Metric-Affine Version of Myrzakulov F(R,T,Q, ) Gravity and Cosmological Applications
Abstract
:1. Introduction
2. Conventions/Notation
3. Cosmology with Torsion and Non-Metricity
4. MG-VIII Model and Extension: The Theories
5. Cosmological Applications
5.1. The Cosmology of Theory
5.2. Scalar Field Coupled to Torsion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
- 1From here onwards, we shall use the tilde notation in order to denote Riemannian objects, that is, objects computed with respect to the Levi-Civita connection .
- 2Note that we define the combination of the torsion scalar in the usual way so as to obtain the usual teleparallel equivalent of GR. As a generalization, one could consider an arbitrary linear combination of the three independent torsion scalars connected with the three irreducible components of the torsion (see, for instance, [47]).
- 3Here, we are using the conventions of [16].
- 5Here is the trace of the canonical energy-momentum tensor .
- 6If we considered a quadratic contribution , we would have the additional terms on the right-hand side of the metric field equations. These terms would then have an interesting impact in the cosmological setup we consider below, however, a detailed discussion goes beyond the purpose of this study and will be pursued elsewhere.
- 7Of course, this is so because of the connection coupling which yields a non-vanishing hypermomentum. If no such coupling is included, the scalar field can neither feel nor produce torsion.
References
- Will, C.M. The confrontation between general relativity and experiment. Living Rev. Relativ. 2014, 17, 1–117. [Google Scholar] [CrossRef] [Green Version]
- Saridakis, E.N.; Lazkoz, R.; Salzano, V.; Moniz, P.V.; Capozziello, S.; Jiménez, J.B.; De Laurentis, M.; Olmo, G.J.; Akrami, Y.; Bahamonde, S.; et al. Modified Gravity and Cosmology: An Update by the CANTATA Network. arXiv 2021, arXiv:2105.12582. [Google Scholar]
- Sotiriou, T.P.; Faraoni, V. f (R) theories of gravity. arXiv 2008, arXiv:0805.1726. [Google Scholar] [CrossRef] [Green Version]
- Iosifidis, D.; Petkou, A.C.; Tsagas, C.G. Torsion/nonmetricity duality in f (R) gravity. Gen. Relativ. Gravit. 2019, 51, 66. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Vignolo, S. Metric-affine f (R)-gravity with torsion: An overview. Ann. Der Phys. 2010, 19, 238–248. [Google Scholar] [CrossRef] [Green Version]
- Aldrovandi, R.; Pereira, J.G. Teleparallel Gravity: An Introduction; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 173. [Google Scholar]
- Myrzakulov, R. Accelerating universe from F (T) gravity. Eur. Phys. J. C 2011, 71, 1–8. [Google Scholar] [CrossRef]
- Nester, J.M.; Yo, H.J. Symmetric teleparallel general relativity. arXiv 1998, arXiv:gr-qc/9809049. [Google Scholar]
- Jiménez, J.B.; Heisenberg, L.; Koivisto, T.S. Teleparallel palatini theories. J. Cosmol. Astropart. Phys. 2018, 2018, 039. [Google Scholar] [CrossRef] [Green Version]
- Bartolo, N.; Pietroni, M. Scalar-tensor gravity and quintessence. Phys. Rev. D 1999, 61, 023518. [Google Scholar] [CrossRef] [Green Version]
- Charmousis, C.; Copeland, E.J.; Padilla, A.; Saffin, P.M. General second-order scalar-tensor theory and self-tuning. Phys. Rev. Lett. 2012, 108, 051101. [Google Scholar] [CrossRef] [Green Version]
- Eisenhart, L.P. Non-Riemannian Geometry; Courier Corporation: Chelmsford, UK, 2012. [Google Scholar]
- Hehl, F.W.; McCrea, J.D.; Mielke, E.W.; Ne’eman, Y. Metric-affine gauge theory of gravity: Field equations, Noether identities, world spinors, and breaking of dilation invariance. Phys. Rep. 1995, 258, 1–171. [Google Scholar] [CrossRef] [Green Version]
