O. Are gans created equal? A large-scale study. arXiv 2017, arXiv:1711.10337. [Google Scholar]
- Ledig, C.; Theis, L.; Huszar, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. Available online: https://openaccess.thecvf.com/content_cvpr_2017/papers/Ledig_Photo-Realistic_Single_Image_CVPR_2017_paper.pdf (accessed on 31 August 2021).
- Gui, J.; Sun, Z.; Wen, Y.; Tao, D.; Ye, J. A review on generative adversarial networks: Algorithms, theory, and applications. arXiv 2020, arXiv:2001.06937. [Google Scholar]
- Makhzani, A.; Shlens, J.; Jaitly, N.; Goodfellow, I.; Frey, B. Adversarial autoencoders. arXiv 2015, arXiv:1511.05644. [Google Scholar]
- Ke, N.Y.; Sukthankar, R. PCA-SIFT: A more distinctive representation for local image descriptors. In Proceedings of the IEEE Computer Society Conference on Computer Vision & Pattern Recognition, Washington, DC, USA, 27 June–2 July 2004. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of the International Conference on Machine Learning (PMLR), Sydney, Australia, 6–11 August 2017; pp. 214–223. [Google Scholar]
- Almahairi, A.; Rajeswar, S.; Sordoni, A.; Bachman, P.; Courville, A. Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018. [Google Scholar]
Encoder | |||
---|---|---|---|
Layer | Input Shape | Output Shape | Activation Function |
Input | (20, 3522) | (20, 1024) | - |
Linear | (20, 1024) | (20, 512) | ReLU |
BatchNorm1d | (20, 512) | (20, 512) | - |
Linear | (20, 512) | (20, 256) | ReLU |
BatchNorm1d | (20, 256) | (20, 256) | - |
Linear | (20, 256) | (20, 128) | ReLU |
BatchNorm1d | (20, 128) | (20, 128) | - |
Output | (20, 128) | (20, 32) | - |
Decoder | |||
Layer | Input Shape | Output Shape | Activation Function |
Input | (20, 32) | (20, 128) | - |
Linear | (20, 128) | (20, 256) | ReLU |
BatchNorm1d | (20, 256) | (20, 256) | - |
Linear | (20, 256) | (20, 512) | ReLU |
BatchNorm1d | (20, 512) | (20, 512) | - |
Linear | (20, 512) | (20, 1024) | ReLU |
BatchNorm1d | (20, 1024) | (20, 1024) | - |
Output | (20, 1024) | (20, 3522) | - |
Discriminator | |||
Layer | Input Shape | Output Shape | Activation Function |
Linear | (20, 3522) | (20, 128) | ReLU |
Linear | (20, 128) | (20, 1) | Sigmoid |
Type | 5–10 (SNR) | 10–15 (SNR) | Up15 (SNR) |
---|---|---|---|
M0 | 2850 | 1503 | 2023 |
M1 | 1919 | 1025 | 1134 |
M2 | 3300 | 1745 | 1343 |
M3 | 3105 | 1055 | 1170 |
M4 | 1658 | 779 | 603 |
M5 | 334 | 137 | 82 |
M6 | 86 | 21 | 20 |
Classifier | |||
---|---|---|---|
Layer | Input Shape | Output Shape | Activation Function |
Input | (1, 3522) | (20, 1000) | ReLU |
Linear | (1, 1000) | (1, 200) | ReLU |
Linear | (1, 200) | (1, 50) | ReLU |
Output | (1, 50) | (1, 7) | Softmax |
Data Type | AAE | ||
---|---|---|---|
P | R | F | |
m0 | 1.000 | 1.000 | 1.000 |
m1 | 99.95 | 99.92 | 99.94 |
m2 | 99.91 | 99.95 | 99.93 |
m3 | 99.99 | 99.85 | 99.92 |
m4 | 97.63 | 99.85 | 98.73 |
m5 | 74.65 | 95.46 | 83.78 |
m6 | 96.73 | 67.69 | 79.64 |
macro avg | 95.55 | 94.67 | 94.56 |
weighted avg | 95.55 | 94.67 | 94.56 |
Data Type | Ori | AAE | ||||
---|---|---|---|---|---|---|
P | R | F | P | R | F | |
m0 | 97.91 | 98.23 | 98.07 | 98.07 | 98.01 | 98.04 |
m1 | 95.55 | 94.89 | 95.22 | 95.34 | 95.12 | 95.23 |
m2 | 96.64 | 96.16 | 96.40 | 96.85 | 96.16 | 96.50 |
m3 | 95.41 | 95.91 | 95.66 | 95.35 | 96.04 | 95.70 |
m4 | 95.06 | 94.81 | 94.94 | 94.80 | 94.55 | 94.68 |
m5 | 84.42 | 92.86 | 88.44 | 85.91 | 91.43 | 88.58 |
m6 | 87.50 | 65.62 | 75.00 | 77.42 | 75.00 | 76.19 |
macro avg | 93.21 | 91.21 | 91.96 | 91.96 | 92.33 | 92.13 |
weighted avg | 96.07 | 96.06 | 96.05 | 96.07 | 96.06 | 96.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Wang, X.; Li, B.; Chen, Y.; Jiang, B. Extension of M Dwarf Spectra Based on Adversarial AutoEncoder. Universe 2021, 7, 326. https://doi.org/10.3390/universe7090326
Wei J, Wang X, Li B, Chen Y, Jiang B. Extension of M Dwarf Spectra Based on Adversarial AutoEncoder. Universe. 2021; 7(9):326. https://doi.org/10.3390/universe7090326
Chicago/Turabian StyleWei, Jiyu, Xingzhu Wang, Bo Li, Yuze Chen, and Bin Jiang. 2021. "Extension of M Dwarf Spectra Based on Adversarial AutoEncoder" Universe 7, no. 9: 326. https://doi.org/10.3390/universe7090326
APA StyleWei, J., Wang, X., Li, B., Chen, Y., & Jiang, B. (2021). Extension of M Dwarf Spectra Based on Adversarial AutoEncoder. Universe, 7(9), 326. https://doi.org/10.3390/universe7090326