- Iosifidis, D. Metric-Affine Gravity and Cosmology/Aspects of Torsion and non-Metricity in Gravity Theories. arXiv 2019, arXiv:1902.09643. [Google Scholar]
- Iosifidis, D. Exactly solvable connections in metric-affine gravity. Class. Quantum Gravity 2019, 36, 085001. [Google Scholar] [CrossRef] [Green Version]
- Iosifidis, D.; Koivisto, T. Scale transformations in metric-affine geometry. Universe 2019, 5, 82. [Google Scholar] [CrossRef] [Green Version]
- Vitagliano, V.; Sotiriou, T.P.; Liberati, S. The dynamics of metric-affine gravity. Ann. Phys. 2011, 326, 1259–1273. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Liberati, S. Metric-affine f (R) theories of gravity. Ann. Phys. 2007, 322, 935–966. [Google Scholar] [CrossRef] [Green Version]
- Percacci, R.; Sezgin, E. New class of ghost-and tachyon-free metric affine gravities. Phys. Rev. D 2020, 101, 084040. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J.B.; Delhom, A. Instabilities in metric-affine theories of gravity with higher order curvature terms. Eur. Phys. J. C 2020, 80, 585. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Delhom, A. Ghosts in metric-affine higher order curvature gravity. Eur. Phys. J. C 2019, 79, 656. [Google Scholar] [CrossRef]
- Olmo, G.J. Palatini Approach to Modified Gravity: F(R) Theories and Beyond. Int. J. Mod. Phys. D 2011, 20, 413–462. [Google Scholar] [CrossRef] [Green Version]
- Aoki, K.; Shimada, K. Scalar-metric-affine theories: Can we get ghost-free theories from symmetry? Phys. Rev. D 2019, 100, 044037. [Google Scholar] [CrossRef] [Green Version]
- Cabral, F.; Lobo, F.S.N.; Rubiera-Garcia, D. Fundamental Symmetries and Spacetime Geometries in Gauge Theories of Gravity—Prospects for Unified Field Theories. Universe 2020, 6, 238. [Google Scholar] [CrossRef]
- Ariwahjoedi, S.; Suroso, A.; Zen, F.P. (3 + 1)-Formulation for Gravity with Torsion and Non-Metricity: The Stress-Energy-Momentum Equation. Class. Quantum Gravity 2020. [Google Scholar] [CrossRef]
- Yang, J.Z.; Shahidi, S.; Harko, T.; Liang, S.D. Geodesic deviation, Raychaudhuri equation, Newtonian limit, and tidal forces in Weyl-type f(Q,T) gravity. Eur. Phys. J. C 2021, 81, 111. [Google Scholar] [CrossRef]
- Helpin, T.; Volkov, M.S. A metric-affine version of the Horndeski theory. Int. J. Mod. Phys. A 2020, 35, 2040010. [Google Scholar] [CrossRef]
- Bahamonde, S.; Valcarcel, J.G. New models with independent dynamical torsion and nonmetricity fields. J. Cosmol. Astropart. Phys. 2020, 2020, 57. [Google Scholar] [CrossRef]
- Iosifidis, D.; Ravera, L. Parity violating metric-affine gravity theories. Class. Quantum Gravity 2021, 38, 115003. [Google Scholar] [CrossRef]
- Iosifidis, D. Riemann Tensor and Gauss-Bonnet density in Metric-Affine Cosmology. arXiv 2021, arXiv:2104.10192. [Google Scholar]
- Iosifidis, D. Cosmic acceleration with torsion and non-metricity in Friedmann-like Universes. Class. Quantum Gravity 2020, 38, 015015. [Google Scholar] [CrossRef]
- Iosifidis, D. Cosmological Hyperfluids, Torsion and Non-metricity. Eur. Phys. J. C 2020, 80, 1042. [Google Scholar] [CrossRef]
- Iosifidis, D.; Ravera, L. The Cosmology of Quadratic Torsionful Gravity. arXiv 2021, arXiv:2101.10339. [Google Scholar]
- Jiménez, J.B.; Koivisto, T.S. Spacetimes with vector distortion: Inflation from generalised Weyl geometry. Phys. Lett. B 2016, 756, 400–404. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Koivisto, T. Modified gravity with vector distortion and cosmological applications. Universe 2017, 3, 47. [Google Scholar] [CrossRef]
- Kranas, D.; Tsagas, C.G.; Barrow, J.D.; Iosifidis, D. Friedmann-like universes with torsion. Eur. Phys. J. C 2019, 79, 341. [Google Scholar] [CrossRef]
- Barragán, C.; Olmo, G.J.; Sanchis-Alepuz, H. Bouncing cosmologies in Palatini f (R) gravity. Phys. Rev. D 2009, 80, 024016. [Google Scholar] [CrossRef] [Green Version]
- Shimada, K.; Aoki, K.; Maeda, K.i. Metric-affine gravity and inflation. Phys. Rev. D 2019, 99, 104020. [Google Scholar] [CrossRef] [Green Version]
- Kubota, M.; Oda, K.y.; Shimada, K.; Yamaguchi, M. Cosmological perturbations in Palatini formalism. J. Cosmol. Astropart. Phys. 2021, 2021, 6. [Google Scholar] [CrossRef]
- Mikura, Y.; Tada, Y.; Yokoyama, S. Conformal inflation in the metric-affine geometry. EPL 2020, 132, 39001. [Google Scholar] [CrossRef]
- Mikura, Y.; Tada, Y.; Yokoyama, S. Minimal k-inflation in light of the conformal metric-affine geometry. arXiv 2021, arXiv:2103.13045. [Google Scholar]
- Hehl, F.W.; Kerlick, G.D.; von der Heyde, P. On hypermomentum in general relativity I. The notion of hypermomentum. Z. Fuer Naturforschung A 1976, 31, 111–114. [Google Scholar] [CrossRef]
- Babourova, O.; Frolov, B. The variational theory of perfect fluid with intrinsic hypermomentum in space-time with nonmetricity. arXiv 1995, arXiv:gr-qc/9509013. [Google Scholar]
- Obukhov, Y.N.; Tresguerres, R. Hyperfluid—A model of classical matter with hypermomentum. Phys. Lett. A 1993, 184, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Iosifidis, D. The Perfect Hyperfluid of Metric-Affine Gravity: The Foundation. JCAP 2021, 04, 72. [Google Scholar] [CrossRef]
- Myrzakulov, R. Dark energy in F (R, T) gravity. arXiv 2012, arXiv:1205.5266. [Google Scholar]
- Fabbri, L.; Vignolo, S. A modified theory of gravity with torsion and its applications to cosmology and particle physics. Int. J. Theor. Phys. 2012, 51, 3186–3207. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, J.B.; Heisenberg, L.; Iosifidis, D.; Jiménez-Cano, A.; Koivisto, T.S. General Teleparallel Quadratic Gravity. arXiv 2019, arXiv:1909.09045. [Google Scholar]
- Anagnostopoulos, F.K.; Basilakos, S.; Saridakis, E.N. Observational constraints on Myrzakulov gravity. Phys. Rev. D 2021, 103, 104013. [Google Scholar] [CrossRef]
- Saridakis, E.N.; Myrzakul, S.; Myrzakulov, K.; Yerzhanov, K. Cosmological applications of F(R,T) gravity with dynamical curvature and torsion. Phys. Rev. D 2020, 102, 023525. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f(R,T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.; Saridakis, E.N.; Otalora, G. f(T,T) gravity and cosmology. JCAP 2014, 12, 21. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, G.; Harko, T.; Liang, S.D. f (Q, T) gravity. Eur. Phys. J. C 2019, 79, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Krššák, M.; Saridakis, E.N. The covariant formulation of f (T) gravity. Class. Quantum Gravity 2016, 33, 115009. [Google Scholar] [CrossRef] [Green Version]
- Beltrán Jiménez, J.; Koivisto, T.S. Accidental gauge symmetries of Minkowski spacetime in Teleparallel theories. Universe 2021, 7, 143. [Google Scholar] [CrossRef]
- Ellis, G.F.R.; Madsen, M.S. Exact scalar field cosmologies. Class. Quant. Grav. 1991, 8, 667–676. [Google Scholar] [CrossRef]
- Carloni, S.; Goswami, R.; Dunsby, P.K.S. A new approach to reconstruction methods in f(R) gravity. Class. Quant. Grav. 2012, 29, 135012. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iosifidis, D.; Myrzakulov, N.; Myrzakulov, R.
Metric-Affine Version of Myrzakulov F(R,T,Q,
Iosifidis D, Myrzakulov N, Myrzakulov R.
Metric-Affine Version of Myrzakulov F(R,T,Q,
Iosifidis, Damianos, Nurgissa Myrzakulov, and Ratbay Myrzakulov.
2021. "Metric-Affine Version of Myrzakulov F(R,T,Q,
Iosifidis, D., Myrzakulov, N., & Myrzakulov, R.
(2021). Metric-Affine Version of Myrzakulov F(R,T,Q,